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• What machine learning implies for actuarial science

• Understand the problems solved by deep learning

• Discuss the tools of the trade

• Discuss recent successes of deep learning in actuarial science

• Discuss emerging challenges and solutions

Goals of the talk

4



• Man from www.thispersondoesnotexist.com/

• Mona Lisa from Samsung AI team

• Text from https://talktotransformer.com/

• Self- driving from NVIDIA blog

• Cancer detection from Nature Medicine

Deep Learning in the Wild

An exciting part of the world of finance is insurance

I think we all know that the insurance industry is exciting. I see it everywhere - the airlines, the cars, most all the 

businesses in the world. The insurance industry can really drive the economic innovation.

But one area of insurance that I really want to see develop more is financial advice. It might be a private sector 

service but insurance companies are not really there anymore. In general we are not allowed to talk to clients 

about financial solutions - we need to find a new solution. It would be fun to see what a private sector insurance 

can deliver.
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• Traditionally, actuaries responsible for statistical and financial management of 

insurers 

Today, actuaries, data scientists, machine learning engineers and others work 
alongside each other

• Actuaries focused on specialized areas such as pricing/reserving

Many applications of ML/DL within insurance but outside of traditional areas

• Actuarial science merges statistics, finance, demography and risk management 

Currently evolving to include ML/DL

• According to Data Science working group of the SAA:

Actuary of the fifth kind - job description is expanded further to include statistical 
and computer-science 
Actuarial data science - subset of mathematics/statistics, computer science and 
actuarial knowledge 

• Focus of talk: ML/DL within Actuarial Data Science – applications of machine learning 

and deep learning to traditional problems dealt with by actuaries

Definitions and Diagram from Data Science working group of the Swiss Association of Actuaries (SAA)

Actuarial Data Science
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Agenda
• Introduction

• Machine Learning

• Deep Learning

• Tools of the Trade

• Selected Applications

• Challenges

• Conclusion
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• Machine Learning “the study of algorithms 

that allow computer programs to 

automatically improve through experience” 

(Mitchell 1997) 

• Machine learning is an approach to the field 

of Artificial Intelligence

Systems trained to recognize patterns 
within data to acquire knowledge 
(Goodfellow, Bengio and Courville 2016). 

• Earlier attempts to build AI systems = hard 

code knowledge into knowledge bases … but 

doesn’t work for highly complex tasks e.g. 

image recognition, scene understanding and 

inferring semantic concepts (Bengio 2009)

• ML Paradigm – feed data to the machine and 

let it figure out what is important from the 

data!

Deep Learning represents a specific 
approach to ML. 

Machine Learning
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Regression

Deep Learning
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• Supervised learning = application of machine learning to datasets that contain features and outputs with the goal 

of predicting the outputs from the features (Friedman, Hastie and Tibshirani 2009).

• Feature engineering - Suppose we realize that Claims depends on Age^2 => enlarge feature space by adding 

Age^2 to data. Other options – add interactions/basis functions e.g. splines

Supervised Learning

X (features)y (outputs)

0.06

0.09

0.12

20 40 60 80

DrivAge

ra
te

9



• Which of the following are an ML technique?

Linear regression and friends (GLM/GLMM)
Generalized Additive model (GAM)
Exponential Smoothing
Chain-Ladder and Bornhuetter-Ferguson 

• It depends on the goal:

Are we building a causal understanding of the world (inferences from unbiased coefficients)? 
Or do we want to make predictions (bias-variance trade-off)?

• Distinction between tasks of predicting and explaining, see Shmueli (2010). Focus on predictive performance 

leads to:

Building algorithms to predict responses instead of specifying a stochastic data generating model (Breiman
2001)…
… favouring models with good predictive performance at expense of interpretability. 
Accepting bias in model coefficients if this is expected to reduce the overall prediction error.
Quantifying predictive error (i.e. out-of-sample error)

• ML relies on a different approach to building, parameterizing and testing statistical models, based on statistical 

learning theory, and focuses on predictive accuracy.

