Courses of Interest:

(rhttp://ocw.mit.edu/OcwWeb/web/courses/courses/index.htm#top)

Biological Engineering

Macroepidemiology

(http://ocw.mit.edu/OcwWeb/Biological-Engineering/20-102Spring-2005/ CourseHome/index.htm)

Course Description: This course presents a challenging multi-dimensional perspective on the causes of human disease and mortality. The course focuses on analyses of major causes of mortality in the US since 1900: cancer, cardiovascular and cerebrovascular diseases, diabetes, and infectious diseases.

Chemicals in the Environment: Toxicology and Public Health

(http://ocw.mit.edu/OcwWeb/Biological-Engineering/20-104JSpring-2005/CourseHome/index.htm)

Course Description: This course addresses the challenges of defining a relationship between exposure to environmental chemicals and human disease. Course topics include epidemiological approaches to understanding disease causation; biostatistical methods; evaluation of human exposure to chemicals, and their internal distribution, metabolism, reactions with cellular components, and biological effects; and qualitative and quantitative health risk assessment methods used in the U.S. as bases for regulatory decision-making.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Biological-Engineering/20-104JSpring-2005/LectureNotes/index.htm</u>)

Column1	Column2	Column3	Column4	Column5	Column6	
Introductor	y Watch film	From	Epidemiolog	Epidemiolog ∉pidemiolog ∉iostatistic		
Lecture	A Civil	the Real	•	Test	Concepts in	
	Action	World to		Developme		
		,	Time	and Relative	e	
		and Back		Risk		
		Again				
Biostatistics	S:Confidence	Biostatistics	Biostatistics	:Environetics	sEnvironetics:	
Distribution	Intervals		Poisson	Cause and	Study	
		Differences		Effect	Design -	

and the Mean	and Correlations	Analyses and Power		Retrospective versus Prospective
Environetics:Evaluating	Quantitative	eQuantitative	Toxicology 1	L Toxicology 2
Putting it all Environmer		Risk		
together - Causes of	Assessment	Assessment	:	
Evaluating Mesothelior Studies	nða	2		
Toxicology 3 Toxicology 4	Toxicology 5	Quantitative	Quantitative	е
		Risk	Risk	
		Assessment	Assessment	t
		3	4	

Systems Microbiology

(http://ocw.mit.edu/OcwWeb/Biological-Engineering/20-106JFall-2006/CourseHome/index.htm)

Course Description: This course covers introductory microbiology from a systems perspective, considering microbial diversity, population dynamics, and genomics. Emphasis is placed on the delicate balance between microbes and humans, and the changes that result in the emergence of infectious diseases and antimicrobial resistance. The case study approach covers such topics as vaccines, toxins, biodefense, and infections including Legionnaire's disease, tuberculosis, Helicobacter pylori, and plague.

Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Biological-Engineering/20-106JFall-2006/LectureNotes/index.htm</u>)

Column1 Early Earth/ Microbial	Structure/	Energy	Column4 Microbial Growth	Column5 Metabolic Regulation	Column6 Virology
Evolution	Function	Conservatio			
	Regulation	Genetic		aGenomics I	Genomics II
Flow in	of Cell	Exchange ir			
Biological	Activity	Bacteria	Optimizatio	n	
Systems			of Metabolio	2	
-			Systems		
Metabolic	Metabolic	Microbial	Microbial	Microbe-	Immunology
Diversity I	Diversity II	Ecology	Growth	host	1
			Control	Interactions	i
Immunology	yDiagnostic	Person-	Epidemiolog	g A nimal- and	l Review
II	Microbiolog	yto-person		Arthropod-	
		Transmissio	n		

transmitted Diseases

Mechanisms of Drug Actions

(http://ocw.mit.edu/OcwWeb/Biological-Engineering/20-201Fall-2005/ CourseHome/index.htm)

Course Description: This course covers the chemical and biological analysis of the metabolism and distribution of drugs, toxins and chemicals in animals and humans, and the mechanism by which they cause therapeutic and toxic responses. Metabolism and toxicity as a basis for drug development is also covered.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Biological-Engineering/20-201Fall-2005/LectureNotes/index.htm</u>)

Introduction and	o <mark>6</mark> hemistry Biochemis	Column3 //Overview stofy Drug Developm	Uptake/ Transport/	Drug Transporte	
Drug	Introducti	obiver	Drug	Drug	Drug
Transporte	e ts Drug	Lecture	Metabolis	Metabolis	nMetabolism
	Metabolis	m	2	3	
Oxygen	Drug	Drug	Bioethics	Pharmaco	k Phatic sacokinetics
		Toxicities	Seminar		(cont.)
-		(cont.)			
Toxicity					
		Case			
	•	Study -		•	-
Study -	Omeprazo	ol 0 meprazo	ol e cetamino	o phet amino	opstrætnins
Omeprazo	ole	(cont.)		(cont.)	
	Drug				
	Industry				
	Seminar				
(cont.)		(cont.)			

Molecular and Cellular Pathophysiology

(http://ocw.mit.edu/OcwWeb/Biological-Engineering/20-450Spring-2005/CourseHome/index.htm)

Course Description: This course focuses on the fundamentals of tissue and organ response to injury from a molecular and cellular

perspective. There is a special emphasis on disease states that bridge infection, inflammation, immunity, and cancer. The systems approach to pathophysiology includes lectures, critical evaluation of recent scientific papers, and student projects and presentations.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Biological-Engineering/20-450Spring-2005/LectureNotes/index.htm</u>)

Column1 Introductior		Column3 Inflammatio		Column5 Immunity	Column6 Neoplasia
to 20.450 and HCC	Pathology		Anatomy and Histology	-	·
Neoplasia (cont.)	Infectious Diseases	Liver and Biliary	Hepatocarc	in Aogienae lsis Models	Special Topic

Design of Medical Devices and Implants

(http://ocw.mit.edu/OcwWeb/Mechanical-Engineering/2-782JSpring-2006/CourseHome/index.htm)

Course Description: This design course targets the solution of clinical problems by use of implants and other medical devices. Topics include the systematic use of cell-matrix control volumes; the role of stress analysis in the design process; anatomic fit, shape and size of implants; selection of biomaterials; instrumentation for surgical implantation procedures; preclinical testing for safety and efficacy, including risk/benefit ratio assessment evaluation of clinical performance and design of clinical trials.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Mechanical-Engineering/2-782JSpring-2006/LectureNotes/index.htm</u>)

Column1	Column2	Column3	Column4	Column5	Column6
Clinical	Principles	The Missing	Criteria for	Tissue	Tissue
Problems	of Implant	Organ	Materials	Engineering	Engineering
Requiring	Design /	and its	Selection	I: Scaffolds	II: Cells and
Implants for	Design	Replacemer	nt		Regulators
Solution	Parameters	:			
	Permanent				
	versus				
	Absorbable				
	Devices				
Case Study	Design	Biocompatil	o Die ys:ign	Degradatior	Biocompatibility:
of Organ	Specificatio	nlsocal and	Specificatio	n sf Devices:	Scar
Regeneratio	n		Tissue	Natural and	Formation

	Biomaterial Survey	sSystemic Effects	Bonding and Modulus Matching	Synthetic Polymers	and Contraction
Degradation	nFederal	Oral	Federal	Scaffolds	Implants for
of Devices:	Regulation	Presentatio	nRegulation	for Cartilage	eBone
Corrosion			s of Devices I		
and Wear		for Design I		- 1	
Implants	Cardiovascu		Musculoske	l @te htal and	Other
for Plastic	Prostheses:	for Nerve	Soft	Otologic	Devices:
Surgery	Heart Valves	Regeneratio	offissues: Meniscus,	Implants	Spinal Cord, Heart Lung
	and Blood		Interverteb	ral	ficult Lung
	Vessels		Disk		
Final Oral	VESSEIS		DISK		
Presentation of Designs	n				
(Mock FDA Panel)					

Molecular Principles of Biomaterials

(http://ocw.mit.edu/OcwWeb/Biological-Engineering/20-462JSpring-2006/CourseHome/index.htm)

Course Description: This course covers the analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules and surfaces; design, synthesis, and processing approaches for materials that control cell functions; and application of state-of-the-art materials science to problems in tissue engineering, drug delivery, vaccines, and cell-guiding surfaces.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Biological-</u> Engineering/20-462JSpring-2006/LectureNotes/index.htm)

Column1	Column2	Column3	Column4	Column5	Column6
Biodegradab B aodegradabControlled			Controlled	Case	Hydrogels
Polymeric	Polymeric	Release	Release	Studies in	as
Solids	Solids	Devices	Devices	Complex	Biomaterials
			(cont.)	Controlled	
				Release	
Hydrogels	Hydrogels	Hydrogels	Hydrogels	Engineering	g Engineering
as	as	as	as	Biological	Biological

Biomaterial (cont.)	sBiomaterial: (cont.)	sBiomaterials (cont.)	sBiomaterials (cont.)	Recognition of	Recognition of
					Biomaterials (cont.)
Engineering	Bioceramics	Bioceramics	Bioceramics	Molecular	Nanoparticle
Biological	and	and	and	Devices	and
Recognition	Biocomposi	t es iocomposit	t es iocomposit	tes	Microparticle
of		(cont.)	(cont.)		Biomolecule
Biomaterial	S				Drug
(cont.)					Carriers
Nanoparticl	eBasic	Basic	Drug	Drug	DNA
and	Biology of	Biology of	Targeting	Targeting	Vaccines
Microparticl	eVaccination	Vaccination	and	and	
Biomolecule	eand Viral	and Viral	Intracellular	Intracellular	
Drug	Infections	Infections	Drug	Drug	
Carriers		(cont.)	Delivery for	Delivery for	
(cont.)			Vaccines	Vaccines	
				(cont.)	
DNA					
Vaccines					
(cont.)					

Biology

Genetics

(//ocw.mit.edu/OcwWeb/Biology/7-03Fall-2004/CourseHome/ index.htm)

Course Description: This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease.

Lecture Notes: (<u>rhttp://ocw.mit.edu/OcwWeb/Biology/7-03Fall-2004/</u> LectureNotes/index.htm)

Column1Column2Column3Column4Column5Column6PhysicalTheMendelian Probability Chromosor ResombinationStructureCompleme Generationsand SexandTest andPedigreesLinkage

of the Gene Three- factor Crosses	Gene Function Tetrad Analysis	Phage Genetics			Genetic Maps Bacterial Genetics: of ransposition
Bacterial	Complem	e 6tartiph em	e Pitakiaonyoti	i&rokaryoti	Prokaryotic
Genetics:	in	in	Regulation	nRegulation	Regulation:
Transduct	id Bracteria:	Bacteria:	Negative	Positive	Regulatory
	Plasmids	Recombin	acolontrol	Control	Circuits
		DNA			
•	-	•	-	-	sTransgenes
				dand Gene	
Genomes	IGenomes			Targeting	
	II	111	IV	in Mice I	
				Statistical	
					Evaluation
Hardy-	Mutation	Inbreeding	g	of Linkage	e of Linkage
Weinberg				I	II
	Selection				
Complex		nceromoso			
Traits	Anomalies	Anomalies	s of Cancer	of Cancer	
	I	II	I	II	

Topics in Experimental Biology

(http://ocw.mit.edu/OcwWeb/Biology/7-18Fall-2005/CourseHome/index.htm)

Course Description: This independent experimental study course is designed to allow students with a strong interest in independent research to fulfill the project laboratory requirement for the Biology Department Program in the context of a research laboratory at MIT. The research should be a continuation of a previous project under the direction of a member of the Biology Department faculty.

This course provides instruction and practice in written and oral communication. Journal club discussions are used to help students evaluate and write scientific papers.

Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Biology/7-18Fall-2005/</u> LectureNotes/index.htm)

Description of Research	Paper, Organization of a	Data and Figures,	Project Outline and Journal Club	Background	Column6 Experimental Plan
Discussion of Paragraphs, Ethical Conduct of Science, Citations and	and	Scientific and Non- scientific Abstract	Discussion (cont.) and Polishing your Writing	I	

Cellular Neurobiology

(*http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-09JSpring-2005/CourseHome/index.htm*)

Course Description: This course serves as an introduction to the structure and function of the nervous system. Emphasis is placed on the cellular properties of neurons and other excitable cells. Topics covered include the structure and biophysical properties of excitable cells, synaptic transmission, neurochemistry, neurodevelopment, and the integration of information in simple systems and the visual system.

Lecture Notes: (http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-09JSpring-2005/LectureNotes/index.htm)

Column1	Column2	Column3	Column4	Column5	Column6
Introductior	n Membrane	lonic basis	Action	Action	Neurons as
to the	Channels	of the	Potential I	Potential II	Conductors:
Nervous	and	Resting			Propagation
System	Signaling	Potential			of the
					Action
					Potential

Electrical and	Mechanisms of	Mechanisms		and Memory	Learning yand Memory
Chemical	Transmitter	of Synaptic	Transmissio	nl	II
Synaptic	Release at	Transmissio	n		
Transmissio	nSynapses				
From Genes	Nervous	Nervous	Axon	Synapse	Fine-Tuning
	System		Guidance I	Formation	Synaptic
to Behavior	Developme	nDevelopme	nt		Connections
	1	II			
Vision I	Vision II	Hearing	Olfaction	Pain and	Higher
			and Other	Thermorece	epotinolner
			Sensory		Cognitive
			Systems		Function

Ubiquitination: The Proteasome and Human Disease

(http://ocw.mit.edu/OcwWeb/Biology/7-340Fall-2004/CourseHome/index.htm)

Course Description: This seminar provides a deeper understanding of the post-translational mechanisms evolved by eukaryotic cells to target proteins for degradation. Students learn how proteins are recognized and degraded by specific machinery (the proteasome) through their previous tagging with another small protein, ubiquitin. Additional topics include principles of ubiquitin-proteasome function, its control of the most important cellular pathways, and the implication of this system in different human diseases. Finally, speculation on the novel techniques that arose from an increased knowledge of the ubiquitin-proteosome system and current applications in the design of new pharmacological agents to battle disease is also covered.

Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Biology/7-340Fall-2004/</u> LectureNotes/index.htm)

Column3	Column4	Column5	Column6
Protein	Protein	Role of	Role of
Degradatior	Degradatior	nUbiquitinati	oldbiquitination
in	in	in	in Cell Cycle
n Trafficking	Trafficking	Transcriptio	naontrol and
Membranes	Membranes	Regulation	Programmed
l:	II:	-	Cell Death
Endoplasmi	cEndocytosis		
Reticulum	and		
Associated	lysosomal		
Degradatior	Degradatior	า	
	Protein Degradation in Trafficking Membranes I: Endoplasmi Reticulum Associated	Protein Protein DegradationDegradation in in Trafficking Trafficking Membranes Membranes I: II: EndoplasmicEndocytosis Reticulum and Associated lysosomal	ProteinProteinRole ofDegradationDegradationUbiquitinationinininTraffickingTra

		(ERAD) Pathway			
Ubiquitin- like Proteins	Functions of the Ubiquitin- Proteasome System in the Immune System		Neurodeger Diseases:	Ubiquitin: Huntington' and Von	Too Much Degradation Can Be as Bad as Not sEnough: Cystic Fibrosis and Liddle's Syndrome
Potential Therapeutic Strategies in Ubiquitin- Related Diseases					- ,

Under the Radar Screen: How Bugs Trick Our Immune Defenses

(http://ocw.mit.edu/OcwWeb/Biology/7-340Spring-2007/CourseHome/index.htm)

Course Description: In this course, we will explore the specific ways by which microbes defeat our immune system and the molecular mechanisms that are under attack (phagocytosis, the ubiquitin/ proteasome pathway, MHC I/II antigen presentation). Through our discussion and dissection of the primary research literature, we will explore aspects of host-pathogen interactions. We will particularly emphasize the experimental techniques used in the field and how to read and understand research data. Technological advances in the fight against microbes will also be discussed, with specific examples.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/</u> Biology/7-340Spring-2007/LectureNotes/index.htm)

Column1	Column2	Column3	Column4	Column5	Column6
Phagocytos	isīoll-like	The	Major	Major	Cytokines
	receptors	proteasome	histocompa	tilisitoycompa	tiblity
	(TLRs)	and	(MHC) class	(MHC) class	5
		ubiquitin	l antigen	ll antigen	
			presentatio	npresentatio	n
ProgrammedMolecular		Antimicrobia	al		
cell death	mimicry	peptides:			
		Innate			

immunity effectors

The Radical Consequences of Respiration: Reactive Oxygen Species in Aging and Disease

(http://ocw.mit.edu/OcwWeb/Biology/7-343Fall-2007/CourseHome/index.htm)

Course Description: This course will start with a survey of basic oxygen radical biochemistry followed by a discussion of the mechanisms of action of cellular as well as dietary antioxidants. After considering the normal physiological roles of oxidants, we will examine the effects of elevated ROS and a failure of cellular redox capacity on the rate of organismal and cellular aging as well as on the onset and progression of several major diseases that are often age-related. Topics will include ROS-induced effects on stem cell regeneration, insulin resistance, heart disease, neurodegenerative disorders, and cancer. The role of antioxidants in potential therapeutic strategies for modulating ROS levels will also be discussed.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/</u> Biology/7-343Fall-2007/LectureNotes/index.htm)

Column1 Introductior and	Column2 The high price of	Column3 Radical messengers	Column4 Hired assassins:	Column5 Antioxidants fighting the	
background	•	ROS as ritacilitators of cellular signaling	ROS in anti- pathogen defense	0 0	theory: ROS and aging
The root	Balancing		Brain drain:		Fighting
of the problem:	act: ROS effects	in ischemic	oxidative stress in	soldiers of renegade	
oxidative damage in stem cell renewal	on insulin resistance and	reperfusion		ereitiveROS ir cancer and oncogenic	ROS or less ROS as therapeutic
	diabetes			transformat	ingratedies (

Protein Folding Problem

(http://ocw.mit.edu/OcwWeb/Biology/7-88JFall-2007/CourseHome/index.htm)

Course Description: This course focuses on the mechanisms by which the amino acid sequence of polypeptide chains (proteins), determine their three-dimensional conformation. Topics in this course include sequence determinants of secondary structure, the folding of newly synthesized polypeptide chains within cells, folding intermediates aggregation and competing off-pathway reactions, and the unfolding and refolding of proteins in vitro. Additional topics covered are the role of helper proteins such as chaperonins and isomerases, protein recovery problems in the biotechnology industry, and diseases found associated with protein folding defects.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/</u> Biology/7-88JFall-2007/LectureNotes/index.htm)

Column1 Introduction to the problem	review +	Column3 The Anfinsen experiments	Column4 Globular protein sstructure + Protein interiors	Column5 Using the Protein database (PDB)	Column6 Helix-helix packing in globular proteins
	Experiment		Fluorescenc		Detecting
+ Beta- sheet packing	circular dichroism	+ Coiled coils + Refolding of tropomyosin		folding	partially folded intermediates
Prolyl	Cytochrome		Collagen	Procollagen	Protein
isomerizatio	pæ refolding pathway	techniques	structure and folding in vivo	folding in vitro	calorimetry: BPTI
Protein misfolding and aggregation	Ribosome channel + Nascent chains + Trigger factor	Scaffolding proteins in viral shell assembly	Amyloid fiber formation in neuro degenerativ disease	Chaperonin assisted folding e	Eukariotic chaperonins
Paper topic discussion and choices	Membrane protein (rhodopsin) folding and assembly	Prion diseases	Etiology of some human protein deposition diseases		

Brain and Cognitive Sciences

Neuroscience and Behavior

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-01Fall-2003/CourseHome/index.htm)

Course Description: This course covers the relation of structure and function at various levels of neuronal integration. Topics include functional neuroanatomy and neurophysiology, sensory and motor systems, centrally programmed behavior, sensory systems, sleep and dreaming, motivation and reward, emotional displays of various types, "higher functions" and the neocortex, and neural processes in learning and memory.

Audio Lectures: (http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-01Fall-2003/AudioLectures/index.htm)

to Brain- behavior	Column2 History and Goals, II	Column3 History and Goals, III	Column4 History and Goals, IV	Column5 Cellular Mechanisms	and
Studies			Drain	Trancation	Transmission
	Introduction		Brain	Transection	Spinal
	nboice NS and		Subdivisions + Channels		Cord +
lechniques	its Evolution	Cerebellar	+ Channels	Neocortex	Autonomic NS
		Channels	Conduction		NS
Hindbrain	Midbrain	Developmer		Influences	Axonal
and	and	of CNS,	migration	on Axon	Sprouting
Midbrain	Forebrain	Introduction	-	Growth	and
			Growth		Regeneration
			Stages		5
Motor	Motor	Motor	Motor 4:	Rhythms of	Sleep and
System, 1	System, 2	System, 3	Rythmic	Activity +	Waking
			Outputs	Sleep and Waking	(cont.)
Habituation	, Visual	Visual	Visual	Visual	Visual
Novelty	System 1:	System 2:	System 3:	System 4:	System
Responses	Anatomy,	Physiology	Ablation	Ablations	Conclusion
	Ablations	(orig:	Studies	(cont.)	
		Ablation		(Orig:	
		Effects)		Electrophysi	
Auditory	Pain and	Hypothalam		Higher	Human
System	Central	and Feeding		Functions	Nature and
	Gray Area		Agonistic Behavior	+ Human Nature	Neuroscience

Neural Basis of Learning and Memory

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-03Fall-2007/CourseHome/index.htm)

Course Description: This course highlights the interplay between cellular and molecular storage mechanisms and the cognitive neuroscience of memory, with an emphasis on human and animal models of hippocampal mechanisms and function.