Goal: Explaining or Predicting?
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Actuaries solve “umbrella problems”
• Actuarial work involves making predictions, which are either used directly (General Insurance) or indirectly 

(Life)

• Consider two different problems – taking an umbrella compared to investing in a rain-dance during a drought

• Actuaries most often focus on “umbrella problems” (Kleinberg, Ludwig, Mullainathan et al. 2015)

• Decisions of actuaries based on models generally do not need to be based on causal understanding (unless 

required by a regulator or practising standards) but interpretability helps the acceptance of models

• Can lead to new theoretical insights – see Golden, Brockett, Ai et al. (2016) on credit scores

U m b r e l l a  p r o b l e m R a i n - d a n c e  p r o b l e m

P r o b l e m S h o u l d  I  t a k e  a n  u m b r e l l a ? S h o u l d  I  i n v e s t  i n  a  r a i n - d a n c e ?

Ta s k P r e d i c t i o n  - W i l l  i t  r a i n ? C a u s a l  i n f e r e n c e  - W i l l  t h e  r a i n -

d a n c e  c a u s e  i t  t o  r a i n ?

To o l M a c h i n e  L e a r n i n g U n b i a s e d  r e g r e s s i o n – o r  p o s t -

s e l e c t i o n  i n f e r e n c e
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• Actuarial problems are often supervised regressions =>

• If an actuarial problem can be expressed as a regression, then machine and deep learning can be applied.

• Obvious areas of application:

P&C pricing
IBNR reserving
Experience analysis
Mortality modelling
Lite valuation models

• But don’t forget about unsupervised learning either!

Recipe for Actuarial Data Science
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• Actuarial modelling tasks vary between:

Empirically/data driven
NL pricing
Approximation of nested Monte Carlo
Portfolio specific mortality 

Model Driven
IBNR reserving (Chain-Ladder)
Life experience analysis (AvE)
Capital modelling (Log-normal/Clayton copula)
Mortality forecasting (Lee-Carter)

• Feature engineering = data driven approach to enlarging a feature space using human ingenuity and expert 

domain knowledge 

Apply various techniques to the raw input data – PCA/splines
Enlarge features with other related data (economic/demographic)

• Model specification = model driven approach where define structure and form of model (often statistical) and 

then find the data that can be used to fit it

Actuarial Modelling
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Feature engineering

Model Specification
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• In many domains, including actuarial science, traditional approach to designing machine learning systems 

relies on human input for feature engineering or model specification.

• Three arguments against traditional approach:

Complexity – which are the relevant features to extract/what is the correct model specification? Difficult 
with very high dimensional, unstructured data such as images or text. (Bengio 2009; Goodfellow, Bengio 
and Courville 2016)

Expert knowledge – requires suitable prior knowledge, which can take decades to build (and might not be 
transferable to a new domain) (LeCun, Bengio and Hinton 2015)

Effort – designing features is time consuming/tedious => limits scope and applicability (Bengio, Courville 
and Vincent 2013; Goodfellow, Bengio and Courville 2016)

• Within actuarial modelling, complexity is not only due to unstructured data. Many difficult problems of model 

specification arise when performing actuarial tasks at a large scale:

Multi-LoB IBNR reserving 
Mortality forecasting for multiple populations

Issues with Traditional Approach
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Complexity: Multi-population Mortality Modelling 

• Diagram excerpted from Villegas, Haberman, Kaishev et al. (2017) 16



• Representation Learning = ML technique where algorithms automatically design features that are optimal (in some 

sense) for a particular task

• Traditional examples are PCA (unsupervised) and PLS (supervised):

PCA produces features that summarize directions of greatest variance in feature matrix

PLS produces features that maximize covariance with response variable (Stone and Brooks 1990)

• Feature space then comprised of learned features which can be fed into ML/DL model

• BUT: Simple/naive RL approaches often fail when applied to high dimensional data

Representation Learning
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• Inspired by Hinton and Salakhutdinov (2006)

• Fashion-MNIST –70 000 images from Zolando of 

common items of clothing

• Grayscale images of 28x28 pixels

• Classify the type of clothing 

• Applied PCA directly to the images - results do 

not show much differentiation between classes

Example: Fashion-MNIST (1)
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• Deep Learning = representation learning technique that automatically constructs hierarchies of complex features 

to represent abstract concepts

Features in lower layers composed of simpler features constructed at higher layers => complex concepts can 
be represented automatically 

• Typical example of deep learning is feed-forward neural networks, which are multi-layered machine learning 

models, where each layer learns a new representation of the features.