Selected Lectures Notes: (http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-03Fall-2007/LectureNotes/index.htm)

Column1	Column2		Column4	Column5	Column6
Lecture 1:	Lecture 2:	Lecture 3:	Lecture	Lecture 6:	Lecture 21:
Brief History	/Introductior	n;Neuroimagi	n4g:Skill	Sensory,	Observational
of Work in	Cells and	Techniques	Memory	Short-	Learning;
the Area of	Synapses			Term, and	Mirror
Learning				Working	Neurons
and Memory	/			Memory	
Lecture 23:					
Emotional					
Learning					
and Memory	/				

Neural Basis of Vision and Audition

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-04Fall-2006/CourseHome/index.htm)

Course Description: This course examines the neural bases of visual and auditory processing for perception and sensorimotor control, focusing on physiological and anatomical studies of the mammalian nervous system as well as behavioral studies of animals and humans. Visual pattern, color and depth perception, auditory responses and speech coding, and spatial localization are studied.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-04Fall-2006/LectureNotes/index.htm</u>)

Column1	Column2	Column3	Column4	Column5	Column6
The layout		The ON	The midget	Adaptation	Depth
of the visual cortex		and OFF	and parasol	and color	perception
system, the		channels	channels		
retina, and					

ogy
Ugy

Brain Mechanisms for Hearing and Speech

(http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/ HST-722JFall-2005/CourseHome/index.htm)

Course Description: An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-722JFall-2005/LectureNotes/index.htm</u>)

Column1	Column2	Column3	Column4	Column5	Column6
Dorsal	Descending	Cell Types	Quantitative	eThalamus	Neuroimaging
Cochlear	Systems	and Circuits	Methods	and Cortex	
Nucleus					
Speech	Motor	Cortical			
Motor	Control	Language			
Control		Processing			

Statistical Methods in Brain and Cognitive Science

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-07Spring-2004/CourseHome/index.htm)

Course Description: This course emphasizes statistics as a powerful tool for studying complex issues in behavioral and biological sciences, and explores the limitations of statistics as a method of inquiry. The course covers descriptive statistics, probability and random variables, inferential statistics, and basic issues in experimental design. Techniques introduced include confidence intervals, t-tests, F-tests, regression, and analysis of variance. Assignments include a project in data analysis.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-07Spring-2004/LectureNotes/index.htm</u>)

Column1 Introduction to Statistics	Column2 Describing Data + Graphs, Central Tendency, and Spread	Column3 Probability,	Column4 IProbability, I (cont.) + Probability, II		Column6 Sampling Theory
Confidence	Single-	Single-	Two-sample	Two Sample	Two-sample
Intervals	sample	•	Hypothesis	t-Test	Hypothesis
	• •	Hypothesis	Testing, I		Testing, II
		Testing, II			
•		aExperiment		0	•
Design, l	Design, ll	Design, ll	and	and	Tests
			Correlation,		
		Regression	II	111	
		and			
		Correlation, I			
One-way	One-way	Two-way	Two-way		
ANOVA, I	ANOVA, II	ANOVA, I	ANOVA, II		

Human Memory and Learning

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-081Human-Memory-and-LearningFall2002/CourseHome/index.htm)

Course Description: Surveys the literature on the cognitive and neural organization of human memory and learning. Includes consideration of working memory and executive control, episodic and semantic memory, and implicit forms of memory. Emphasizes integration of cognitive theory with recent insights from functional neuroimaging (e.g., fMRI and PET).

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-081Human-Memory-and-LearningFall2002/LectureNotes/index.htm</u>)

Column1	Column2	Column3	Column4	Column5	Column6
Lecture 1:	Lecture 3:	Lecture 5:	Lecture 9:		
What is	Neuroimagingpisodic		Nondeclarative		
Memory?	and	and	Memory		
-	Cognitive	PrimarycMemory			
	Control	-	-		

Brain Structure and its Origins

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-14Spring-2005/CourseHome/index.htm)

Course Description: This course covers major CNS structures with emphasis on systems being used as models for experimental studies of development and plasticity. Topics include basic patterns of connections in CNS, embryogenesis, PNS anatomy and development, process outgrowth and synaptogenesis, growth factors and cell survival, spinal and hindbrain anatomy, and development of regional specificity with an introduction to comparative anatomy and CNS evolution. A review of lab techniques (anatomy, tissue culture) is also covered as well as the trigeminal system, retinotectal system development, plasticity, regeneration, neocortex anatomy and development, the olfactory system, corpus striatum, brain transplants, the limbic system and hippocampal anatomy and plasticity.

Audio Lectures: (*http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-14Spring-2005/AudioLectures/index.htm*)

Column1 Introduction Brain Orientation, Primitive Cellular Activities	Column2 Introduction Methods; Primitive Cellular Activities	Column3 Steps to the CNS of Chordates	Column4 Steps to the CNS of Chordates (cont.)	Column5 Specialization in CNS Evolution	Column6 ofipecializations in CNS Evolution (cont.)
•	•				i D ifferentiation
•	•				of the Brain
and	and	Vesicles	Vesicles	Vesicles	Vesicles
Anatomy	Anatomy (cont.)		(cont.)	(cont.)	(cont.)
Axon	Axon	Motor	Motor	Taste and	Taste and
Growth	Growth	Systems	Systems	Olfactory	Olfactory
	(cont.)		(cont.)	Systems	Systems (cont.)
Visual	Visual	Visual	Auditory	Auditory	Forebrain
Systems	Systems (cont.)	Systems (cont.)	Systems	Systems (cont.)	Introduction
Hypothalam	nutby pothalam	nutby pothalam	nuttypothalam	nutby pothalam	າ ຟຣ ງrpus
Limbic	Limbic	Limbic	Limbic	Limbic	Striatum
System	System	System	System	System	
_	(cont.)	(cont.)	(cont.)	(cont.)	
Corpus	Neocortex	Neocortex	Neocortex	Neocortex	Plastic
Striatum		(cont.)	(cont.)	(cont.)	Systems:
(cont.)					Cerebellum, Striatum,
					Cortex

Animal Behavior

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-20Fall-2005/CourseHome/index.htm)

Course Description: Most of the major categories of adaptive behavior can be seen in all animals. This course begins with the evolution of behavior, the driver of nervous system evolution, reviewed using concepts developed in ethology, sociobiology, other comparative studies, and in studies of brain evolution. The roles of various types of plasticity are considered, as well as foraging and feeding, defensive and aggressive behavior, courtship and reproduction, migration and navigation, social activities and communication, with contributions of inherited patterns and cognitive abilities. Both field and laboratory based studies are reviewed; and finally, human behavior is considered within the context of primate studies.

Audio Lectures: (*r*http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-20Fall-2005/AudioLectures/index.htm)

Column1 Animals in Human History + Amateur and Professional Studies	Column2 Introduction to Ethology + Tinbergen's Four Questions + Field Studies of Birds	Jackdaws	Column4 Ethology of Geese + Fixed Action Patterns and the Central Nervous System		Column6 Motivation (cont.)
Lorenz on Fixed Action	Lorenz	Models, Hierarchies	Spatial Orientation		Navigation, Migration,
Patterns	Releasing	and Chains	+ Multiple	Genes,	Communication
rutterns	Mechanisms		Motivations		communication
Communica	t For naging	Anti-	Anti-	Mating and	Sociobiology
(cont.)		predator Behavior	predator Behavior (cont.)	Reproductio Introduction	nntroduction
Sociobiology	vGenes and	Sociobiology	•	Cultural	Sociobiology
Subject	Behaviors	and Science			mand Culture
Matter			Sociobiology	yand	
				Sociobiology	/
Practical	The				
Issues in	Triumph of				
Study of	Sociobiology	ý			

Adaptation

Neural Coding and Perception of Sound

(//ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/ HST-723Spring-2005/CourseHome/index.htm)

Course Description: This course focuses on neural structures and mechanisms mediating the detection, localization and recognition of sounds. Discussions cover how acoustic signals are coded by auditory neurons, the impact of these codes on behavioral performance, and the circuitry and cellular mechanisms underlying signal transformations. Topics include temporal coding, neural maps and feature detectors, learning and plasticity, and feedback control. General principles are conveyed by theme discussions of auditory masking, sound localization, musical pitch, speech coding, and cochlear implants. Selected Lecture Notes: (http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-723Spring-2005/LectureNotes/index.htm)

Column1 Hearing and the Auditory System: An Overview		Column3 Stimulus Coding in the Auditory Nerve	Column4 Masking and Frequency Selectivity	Column5 Masking and Nonlinearity	Column6 Masking and Nonlinearity (cont.)
Cochlear Implants	Intensity Perception and Cochlear Hearing Loss	Channels, Synapses and Neurotransr	in the r ûttehs ear Nucleus	in the Cochlear Nucleus	Cellular Mechanisms in the Cochlear Nucleus
Binaural Hearing	Binaural Interactions in the Auditory Brainstem	Binaural Interactions	Binaural Interactions	Pitch of Pure and Complex Tones	Neural Processing of Pitch
Pitch and Temporal Coding Auditory Scene Analysis (ASA) and Object Formation	Pitch and Temporal Coding (cont.) Scene Analysis	Auditory Cortex: Cortical organizatior	The Human Auditory System	Neural Maps and Plasticity	Neural Maps and Plasticity

Introduction to Computational Neuroscience

(rhttp://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-29JSpring-2004/CourseHome/index.htm)

Course Description: This course gives a mathematical introduction to neural coding and dynamics. Topics include convolution, correlation, linear systems, game theory, signal detection theory, probability theory, information theory, and reinforcement learning. Applications to neural coding, focusing on the visual system are covered, as well as Hodgkin-Huxley and other related models of neural excitability, stochastic models of ion channels, cable theory, and models of synaptic transmission. Selected Lecture Notes: (http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-29JSpring-2004/LectureNotes/index.htm)

Column1 Examples of Neural Coding, Simple Linear Regression	and Correlation	 Correlation 2 + Spike- triggered Average + Wiener-Hopt Equations and White Noise	Matching 1	Column6
		Analysis		

Neural Plasticity in Learning and Development

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-301JNeural-Plasticity-in-Learning-and-DevelopmentSpring2002/CourseHome/index.htm)

Course Description: Roles of neural plasticity in learning and memory and in development of invertebrates and mammals. An in-depth critical analysis of current literature of molecular, cellular, genetic, electrophysiological, and behavioral studies. Discussion of original papers supplemented by introductory lectures.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-301JNeural-Plasticity-in-Learning-and-DevelopmentSpring2002/LectureNotes/index.htm</u>)

Column1	Column2	Column3	Column4	Column5	Column6
Lecture 1:	Lecture 2:	Lecture 3:	Lecture 4:	Lecture 5:	
Introduction	Behavior	Synaptic	Potentiatior	Expression	
	and	Transmissio			
	Plasticity		Transmissio	n	

Parkinson's Disease Workshop

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-458Summer-2006/CourseHome/index.htm)

Course Description: Parkinson's disease (PD) is a chronic, progressive, degenerative disease of the brain that produces movement disorders and

deficits in executive functions, working memory, visuospatial functions, and internal control of attention. It is named after James Parkinson (1755-1824), the English neurologist who described the first case.

This six-week summer workshop explored different aspects of PD, including clinical characteristics, structural neuroimaging, neuropathology, genetics, and cognitive function (mental status, cognitive control processes, working memory, and long-term declarative memory). The workshop did not take up the topics of motor control, nondeclarative memory, or treatment.

Lecture Notes: (<u>rhttp://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-</u> Sciences/9-458Summer-2006/LectureNotes/index.htm)

Column1	Column2	Column3	Column4	Column5	Column6
Cognition in	Neuropatho	logenetics of	Cognitive	A Systems	Long-term
Parkinson's	and	Parkinson's	Control	Neuroscien	c@eclarative
Disease	Structural	Disease	Processes	Approach to	Memory in
			and	Memory	Parkinson
	in	-	Working	-	Disease
	Parkinson's		Memory in		
	Disease		Parkinson's		
			Disease		

Scene Understanding Symposium

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-459Spring-2006/CourseHome/index.htm)

Course Description: What are the circuits, mechanisms and representations that permit the recognition of a visual scene from just one glance? In this one-day seminar on Scene Understanding, speakers from a variety of disciplines - neurophysiology, cognitive neuroscience, visual cognition, computational neuroscience and computer vision - will address a range of topics related to scene recognition, including natural image categorization, contextual effects on object recognition, and the role of attention in scene understanding and visual art. The goal is to encourage exchanges between researchers of all fields of brain sciences in the burgeoning field of scene understanding.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-</u> Sciences/9-459Spring-2006/LectureNotes/index.htm)

Column1 From Zero to Gist in 200 msec: The Time Course of Scene Recognition	Column2 Feedforward Theories of Visual Cortex Predict Human Performanc in Rapid Image Categorizat	Duration and Codes for Objects in Inferior Temporal eCortex	Impact of Free Viewing, Task, and Clutter on Monkey Inferior Temporal Object	in Natural Scenes and the Role of Attention	
Using the Forest to	Scene Perception		Represental		
See the	after Those				
Trees: A Computatio	First Few n lal undred				
Model	Milliseconds	5			

Statistical Learning Theory and Applications

Relating Features, Objects and Scenes

(<u>http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-</u> Sciences/9-520Statistical-Learning-Theory-and-ApplicationsSpring2003/ CourseHome/index.htm)

Course Description: Focuses on the problem of supervised learning from the perspective of modern statistical learning theory starting with the theory of multivariate function approximation from sparse data. Develops basic tools such as Regularization including Support Vector Machines for regression and classification. Derives generalization bounds using both stability and VC theory. Discusses topics such as boosting and feature selection. Examines applications in several areas: computer vision, computer graphics, text classification and bioinformatics.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-520Statistical-Learning-Theory-and-ApplicationsSpring2003/LectureNotes/index.htm</u>)

Column1 The Learning Problem in Perspective	and Reproducing	Column3 Regression and Least- gSquares Classificatio	Support Vector Machines	Bounds, Introductior to Stability	Column6 i &t ability of Tikhonov Regularization
Consistency	Necessary	Bagging	Computer	Approximat	ioRtKHS,
and Uniform	nand	and	Vision,	Theory	Mercer
Convergenc	Sufficient	Boosting	Object		Thm,
Over	Conditions		Detection		Unbounded
Function	for Uniform				Domains,
Classes	Convergenc	e			Frames and
	· - ·				Wavelets
Bioinformat	Idext	-	id M orphable	Leave-	Bayesian
		Networks	Models for Video	one-out Approximat	Interpretations ions
Multiclass	Math	Math Camp	SVM Rules		
Classificatio	orCamp 1:	2: Lagrange	e of Thumb		
	Functional	Multipliers/			
	Analysis	Convex			
		Optimizatio	n		

Language Processing

(//ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-591JFall-2004/CourseHome/index.htm)

Course Description: This course is a seminar in real-time language comprehension. It considers models of sentence and discourse comprehension from the linguistic, psychology, and artificial intelligence literature, including symbolic and connectionist models. Topics include ambiguity resolution and linguistic complexity; the use of lexical, syntactic, semantic, pragmatic, contextual and prosodic information in language comprehension; the relationship between the computational resources available in working memory and the language processing mechanism; and the psychological reality of linguistic representations.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-591JFall-2004/LectureNotes/index.htm</u>)

Column1	Column2	Column3	Column4	Column5	Column6
Course	Resources	Working	Resources	Experience	/Symbolic
Overview +	and	Memory and	dand	Frequency	Computational
Modularity	Sentence		Ambiguity	and	Approaches

Comprehen Referential and Contextual	Complexity of Unambiguo Sentences + The Dependency Locality Theory Event- related Potentials	Comprehen us	Ambiguity Resolution	to Language Parsing + Parsing Strategies + Shift-reduce Parsing
	Potentials	-		
Comprehen	s im aging Methods Investigatin Sentence	g		
	Comprehen	sion		

Psycholinguistics

(//ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-59JSpring-2005/CourseHome/index.htm)

Course Description: This course covers central topics in language processing, including: the structure of language; sentence, discourse, and morphological processing; storage and access of words in the mental dictionary; speech processing; the relationship between the computational resources available in working memory and the language processing mechanism; and ambiguity resolution. The course also considers computational modeling, including connectionist models; the relationship between language and thought; and issues in language acquisition including critical period phenomena, the acquisition of speech, and the acquisition of words. Experimental methodologies such as selfpaced reading, eye-tracking, cross-modal priming, and neural imaging methods are also examined.

Selected Lecture Notes: (http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-59JSpring-2005/LectureNotes/index.htm)

Column1 Syntax I	Column2 Syntax II	Column3 Syntax III	Column4 Sentence Parsing + Sentence Comprehen	Comprehen II	Column6 Sentence stomprehension III
Sentence Processing IV Speech (cont.)	Semantic and Pragmatic Processing Speech Perception	Sentence and Discourse Comprehen Words: Visual Word	Comprehen sion Language	Neural s ima ging and Language Processing	Speech d
(00111)	and Production	Recognition			

Language Acquisition I

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-601JLanguage-Acquisition-ISpring2002/CourseHome/index.htm)

Course Description: Lectures, reading, and discussion of current theory and data concerning the psychology and biology of language acquisition. Emphasizes learning of syntax and morphology, together with some discussion of phonology, and especially research relating grammatical theory and learnability theory to empirical studies of children.

Selected Lecture Notes: (http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-601JLanguage-Acquisition-ISpring2002/LectureNotes/index.htm)

Column1 Column2 Column3 Column4 Column5 Column6 DevelopmenThe OI of the Stage in MorphosyntaEnglish of Verbal Inflections

Natural Language and the Computer Representation of Knowledge

(http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-863JSpring2003/CourseHome/index.htm)

Course Description: Natural Language and the Computer Representation of Knowledge is a laboratory-oriented course on the theory and practice of building computer systems for human language processing, with an emphasis on the linguistic, cognitive, and engineering foundations for understanding their design.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Electrical-</u> Engineering-and-Computer-Science/6-863JSpring2003/LectureNotes/ index.htm)

Organizatio	sMorphology I, 2-level morphology Kimmo n	and Morphology II	Tagging, Statistical	Column5 Part of Speech Tagging:The i Bn ill Tagger	Column6 Introduction to Parsing, Linguistics:Syntax & Parsing
Shift- Reduce Parsers in Detail, Earley's Algorithm and Chart Parsing	Context- Free Parsing and Beyond: Efficiency Issues, Feature- Based Parsing, NL System Design	Shift- Reduce Parsers in Detail, Earley's Algorithm and Chart Parsing	Parsing with an Integrated Lexicon - The Question of Syntactic Features	I: Composition	Semantic omterpretation II: n Gioty positionality and Quantifiers
Semantics III: Lexical Semantics	Semantics IV: Lexical Semantics	Semantics V: Constraint- Based Systems		Machine Translation III	Machine Translation IV
Language Learning I	Language Learning II				

Laboratory in Cognitive Science

(*http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-63Fall-2005/* <u>CourseHome/index.htm</u>) Course Description: Laboratory in Cognitive Science teaches principles of experimental methods in human perception and cognition, including design and statistical analysis. The course combines lectures and handson experimental exercises and requires an independent experimental project. Some experience in programming is desirable.

Selected Lecture Notes: (*http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-63Fall-2005/LectureNotes/index.htm*)

Column1	Column2	Column3	Column4	Column5	Column6	
Variables	Single	Factorial	Factorial	Experiment	aCognitive	
and	Factor	Design and	Design and	Paradigms	Neuroscience	
Controls	Design and	External	Statistical	in Cognitive	Methods	
- Signal	Statistics (T	-Validity	Analysis	Science		
Detection	test)		(ANOVA)			
Theory						
Single	Correlationa	Writing a	Experiment	sEthics in		
Participant	Studies	Paper	in Other	Research		
Experiment	sand Non		Sciences			
Quasi-	Experiment	al				
Experiment	ExperimentsResearch					

Introduction to Neural Networks

(//ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-641JSpring-2005/CourseHome/index.htm)

Course Description: This course explores the organization of synaptic connectivity as the basis of neural computation and learning. Perceptrons and dynamical theories of recurrent networks including amplifiers, attractors, and hybrid computation are covered. Additional topics include backpropagation and Hebbian learning, as well as models of perception, motor control, memory, and neural development.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-641JSpring-2005/LectureNotes/index.htm</u>)

Column1	Column2	Column3	Column4	Column5	Column6
From Spikes	s Lateral	Hamiltoniar	n Antisymme	tr E ocitatory-	VQ + PCA
to Rates	Inhibition and Feature Selectivity	-	Networks	Inhibitory Networks	
Delta Rule	Conditionin + Backpropag	Backpropag	ation		

Computational Cognitive Science

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-66JFall-2004/ CourseHome/index.htm)

Course Description: This course is an introduction to computational theories of human cognition. Drawing on formal models from classic and contemporary artificial intelligence, students will explore fundamental issues in human knowledge representation, inductive learning and reasoning. What are the forms that our knowledge of the world takes? What are the inductive principles that allow us to acquire new knowledge from the interaction of prior knowledge with observed data? What kinds of data must be available to human learners, and what kinds of innate knowledge (if any) must they have?

Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-66JFall-2004/LectureNotes/index.htm</u>)

	Column2 Knowledge Representat Spaces, Trees,	Knowledge i Be presentat Language	Knowledge ti ße presentat	i ße presentat Great	i Be presentation: Great
Basic Bayesian Inference		Simple Bayesian Learning 1	-		Probabilistic Models for Concept Learning and
				Categorizati 1	i@mategorization 2
Unsupervise and Semi-		Non- parametric	Controlling Complexity		—
supervised	•	Classificatio		and	the Role of
Learning		Exemplar Models and Neural Networks 2	Occam's Razor 1	Occam's Razor 2	Theories
Learning Domain Structures 1	Learning Domain Structures 2	Causal Learning	Causal Theories 1	Causal Theories 2	

Special Topics: Genetics, Neurobiology, and Pathophysiology of Psychiatric Disorders

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-914Fall-2008/CourseHome/index.htm)

Course Description: The key topics covered in this course are Bipolar Disorder, Psychosis, Schizophrenia, Genetics of Psychiatric Disorder, DISC1, Ca++ Signaling, Neurogenesis and Depression, Lithium and GSK3 Hypothesis, Behavioral Assays, CREB in Addiction and Depressive Behaviors, The GABA System-I, The GABA System-II, The Glutamate Hypothesis of Schizophrenia, The Dopamine Pathway and DARPP32.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-914Fall-2008/LectureNotes/index.htm</u>)

Column1 General introduction	DISC1	Column3 Literature discussion: neurogenes	discussion:	Column5	Column6
		and depression	dopamine pathway and DARPP32		

Language and Mind

(*http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-98Language-and-MindJanuary-IAP-2003/CourseHome/index.htm*)

Course Description: This course will address some fundamental questions regarding human language: (1) how language is represented in our minds; (2) how language is acquired by children; (3) how language is processed by adults; (4) the relationship between language and thought; (5) exploring how language is represented and processed using brain imaging methods; and (6) computational modeling of human language acquisition and processing.

Selected Lecture Notes: (http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-98Language-and-MindJanuary-IAP-2003/LectureNotes/index.htm)

Column2 Column5 Column6 Column1 Column3 Column4 Relationship Why Study The Human The Language? Brain: Brain Structure of Between Areas Language Language and Thought Beyond Crosslinguistic Differences

Neuropharmacology

(http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-Sciences/9-98January-IAP-2009/CourseHome/index.htm)

Course Description: The neuropharmacology course will discuss the drug-induced changes in functioning of the nervous system. The specific focus of this course will be to provide a description of the cellular and molecular actions of drugs on synaptic transmission. This course will also refer to specific diseases of the nervous system and their treatment in addition to giving an overview of the techniques used for the study of neuropharmacology.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Brain-and-Cognitive-</u> Sciences/9-98January-IAP-2009/LectureNotes/index.htm)

Column1 Column2 Column3 Column4 Column5 Column6 Basics of The Neuropsychi**Alteric**ropsychiatric neuroscienceneurotransmiliteerders: disorders: anxiety, schizophrenia systems mood disorders

Health Sciences and Technology

Musculoskeletal Pathophysiology

(//ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/ HST-021January-IAP-2006/CourseHome/index.htm)

Course Description: This course covers the growth, development and structure of normal bone and joints, the biomechanics of bone connective tissues, and their response to stress, calcium and phosphate homeostasis.

Additional topics include regulation by parathyroid hormone and vitamin D, the pathogenesis of metabolic bone diseases and diseases of connective tissues, joints and muscle with consideration of possible mechanisms and underlying metabolic derangements.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-021January-IAP-2006/LectureNotes/index.htm</u>)

Column1 Column2 Column3 Column4 Column5 Column6 RheumaticPathogenesis Diseases of (I) + Rheumatoid RheumaticArthritis + Diseases Rheumatic (II) Diseases (III), Vasculitis

Principle and Practice of Human Pathology

(//ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/ HST-035Spring2003/CourseHome/index.htm)

Course Description: This course provides a comprehensive overview of human pathology with emphasis on mechanisms of disease and diagnostic medicine. Topics include:

- •Cellular Mechanisms of Disease
- Molecular Pathology
- Pathology of Major Organ Systems

•Review of Diagnostic Tools from Traditional Surgical Pathology to Diagnostic Spectroscopy

- •Functional and Molecular Imaging
- Molecular Diagnostics

Selected Lecture Notes: (http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-035Spring2003/LectureNotes/index.htm)

Column1 Introduction to Human Pathology and Diagnostic Medicine	Column2 Epithelial Structure and Function	Column3 The Immune System	Adaptation		Column6 Tissue Repair, ofFibrosis and Healing
Infectious Diseases: "The Biological Conflict of Interest"	5	What We Eat? "The Link	Ischemia and Infarction nt"	Genetic Disorders	The Liver

Human Reproductive Biology

(http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/ HST-071Fall-2005/CourseHome/index.htm)

Course Description: This course is designed to give the student a clear understanding of the pathophysiology of the menstrual cycle, fertilization, implantation, ovum growth development, differentiation and associated abnormalities. Disorders of fetal development including the principles of teratology and the mechanism of normal and abnormal parturition will be covered as well as the pathophysiology of the breast and disorders of lactation. Fetal asphyxia and its consequences will be reviewed with emphasis on the technology currently available for its detection. In addition the conclusion of the reproductive cycle, menopause, and the use of hormonal replacement will be covered.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-071Fall-2005/LectureNotes/index.htm</u>)

Column1	Column2	Column3	Column4	Column5	Column6
Male	Male	Endometrio	sGlinical	Abnormaliti	elsterine
System	Fertility,		Pathologica	l of the	Pathology:
Physiology	Temperatur	e	Conference	: Menstrual	Fibroids
	and the			Cycle	
	Testes		Reproductiv	'e	
			System		
Ovarian	Non-	Hormonal	Phytoestrog	jeīnbe	Placental
Pathology	hormonal	Contracepti	on	Placenta	Pathology
	Contracepti	on			

	I + Non- hormonal Contracepti II	on			
Clinical	Cervical	Clinical	Sexual	Assisted	Maternal
	l Pathology	•			rePhysiology I
Conference	and Cancer	Conference:	I + Sexual	Technology	+ Maternal
Menstrual		Cervix	Differentiati	on	Physiology II
Cycle			II		
Hypertensic	n Parturition	Polycystic	Ovarian	Toxoplasmo	s is oimmunization
in		Ovarian	Failure	-	
Pregnancy		Syndrome			
5 ,		(PCO)			
Ultrasound	Energy and	. ,	Fetal	Pregnancy	
Prenatal	Radiation	Genetic	Surveillance	Termination	
Diagnosis	Impact on	Diagnosis		Technology	
	Pregnancy				
	5 ,				

Gastroenterology

(http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/ HST-121Fall-2005/CourseHome/index.htm)

Course Description: The most recent knowledge of the anatomy, physiology, biochemistry, biophysics, and bioengineering of the gastrointestinal tract and the associated pancreatic, liver and biliary tract systems is presented and discussed. Gross and microscopic pathology and the clinical aspects of important gastroenterological diseases are then presented, with emphasis on integrating the molecular, cellular and pathophysiological aspects of the disease processes to their related symptoms and signs.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-121Fall-2005/LectureNotes/index.htm</u>)

Column1			Column4 ePradhology o		Column6 Lipid
Embryology	[,] Physiology	Pathophysic	ol bsgy phagus	Immunology	/Digestion,
		and	and	of the Gl	Absorption
		Disorders	Stomach	Tract	and
					Malabsorption
Pathology	Gastrointes	tiPhanysiologica	aPathology	Biliary	Pathology of
of the	Neoplasms	Chemistry	of Pancreas	Secretion,	the Liver
Intestines		of GI Lipids	and Biliary	Cholestasis	
			Tract	and	

Gallstone Formation

Jaundice Alcohol and and Drug-Disorders Induced of Bilirubin Liver Metabolism Disease

Principles of Pharmacology

(http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/ HST-151Spring-2005/CourseHome/index.htm)

Course Description: The object of the course is to teach students an approach to the study of pharmacologic agents. It is not intended to be a review of the pharmacopoeia. The focus is on the basic principles of biophysics, biochemistry and physiology, as related to the mechanisms of drug action, biodistribution and metabolism. Topics covered include: mechanisms of drug action, dose-response relations, pharmacokinetics, drug delivery systems, drug metabolism, toxicity of pharmacological agents, drug interaction and substance abuse. Selected agents and classes of agents are examined in detail.

Selected Lecture Notes: (http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-151Spring-2005/LectureNotes/index.htm)

Column5 Column6 ntidysrhyth Anitis nflammatory
/ Drugs
essrioopharmaktorioogQxide
Drugs for
lovement
is orders
ypioids I
nd II
escrippharmAktoriogyxide Drugs for lovement vissorders ypioids l

Cellular and Molecular Immunology

(http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/ HST-176Fall-2005/CourseHome/index.htm) Course Description: This course covers cells and tissues of the immune system, lymphocyte development, the structure and function of antigen receptors, the cell biology of antigen processing and presentation, including molecular structure and assembly of MHC molecules, the biology of cytokines, leukocyte-endothelial interactions, and the pathogenesis of immunologically mediated diseases.

Selected Lecture Notes: (*r*<u>http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-176Fall-2005/LectureNotes/index.htm</u>)

2005

Column1 Cells of the Immune System	Column2 Lymphocyte Homing	Column3 Antibodies and Antigens	Column4 Antigen Receptors and the Generation of Diversity	Development and	Column6 Antigen Presentation nt
Т	Cell	Frontiers:	Memory and	dTumor	Genetic
Lymphocyte Developmer	Mediated	Costimulatio			Susceptibility to Disease
2002 Column1 Cells of Immune System and Innate Immunity	Column2 Antibodies	Column3 Antibody- dependent Protection Mechanisms	Antigen	T Lymphocyte Developme	Column6 B Lymphocyte nDev and Activation
Cell-	Lymphocyte	MHC/	Lymphocyte	e Transplanta	t ìom munology
mediated Immunity	Homing	Antigen Presentation		Immunology	yof HIV Disease
Costimulatio	Memory and Death in Immune System	lgE System and Immediate Type Hypersens	Tumor Immunity	Immunodef Syndromes	iciency

Projects in Microscale Engineering for the Life Sciences

(*http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/* HST-410JSpring-2007/CourseHome/index.htm) Course Description: This course is a project-based introduction to manipulating and characterizing cells and biological molecules using microfabricated tools. It is designed for first year undergraduate students.

Selected Lecture Notes: (http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-410JSpring-2007/LectureNotes/index.htm)

Column1 Column2 Column3 Column4 Column5 Column6 Microfluidics Microfabricat Contact and Cells and Models of Laminar membranes membranes diffusion flow (cont.) and cell experiment Data Research Cell traps applications analysis using

Statistical Physics in Biology

MATLAB®

(http://ocw.mit.edu/OcwWeb/Physics/8-592JSpring-2005/CourseHome/index.htm)

Course Description: Statistical Physics in Biology is a survey of problems at the interface of statistical physics and modern biology. Topics include: bioinformatic methods for extracting information content of DNA; gene finding, sequence comparison, and phylogenetic trees; physical interactions responsible for structure of biopolymers; DNA double helix, secondary structure of RNA, and elements of protein folding; considerations of force, motion, and packaging; protein motors, membranes. We also look at collective behavior of biological elements, cellular networks, neural networks, and evolution.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/</u> Physics/8-592JSpring-2005/LectureNotes/index.htm)

Column1	Column2	Column3	Column4	Column5	Column6
Introductior	Molecular	Mutations	Gene	Substitution	n Dynamic
to Course	Evolution		Annotation and Similarity Detection	Matrices	Programming and Transfer Matrices
Sequence	Biomolecula	Electrostati	c₽olymer	Proteins	The
Alignment	Forces and		Theory		Random
and	Energies				Energy
					Model

Statistical Physics				
Fluctuating RNA	Protein-DNA	A Microtubule	esMolecular	Membranes
DNA	Complexes	and Filaments	Motors	
Cell Motility Networks	Biological Patterns			

Survival Skills for Researchers: The Responsible Conduct of Research

(http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/ HST-502Survival-Skills-for-Researchers--The-Responsible-Conduct-of-ResearchSpring2003/CourseHome/index.htm)

Course Description: This course is designed to provide graduate students and postdoctoral associates with techniques that enhance both validity and responsible conduct in scientific practice. Lectures present practical steps for developing skills in scientific research and are combined with discussion of cases. The course covers study design, preparation of proposals and manuscripts, peer review, authorship, use of humans and non-human animals in research, allegations of misconduct, and intellectual property. Also discussed are mentoring relationships and career options. Aspects of responsible research conduct are integrated into lectures and case discussion as appropriate to the specific topic.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-502Survival-Skills-for-Researchers-The-Responsible-Conduct-of-ResearchSpring2003/LectureNotes/index.htm</u>)

Column1 Professional	Column2 Study	Column3 Human	Column4 Data	Column5 Credit and	Column6 Literature
Ethics and Bias in	Design	Subjects in Research	Acquisition,	Responsibili ntn Science	•
Research Design; Lab		Research	and Sharing		Proposals and
Animals in Research					Manuscripts
Peer Review	Allegations of Misconduct	Advisors and Mentor	Career sPathways		

Genomics and Computational Biology

(http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/ HST-508Genomics-and-Computational-BiologyFall2002/CourseHome/index.htm)

Course Description: This course will assess the relationships among sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive, functional genomics analyses. Exercises will include algorithmic, statistical, database, and simulation approaches and practical applications to medicine, biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations will be critically addressed.

Lecture Notes (Audio available): (<u>http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-508Genomics-and-Computational-BiologyFall2002/LectureNotes/index.htm</u>)

Side of Computatio Biology. Statistics; Perl,	•	DNA 1: Genome Sequencing nadlymorphis Populations eStatistics, Pharmacoge Databases	, alignment, HiddenMark	RNA 1: Microarrays gibrary Sequencing	by Gene or Condition and Other
Dynamics, Function &	Post- synthetic Modificatior	Metabolic Kinetic M& Flux DBalance Optimizatio , Methods	Molecular Computing, Self- assembly, Genetic Algorithms,	3: The	nal ntal,

Quantitative Genomics

(http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/ HST-508Fall-2005/CourseHome/index.htm)

Course Description: This course provides a foundation in the following four areas: evolutionary and population genetics; comparative genomics; structural genomics and proteomics; and functional genomics and regulation.

Selected Lecture Notes: (<u>http://ocw.mit.edu/OcwWeb/Health-Sciences-and-Technology/HST-508Fall-2005/LectureNotes/index.htm</u>)

Mutation,	Fitness, Probability of Fixation, i Qo alescent	Diffusion	Column4 Medical Lecture: Human Variations Genes, Genotypes and Generations	Structures, Domain Architecture	Column6 Structure- based Substitution Matrices
Gene	RNA	RNA			
Regulation and	Expression: Clustering	Expression: Classificatio	n,		
Function,	0	2-way			
Conservatio	rClassificatio	rClustering,			
Detecting		Regulatory			
Regulatory		Modules			
Elements					

Genomics and Computational Biology

(*http://ocw.mit.edu/courses/health-sciences-and-technology/hst-508-genomics-and-computational-biology-fall-2002/*)

Course Description: This course will assess the relationships among sequence, structure, and function in complex biological networks as well as progress in realistic modeling of quantitative, comprehensive, functional genomics analyses. Exercises will include algorithmic, statistical, database, and simulation approaches and practical applications to medicine, biotechnology, drug discovery, and genetic engineering. Future opportunities and current limitations will be critically addressed.

Lecture Notes (Audio Lectures also available): (<u>http://ocw.mit.edu/</u> <u>courses/health-sciences-and-technology/hst-508-genomics-and-</u> <u>computational-biology-fall-2002/lecture-notes/</u>)

Side of Computatio Biology. Statistics; Perl,	•	DNA 1: Genome Sequencing Madlymorphis Populations Statistics, Pharmacoge Databases	, alignment, HiddenMark	RNA 1: Microarrays gibrary Sequencing and	by Gene or Condition and Other
Dynamics, Function &	Post- synthetic Modification Quantitation of Proteins, Metabolites	s& Flux Balance Optimization Methods	Computing, Self- assembly, Genetic Algorithms,	3: The	nal ntal,

Genomics, Computing, Economics, and Society

(*"*http://ocw.mit.edu/courses/health-sciences-and-technology/hst-510genomics-computing-economics-and-society-fall-2005/)

Course Description: This course will focus on understanding aspects of modern technology displaying exponential growth curves and the impact on global quality of life through a weekly updated class project integrating knowledge and providing practical tools for political and business decisionmaking concerning new aspects of bioengineering, personalized medicine, genetically modified organisms, and stem cells. Interplays of economic, ethical, ecological, and biophysical modeling will be explored through multi-disciplinary teams of students, and individual brief reports.

Lecture Notes: (<u>*http://ocw.mit.edu/courses/health-sciences-and-technology/hst-510-genomics-computing-economics-and-society-fall-2005/lecture-notes/</u>)

Column1	Column2	Column3	Column4	Column5	Column6
Exercise - A	New Energy	Biosphere	Metabolic		
QuantitativeSources and Facts			Networks		
Definition of Personalized			and		
Life	Medicine		Learning		
			Perl		

Genomic Medicine

(http://ocw.mit.edu/courses/health-sciences-and-technology/hst-512-genomic-medicine-spring-2004/)

Course Description: This course reviews the key genomic technologies and computational approaches that are driving advances in prognostics, diagnostics, and treatment. Throughout the semester, emphasis will return to issues surrounding the context of genomics in medicine including: what does a physician need to know? what sorts of questions will s/he likely encounter from patients? how should s/he respond? Lecturers will guide the student through real world patient-doctor interactions. Outcome considerations and socioeconomic implications of personalized medicine are also discussed. The first part of the course introduces key basic concepts of molecular biology, computational biology, and genomics. Continuing in the informatics applications portion of the course, lecturers begin each lecture block with a scenario, in order to set the stage and engage the student by showing: why is this important to know? how will the information presented be brought to bear on medical practice? The final section presents the ethical, legal, and social issues surrounding genomic medicine. A vision of how genomic medicine relates to preventative care and public health is presented in a discussion forum with the students where the following questions are explored: what is your level of preparedness now? what challenges must be met by the healthcare industry to get to where it needs to be?

Audio Lectures (Selected Lecture Notes also available): (http://ocw.mit.edu/courses/health-sciences-and-technology/hst-512-genomic-medicine-spring-2004/lecture-notes/)

Column1 Genomic Introductior	Column2 Colum Introduction Measure to Biology Techniq and Genomic Measurement		Limits of Technologie	Column6 Information Science at the Center of Genomic Medicine
Information Resources		y with	The Importance of Data Represental	Pharmacogenomics
Case Hx:	Individualize M icroar		Direct	Case Hx:
Complex	Pharmacolog Disease	Disease	Prediction o	fCancer
Traits	Classific	atiorClassificatio	orOutcome /	Diagnostics
		II	Mortality	
Modelling and Reverse Engineering			-	

Biomaterials-Tissue Interactions

(http://ocw.mit.edu/courses/biological-engineering/20-441-biomaterials-tissue-interactions-be-441-fall-2003/)

Course Description: This course is an introduction to principles of materials science and cell biology underlying the design of medical implants, artificial organs, and matrices for tissue engineering. Topics include methods for biomaterials surface characterization and analysis of protein adsorption on biomaterials. Molecular and cellular interactions with biomaterials are analyzed in terms of unit cell processes, such as matrix synthesis, degradation, and contraction. It also covers mechanisms underlying wound healing and tissue remodeling following implantation in various organs. Other areas include tissue and organ regeneration; design of implants and prostheses based on control of biomaterialstissue interactions; comparative analysis of intact, biodegradable, and bioreplaceable implants by reference to case studies. Also addressed are criteria for restoration of physiological function for tissues and organs.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/biological-</u> engineering/20-441-biomaterials-tissue-interactions-be-441-fall-2003/ lecture-notes/)

Column1	Column2	Column3	Column4	Column5	Column6
Survey of	Tissue	Unit Cell	Irreversible	Biochemistr	yScaffolds
Clinical	Structures,	Processes	Healing	of the ECM	Based
Cases of	Unit Cell	Comprising	Behavior		on ECM

Biomaterial Tissue Interactions	and	the Healing Response	of the Extracellula Matrix (ECM) of Organs	r	Analogs Used in Organ Synthesis
Organ	Principles	Characteris	tilcisnear vs.	Cell-Matrix	Contraction-
Replacemer	ntand Practice	eof the	Cooperative	Interactions	Blocking
by Induced	of Tissue	Surfaces of	Cell-Matrix	During	Theory of
Regeneration and Tissue Engineering	5 5	Biomaterial	sInteractions	Spontaneou Healing	Regeneration in Adults
Joints and Dental Tissues:	Joints and Dental Tissues: Regeneratio	Joints and Dental Tissues: Regeneratio 2	Synthesis or Tissues and		In Vivo fSynthesis of Peripheral Nerves

Cell-Matrix Mechanics

(*http://ocw.mit.edu/courses/health-sciences-and-technology/hst-523j-cell-matrix-mechanics-spring-2004/*)

Course Description: Mechanical forces play a decisive role during development of tissues and organs, during remodeling following injury as well as in normal function. A stress field influences cell function primarily through deformation of the extracellular matrix to which cells are attached. Deformed cells express different biosynthetic activity relative to undeformed cells. The unit cell process paradigm combined with topics in connective tissue mechanics form the basis for discussions of several topics from cell biology, physiology, and medicine.

Selected Lecture Notes: (http://ocw.mit.edu/courses/health-sciences-and-technology/hst-523j-cell-matrix-mechanics-spring-2004/lecture-notes/)

for Cell	Cells with	Interactions During		Principles of Linear Elastic Mechanics
Linear Viscoelastic Behavior		Behavior of Bone	Response	

Tumor Pathophysiology and Transport Phenomena

(*"*http://ocw.mit.edu/courses/health-sciences-and-technology/hst-525jtumor-pathophysiology-and-transport-phenomena-fall-2005/)

Course Description: Tumor pathophysiology plays a central role in the growth, invasion, metastasis and treatment of solid tumors. This class applies principles of transport phenomena to develop a systemslevel, quantitative understanding of angiogenesis, blood flow and microcirculation, metabolism and microenvironment, transport and binding of small and large molecules, movement of cancer and immune cells, metastatic process, and treatment response.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/health-sciences-and-technology/hst-525j-tumor-pathophysiology-and-transport-phenomena-fall-2005/lecture-notes/</u>)

Molecular Medicine to Tumors I: Vascular	Delivery of Molecular Medicine to Tumors II: Interstitial and Lymphatic	Bone Marrow- Derived Cells in	Column4	Column5	Column6
riypotnesis					

Principles and Practice of Tissue Engineering

(*http://ocw.mit.edu/courses/health-sciences-and-technology/hst-535-principles-and-practice-of-tissue-engineering-fall-2004/*)

Course Description: The principles and practice of tissue engineering (and regenerative medicine) are taught by faculty of the Harvard-MIT Division of Health Sciences and Technology (HST) and Tsinghua University, Beijing, China. The principles underlying strategies for employing selected cells, biomaterial scaffolds, soluble regulators or their genes, and mechanical loading and culture conditions, for the regeneration of tissues and organs in vitro and in vivo are addressed. Differentiated cell types and stem cells are compared and contrasted for this application, as are natural and synthetic scaffolds. Methodology for the preparation of cells and scaffolds in practice is described. The rationale for employing selected growth factors is covered and the techniques for incorporating their genes into the scaffolds are examined. Discussion also addresses the influence of environmental factors including mechanical loading and culture conditions (e.g., static versus dynamic). Methods for fabricating tissue-engineered products and devices for implantation are taught. Examples of tissue engineering-based procedures currently employed clinically are analyzed as case studies.

(Archived webcast lecture videos for the Fall 2008 version of this class can be found at the HST.535 Fall 2008 website.)

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/health-sciences-and-technology/hst-535-principles-and-practice-of-tissue-engineering-fall-2004/lecture-notes/</u>)

Column3 Scaffolds:	Column4 Cells: Liver	Column5 Scaffolds:	Column6 Scaffolds:
0	Cells	Free-Form	Self-
GAG		Manufactur	0
Analogs of			Proteins
Extracellula	r		
Matrix			
Cells:	Regulators:	Applications	s:Nerve
s Effects of	Gene	Skin and	Repair
Culture	Transfer	Peripheral	
Conditions	Wedded	Nerve	
	to Tissue Engineering	Regeneratio	on
	Scaffolds: Collagen- GAG Analogs of Extracellula Matrix Cells: sEffects of Culture	Scaffolds: Cells: Liver Collagen- Cells GAG Analogs of Extracellular Matrix Cells: Regulators: sEffects of Gene Culture Transfer Conditions Wedded to Tissue	Scaffolds:Cells: LiverScaffolds:Collagen-CellsFree-FormGAGManufacturAnalogs ofExtracellularMatrixCells:Regulators:ApplicationsSeffects ofGeneSeffects ofGeneSkin andCultureTransferPeripheralConditionsWeddedNerve

Discussion: Discussion: Bone Cartilage Federal ComparativeRegenerationRepair Regulatory Clinical **Applications Analysis** Issues for of Tissue Tissue Engineering Engineering Strategies Products in the U.S., China,

Fields, Forces, and Flows in Biological Systems

(http://ocw.mit.edu/courses/biological-engineering/20-430j-fields-forces-and-flows-in-biological-systems-be-430j-fall-2004)

and Other Countries

Course Description: This course covers the following topics: conduction, diffusion, convection in electrolytes; fields in heterogeneous media; electrical double layers; Maxwell stress tensor and electrical forces in physiological systems; and fluid and solid continua: equations of motion useful for porous, hydrated biological tissues. Case studies considered include membrane transport; electrode interfaces; electrical, mechanical, and chemical transduction in tissues; electrophoretic and electroosmotic flows; diffusion/reaction; and ECG. The course also examines electromechanical and physicochemical interactions in biomaterials and cells; orthopaedic, cardiovascular, and other clinical examples.

Lecture Notes: (<u>http://ocw.mit.edu/courses/biological-</u> engineering/20-430j-fields-forces-and-flows-in-biological-systems-be-430jfall-2004/lecture-notes/)

Column1	Column2	_ Column3	_ Column4	Column5	Column6
Continuity	Diffusion	Example	Example	Diffusion/	Diffusion/
of Chemical	+ Begin	Problems:	Problems:	Reaction	Reaction +
Species,	Reaction +	Separation	Separation	+ Add Cell	Examples of
Flux,	Damkohler	of Variables	of Variables	Related	Numerical
Reaction	+ Scaling	Method	Method	(Receptor)	Approaches
Rates,	and		(cont.) +	Binding	to Nonlinear
Boundary	Approximati	ions	Case Study:		Problems
Conditions			IGF Problem		
			from		
			Lecture L1		
			using Matrix	(
			Continuum		

IGF + E- field and Transport + Maxwell's Equations	Define Potential, Conservatio of Charge + Electroquas	Separation state + Electrical Boundary Conditions, Ohmic Transport and Electrochem	Poisson Boltzmann	Donnan Equilibrium	Ionization and Electro-
Ligand Binding to Cell Receptors	Heterogene Media	യൂfsMass and Momentum in Fluids	Developed Low Reynold's Number Flows + Examples	Electroosmo Electrophore in MEMs and Microfluidics	e s isBegin Electrophoresis
Convective Solute Transport	Hindered Transport in Membranes and Tissues	Electrical	Convective and Charge Relaxation Effects in Double Layers: Electrokinet esis	Theory - Double Layer Repulsion and	

Principles of Radiation Interactions

(//ocw.mit.edu/courses/nuclear-engineering/22-55j-principles-ofradiation-interactions-fall-2004/)

Course Description: The central theme of this course is the interaction of radiation with biological material. The course is intended to provide a broad understanding of how different types of radiation deposit energy, including the creation and behavior of secondary radiations; of how radiation affects cells and why the different types of radiation have very different biological effects. Topics will include: the effects of radiation on biological systems including DNA damage; in vitro cell survival models; and in vivo mammalian systems. The course covers radiation therapy, radiation syndromes in humans and carcinogenesis. Environmental radiation sources on earth and in space, and aspects of radiation protection are also discussed. Examples from the current literature will be used to supplement lecture material.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/nuclear-engineering/22-55j-principles-of-radiation-interactions-fall-2004/lecture-notes/</u>)

Column1 Radiation	Column2 Radiation	Column3 Radiation	Column4 Effects on	Column5 Dose	Column6 RBE/
Interactions	Interactions			i e‰ sponse in	Clustered
		LET/Tracks	DNA	Vitro: Cell	Damage
				Survival	
				Curves	
Protons and	Dose	Chemical	Cell, Tissue	Radiation	Radiation
Alphas of	Response in	Modificatior	and Tumor	Therapy:	Therapy
same LET	Vivo	of Radiation	Kinetics	Tumor	(contd.):
		Response		Radiobiolog	yFractionation
Acute	Late Effects	Radiation:	Alpha	Microbeams	BNCT/Other
Effects of	Chronic	Protection/	Particles/		Modalities
Whole Body	Exposure/	Background	Bystander		
Exposure	Low Doses	Radiation/	Effect		
-		Radon			

Biomedical Signal and Image Processing

(*http://ocw.mit.edu/courses/health-sciences-and-technology/hst-582j-biomedical-signal-and-image-processing-spring-2007/*)

Course Description: This course presents the fundamentals of digital signal processing with particular emphasis on problems in biomedical research and clinical medicine. It covers principles and algorithms for processing both deterministic and random signals. Topics include data acquisition, imaging, filtering, coding, feature extraction, and modeling. The focus of the course is a series of labs that provide practical experience in processing physiological data, with examples from cardiology, speech processing, and medical imaging. The labs are done in MATLAB® during weekly lab sessions that take place in an electronic

classroom. Lectures cover signal processing topics relevant to the lab exercises, as well as background on the biological signals processed in the labs.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/health-sciences-and-technology/hst-582j-biomedical-signal-and-image-processing-spring-2007/lecture-notes/</u>)

Column1	Column2	Column3	Column4	Column5	Column6
Data acquisition	Digital filtering	ECG	DTFT	DFT	Sampling revisited
Speech	Speech	Image .	PDFs	Image _.	Estimating
signals	coding	processing I		processing II	PDFs
Segmentati	0	Image registration II	Imaging modalities	Random signals I	Random signals II
Blind source separation	2				

Functional Magnetic Resonance Imaging: Data Acquisition and Analysis

(<u>http://ocw.mit.edu/courses/health-sciences-and-technology/hst-583-functional-magnetic-resonance-imaging-data-acquisition-and-analysis-fall-2008/</u>)

Course Description: This team-taught multidisciplinary course provides information relevant to the conduct and interpretation of human brain mapping studies. It begins with in-depth coverage of the physics of image formation, mechanisms of image contrast, and the physiological basis for image signals. Parenchymal and cerebrovascular neuroanatomy and application of sophisticated structural analysis algorithms for segmentation and registration of functional data are discussed. Additional topics include: fMRI experimental design including block design, event related and exploratory data analysis methods, and building and applying statistical models for fMRI data; and human subject issues including informed consent, institutional review board requirements and safety in the high field environment.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/health-sciences-and-technology/hst-583-functional-magnetic-resonance-imaging-data-acquisition-and-analysis-fall-2008/lecture-notes/</u>)

Column1 MRI physics I	Column2 MRI physics II	Column3 MRI physics III	physiology I: brain at	Column5 Imaging physiology II: brain	Column6 Imaging physiology III: BOLD
Imaging physiology IV: BOLD (cont.) and non-BOLD techniques	Stats 2: level 1	Stats 5: correction for multiple measures	the baseline Stats 7: causality	Quantitative	n g ormalization

Biomedical Engineering Seminar Series: Developing Professional Skills

(http://ocw.mit.edu/courses/health-sciences-and-technology/hst-590-biomedical-engineering-seminar-series-developing-professional-skills-fall-2006/)

Course Description: This course consists of a series of seminars focused on the development of professional skills. Each semester focuses on a different topic, resulting in a repeating cycle that covers medical ethics, responsible conduct of research, written and oral technical communication, and translational issues. Material and activities include guest lectures, case studies, interactive small group discussions, and roleplaying simulations.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/health-sciences-and-technology/hst-590-biomedical-engineering-seminar-series-developing-professional-skills-fall-2006/lecture-notes/</u>)

Column1 Kick-off		Column3 Congratulat		Column5	Column6
with an	for that	You've Got			
-			Rejected		
Workshop	Job, and				
on CVs	You got an				
		The Swanky	,		
	Good Job!	Office, the			
	Now What?	Sweet Lab,			
		the Dutiful			
		Graduate			
		Students.			
		Now, You			
		Have to			

Page: Hoer_mit Open Courseware

Bring in the Grant Money to Support it All

Speech Communication

(http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-541j-speech-communication-spring-2004/)

Course Description: Sppech Communication surveys the structural properties of natural languages, with special emphasis on the sound pattern. Topics covered include: representation of the lexicon; physiology of speech production; articulatory phonetics; acoustical theory of speech production; acoustical and articulatory descriptions of phonetic features and of prosodic aspects of speech; perception of speech; models of lexical access and of speech production and planning; and applications to recognition and generation of speech by machine, and to the study of speech disorders.

Lecture Notes: (<u>http://ocw.mit.edu/courses/electrical-engineering-and-</u> computer-science/6-541j-speech-communication-spring-2004/lecturenotes/)

Introduction Met and App Background to S Spe Lang Spe Proc Acou Perc Seg and Feat Pho	roach Transcri tudy of ech and guage: ech luction, ustics, ception, ments cures, nology,		Anatomy,	Response to Sound
Synt Some Basic Vow Acoustics of Resonators and Sources,		at of Vocal-fol	Source dCharacterist for Females and Males	Shapes:

Source-filter Concepts Features High, Low, Back, and their Articulatory and Acoustic Correlates	Other Vowe Features: Rounding, Nasalizatior	Variations for Vowels	Breathy and Pressed Voicing	Tones	Acoustic Consequences Stress
Auditory Processing of Vowels	Consonants	Aerodynami of the Vocal Tract, Turbulence Noise, Abrupt Release, Bursts	Articulation	ces,	Models of Stop, Nasal, and Fricative Consonant Production
Perception of Consonants	Liquids, Glides, Clicks, Other Features	Consonants and Consonant Sequences in Various Contexts	Introduction to Syntax, Morphology and Phonology		
Lexical Representat	Examples ti foo m English and Other Languages	Prosody າ	Models of Speech Planning; Evidence from Speech Errors	Modification of Features and Acoustic Properties in Fluent Speech	
Approaches to Lexical Access	Models of Human and Machine Recognition of Speech	Production	Hearing Loss, Aphasia, Neurogenic Disorders,	Aids for Speech and Hearing-	Speech and Language Development in Children

Laryngeal Disorders, Other Impairments

Acoustic Analysis of Children's Speech

Acoustics of Speech and Hearing

(*http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-551j-acoustics-of-speech-and-hearing-fall-2004/*)

Course Description: The Acoustics of Speech and Hearing is an H-Level graduate course that reviews the physical processes involved in the production, propagation and reception of human speech. Particular attention is paid to how the acoustics and mechanics of the speech and auditory system define what sounds we are capable of producing and what sounds we can sense. Areas of discussion include:

1.the acoustic cues used in determining the direction of a sound source, 2.the acoustic and mechanical mechanisms involved in speech production and 3.the acoustic and mechanical mechanism used to transduce and analyze sounds in the ear.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/electrical-</u> engineering-and-computer-science/6-551j-acoustics-of-speech-andhearing-fall-2004/lecture-notes/)

Column1 Column2 Sound Lumped MeasurementElements Amplitude, and Waves Frequency and Phase of Simple and Complex Sounds (rms vs peak, FFT and	in Space 1: Plane Waves, Characterist Impedance, Traveling Waves, Trading of Time and	Propagation in Space 2: Spherical Waves, Multiple	Column5 Diffraction of Sound, Localization Cues	Lumped
FFT and	Time and			
Spectrum, Relationship between	Space			

Time Waveform, FFT and Impulse Response)					
	Circuits 3:	Circuits 4: The		The Normal	Tubes 1: Dimensional
	nEquivalent		Microphone		
of Elements	Circuits	Loudspeake	rand Middle	Diseased	Equations,
			Ears	Middle Ear	Natural Frequencies
Tubes 2:	Tubes	Speech	Speech	Speech	Speech
Perturbation		•	Production	•	Perception
					reception
Theory	Uniformities and Losses	5 1: VOWEIS	2: Fricative Sources and Consonants		

Brain Mechanisms for Hearing and Speech

(http://ocw.mit.edu/courses/health-sciences-and-technology/hst-722j-brain-mechanisms-for-hearing-and-speech-fall-2005/)

Course Description: An advanced course covering anatomical, physiological, behavioral, and computational studies of the central nervous system relevant to speech and hearing. Students learn primarily by discussions of scientific papers on topics of current interest. Recent topics include cell types and neural circuits in the auditory brainstem, organization and processing in the auditory cortex, auditory reflexes and descending systems, functional imaging of the human auditory system, quantitative methods for relating neural responses to behavior, speech motor control, cortical representation of language, and auditory learning in songbirds.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/health-sciences-and-technology/hst-722j-brain-mechanisms-for-hearing-and-speech-fall-2005/lecture-notes/</u>)

Column1	Column2	Column3	Column4	Column5	Column6	
Dorsal	QuantitativeNeuroimagingpeech					
Cochlear	Methods		Motor			
Nucleus			Control			

Music Perception and Cognition

(*r*http://ocw.mit.edu/courses/health-sciences-and-technology/hst-725music-perception-and-cognition-spring-2004/) Course Description: Survey of perceptual and cognitive aspects of the psychology of music, with special emphasis on underlying neuronal and neurocomputational representations and mechanisms. Basic perceptual dimensions of hearing (pitch, timbre, consonance/roughness, loudness, auditory grouping) form salient qualities, contrasts, patterns and streams that are used in music to convey melody, harmony, rhythm and separate voices. Perceptual, cognitive, and neurophysiological aspects of the temporal dimension of music (rhythm, timing, duration, temporal expectation) are explored. Special topics include comparative, evolutionary, and developmental psychology of music perception, biological vs. cultural influences, Gestaltist vs. associationist vs. schemabased theories, comparison of music and speech perception, parallels between music cognition and language, music and cortical action, and the neural basis of music performance.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/health-sciences-and-technology/hst-725-music-perception-and-cognition-spring-2004/lecture-notes/</u>)

Column1 Overview of the		Overview of the Auditory	of Pitch in	ti be urocomp Models for	Column6 ou Tatibn al
	f Perception	•	the Auditor	yPitch	
Music	and the	Representat	tionstem		
	Time Sense				
	Pitch,	Processing			
	Timbre,	of Sounds ir	ו		
	Consonance	e <i>t</i> he Auditory	/		
	Roughness,	Pathway			
	Loudness,				
	Rhythm,				
	Auditory				
	Grouping,				
	Event				
	Structure				
Scales and		Melody	Rhythm II:		
Tuning	Chords and	. Tereay	Computatio	nal	
Systems	Keys		Models		

Molecular Biology for the Auditory System

(*http://ocw.mit.edu/courses/health-sciences-and-technology/hst-730-molecular-biology-for-the-auditory-system-fall-2002/*)

Course Description: An introductory course in the molecular biology of the auditory system. First half focuses on human genetics and molecular biology, covering fundamentals of pedigree analysis, linkage analysis, molecular cloning, and gene analysis as well as ethical/legal issues, all in the context of an auditory disorder. Second half emphasizes molecular approaches to function and dysfunction of the cochlea, and is based on readings and discussion of research literature.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/health-sciences-and-technology/hst-730-molecular-biology-for-the-auditory-system-fall-2002/lecture-notes/</u>)

Column1	Column2	Column3	Column4	Column5	Column6
Basic	Basic	Molecular	Genetics	Inner Ear	Overview
Molecular	Molecular	Biology	and	Developme	n b f Genetic
Biology	Biology	Techniques	Genomics	-	Hearing
(part 1)	(part 2)	and Lab			Loss
		Intro			
Myosins	Embryonic				
	Stem Cells				

Information Technology in the Health Care System of the Future

(http://ocw.mit.edu/courses/health-sciences-and-technology/hst-921-information-technology-in-the-health-care-system-of-the-future-spring-2009/)

Course Description: This innovative, trans-faculty subject teaches how information technologies (IT) are reshaping and redefining the health care marketplace through improved economies of scale, greater technical efficiencies in the delivery of care to patients, advanced tools for patient education and self-care, network integrated decision support tools for clinicians, and the emergence of e-commerce in health care. Student tutorials provide an opportunity for interactive discussion. Interdisciplinary project teams comprised of Harvard and MIT graduate students in medicine, business, law, education, engineering, computer science, public health, and government collaborate to design innovative IT applications. Projects are presented during the final class.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/health-sciences-and-technology/hst-921-information-technology-in-the-health-care-system-of-the-future-spring-2009/lecture-notes/</u>)

Column1	Column2	Column3	Column4	Column5	Column6
Evolution of	Industry	eHRs, pHRs	The role of	From	An
cybermedici	ooverview:	& xHRs!	innovation	disease	investor's
•	the future o	f	in	manageme	n t riew of
healthcare			enterprise	to	startups
			computing	population	
				health	
				manageme	nt

Starting Global up: funding perspective sources for on health for-profit informatics and social business entrepreneurship

Designing and Sustaining Technology Innovation for Global Health Practice

(http://ocw.mit.edu/courses/health-sciences-and-technology/hst-939-designing-and-sustaining-technology-innovation-for-global-health-practice-spring-2008/)

Course Description: Innovation in global health practice requires leaders who are trained to think and act like entrepreneurs. Whether at a hospital bedside or in a remote village, global healthcare leaders must understand both the business of running a social venture as well as how to plan for and provide access to life saving medicines and essential health services.

Lecture Notes: (<u>http://ocw.mit.edu/courses/health-sciences-and-</u> technology/hst-939-designing-and-sustaining-technology-innovation-forglobal-health-practice-spring-2008/lecture-notes/)

Column1 Expanding global access to	Column2 New systems for drug	Column3 Microfluidic and global health	Column4 sAlternative energy sources	Column5 R&D for resource poor	Column6 Medical device development
life saving vaccines: HPV vaccine case study	delivery	practice		settings	
Electronic medical records and research systems	BioPharmac		Technology ntnnovation	Venture philanthropy	ý

Medical Artificial Intelligence

(http://ocw.mit.edu/courses/health-sciences-and-technology/hst-947-medical-artificial-intelligence-spring-2005/)

Course Description: This course provides an intensive introduction to artificial intelligence and its applications to problems of medical diagnosis, therapy selection, and monitoring and learning from databases. It meets with lectures and recitations of 6.034 Artificial Intelligence, whose material is supplemented by additional medical-specific readings in a weekly discussion session. Students are responsible for completing all homework assignments in 6.034 and for additional problems and/or papers.

Lecture Notes: (<u>http://ocw.mit.edu/courses/health-sciences-and-technology/hst-947-medical-artificial-intelligence-spring-2005/lecture-notes/</u>)

Column1	Column2	Column3	Column4	Column5	Column6
Search	CSP and	Learning	Machine	Machine	Machine
	Games	Introduction	Learning I	Learning II	Learning III
Machine	Logic I		Logic	Language	
Learning IV			Programmin@Inderstanding		

Computational Evolutionary Biology

(http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-877j-computational-evolutionary-biology-fall-2005/)

Course Description: Why has it been easier to develop a vaccine to eliminate polio than to control influenza or AIDS? Has there been natural selection for a 'language gene'? Why are there no animals with wheels? When does 'maximizing fitness' lead to evolutionary extinction? How are sex and parasites related? Why don't snakes eat grass? Why don't we have eyes in the back of our heads? How does modern genomics illustrate and challenge the field?

This course analyzes evolution from a computational, modeling, and engineering perspective.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-877j-computational-evolutionary-biology-fall-2005/lecture-notes/</u>)

Column1	Column2	Column3	Column4	Column5	Column6
Introduction	:Evolution	Host-			
The Basic	at the	parasite			
Dynamical	Molecular	Interactions			
Systems of	Level I	and Disease			
Evolution		Models			

Engineering Biomedical Information: From Bioinformatics to Biosurveillance

(http://ocw.mit.edu/courses/health-sciences-and-technology/ hst-950j-engineering-biomedical-information-from-bioinformatics-to-biosurveillance-fall-2005/)

Course Description: This course provides an interdisciplinary introduction to the technological advances in biomedical informatics and their applications at the intersection of computer science and biomedical research.

Selected Lecture Notes: (<u>http://ocw.mit.edu/courses/health-sciences-and-technology/hst-950j-engineering-biomedical-information-from-bioinformatics-to-biosurveillance-fall-2005/lecture-notes/</u>)

Column1 Introduction Brief Introduction to Biomedical Informatics and Outline of the Course	Bioinformat Module	n Dogma of Molecular	Column4 Human Genome Project	Column5 The Role of Computatio Sciences in the New Biology	n ae nomics: Human
Genetic and	l Evolutionary	ySNPs and	Haplotype-	Human	Analysis
Genomic Studies		Haplotypes		Variations: Human Variations	of Human Variations
Association	Complex	The	Functional	Expression	Decision
Studies	Traits	Genomic	Genomics	Microarrays	:Support
		Study of the	9	Meta	Systems:
		Future			Introduction
				•	nte Decision
				Profiling	Support
					Systems
					and

Artificial Intelligence Applications in Biomedical Sciences

Patient Confidentiality: Slightly Controlled Information Exhibitionism in the Genetic Age

Medical Computing

(//ocw.mit.edu/courses/health-sciences-and-technology/hst-950jmedical-computing-spring-2003/)

Course Description: The focus of the course is on medical science and practice in the age of automation and the genome, both present and future.

It includes an analysis of the computational needs of clinical medicine, a review systems and approaches that have been used to support those needs, and an examination of new technologies.

Selected Lecture Notes: (http://ocw.mit.edu/courses/health-sciences-and-technology/hst-950j-medical-computing-spring-2003/lecture-notes/)

Column1 Introduction Nature of Modern Medicine and Medical Practice	Medical Data: Where it is	Column3 Patient Identificatio			Column6 Patient Data Confidentiality and Security
Decreasing	Medicine I:	Advanced Expert Systems	Patient Monitoring	Genomic Medicine IV: Linking Genotypes and Phenotypes	Genomic Medicine V: Reverse Engineering

Medical Decision Support

(http://ocw.mit.edu/courses/health-sciences-and-technology/hst-951j-medical-decision-support-fall-2005/)

Course Description: This course presents the main concepts of decision analysis, artificial intelligence, and predictive model construction and evaluation in the specific context of medical applications. The advantages and disadvantages of using these methods in real-world systems are emphasized, while students gain hands-on experience with application specific methods. The technical focus of the course includes decision analysis, knowledge-based systems (qualitative and quantitative), learning systems (including logistic regression, classification trees, neural networks), and techniques to evaluate the performance of such systems.

Selected Lecture Notes: (http://ocw.mit.edu/courses/health-sciences-and-technology/hst-951j-medical-decision-support-fall-2005/lecture-notes/)

Column1 Decision Analysis 1	Column2 Decision Analysis 2, Linear Regression	Column3 Logistic Regression, MLE	Column4 Evaluation	Column5 Ensemble Models	Column6 PCA, LDA
Unsupervise Learning	0	Survival Analysis	Statistical Learning Theory	Model Construction Schemas 1	Analysis of nProblems, Complexity
Bioinformat 1 (Hypothesis Generation, Sequence Alignment)	;		-		

Computing for Biomedical Scientists

(http://ocw.mit.edu/courses/health-sciences-and-technology/hst-952-computing-for-biomedical-scientists-fall-2002/)

Course Description: This course introduces abstraction as an important mechanism for problem decomposition and solution formulation in the biomedical domain, and examines computer representation, storage, retrieval, and manipulation of biomedical data. As part of the course, we will briefly examine the effect of programming paradigm choice on problem-solving approaches, and introduce data structures and algorithms. We will also examine knowledge representation schemes for capturing biomedical domain complexity and principles of data modeling for efficient storage and retrieval. The final project involves building a medical information system that encompasses the different concepts taught in the course.

Selected Lecture Notes: (http://ocw.mit.edu/courses/health-sciences-and-technology/hst-952-computing-for-biomedical-scientists-fall-2002/)

-	Column2 Java® Constructs	Column3 Built-in Operators, Built-in Java Classes, and Classes, Objects & Methods	Iteration, Imperative & Declarative	Arrays, Packages, og,heritance, Derived Classes, and	Column6 Information Hiding, Exceptions
Vectors, Streams, Input and Output Medical Vocabulary Represental and Survey of Medical Coding Systems	Medical Coding ti Sy stems (continued)	Time Complexity of Algorithms Major KR Schemes	Logic and Medical Ontology Process	Boolean Algebra and Predicate Knowledge	Ontology and Data Model