• The principle: Provide raw data to the network and let it figure out what and how to learn.

• Desiderata for AI by Bengio (2009): “Ability to learn with little human input the low-level, intermediate, and high-

level abstractions that would be useful to represent the kind of complex functions needed for AI tasks.”

Deep Learning
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• Applied a deep autoencoder to the same data 

(trained in unsupervised manner)

Type of non-linear PCA

• Differences between some classes much more 

clearly emphasized

• Deep representation of data automatically 

captures meaningful differences between the 

images without (much) human input

• Automated feature/model specification

• Aside – feature captured in unsupervised 

learning might be useful for supervised 

learning too. 

• Goodfellow, Bengio and Courville (2016) : 

“basic idea is features useful for the 

unsupervised task also be useful for the 

supervised learning task”

Example: Fashion-MNIST (2)
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Fashion-MNIST – Density Plot

autoencoder pca
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• Actuarial tasks vary between Empirically/data driven and Model Driven

• Both approaches traditionally rely on manual specification of features or models

• Deep learning offers an empirical solution to both types of modelling task – feed data into a suitably deep 

neural network => learn an optimal representation of input data for task

• Exchange of model specification for a new task => architecture specification

• Opportunity – improve best estimate modelling 

• Deep learning comes at a (potential) cost – relying on a learned representation means less understanding of 

models, to some extent

Deep Learning for Actuarial Modelling
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• Single layer neural network

Circles = variables
Lines = connections between inputs and outputs

• Input layer holds the variables that are input to the 

network…

• … multiplied by weights (coefficients) to get to result

• Single layer neural network is a GLM!

Single Layer NN = Linear Regression
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• Deep = multiple layers

• Feedforward = data travels from left to right

• Fully connected network (FCN) = all neurons in layer 

connected to all neurons in previous layer

• More complicated representations of input data 

learned in hidden layers - subsequent layers 

represent regressions on the variables in hidden 

layers

Deep Feedforward Net
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• Intermediate layers = representation learning, 

guided by supervised objective.

• Last layer = (generalized) linear model, where 

input variables = new representation of data

• No need to use GLM – strip off last layer and use 

learned features in, for example, XGBoost

• Or mix with traditional method of fitting GLM

FCN generalizes GLM

F e a t u r e  e x t r a c t o r

L i n e a r  m o d e l
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Example – Lee-Carter Neural Net
• Multi-population mortality forecasting 

model (Richman and Wüthrich 2018)

• Supervised regression on HMD data 

(inputs = Year, Country, Age; outputs = 

mx)

• 5 layer deep FCN

• Generalizes the LC model
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2000 2010

0 25 50 75 100 0 25 50 75 100

-4
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4
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-V
1

Country GBRTENW ITA USA
• Representation = output of last layer (128 

dimensions) with dimension reduced using 

PCA

• Can be interpreted as relativities of mortality 

rates estimated for each period 

• Output shifted and scaled to produce final 

results

• Generalization of Brass Logit Transform 

where base table specified using NN (Brass 

1964)

Features in last layer of network

𝑦𝑥 = 𝑎 + 𝑏 ∗ 𝑧𝑥 , where: 

𝑦𝑥 = logit of mortality at age x

a,b = regression coefficients

𝑧𝑥 = logit of reference mortality 28



• Most modern examples of DL achieving state of the art results on tasks rely on using specialized architectures 

i.e. not simple fully connected networks

• Key principle - Use architecture that expresses useful priors (inductive bias) about the data => Achievement of 

major performance gains

Embedding layers – categorical data (or real values structured as categorical data)

Autoencoder – unsupervised learning

Convolutional neural network – data with spatial/temporal dimension e.g. images and time series

Recurrent neural network – data with temporal structure

Skip connections – makes training neural networks easier

• Section ends with example of fine tuning a specialized architecture for a new task

Specialized Architectures
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(Some) Actuarial Applications of DL
Pricing Reserving Telematics

Mortality 

Forecasting

Quantitative Risk

Management

Feed-forward Nets

• Ferrario, Noll and 

Wüthrich (2018)

• Noll, Salzmann and 

Wüthrich (2018)

• Wüthrich and Buser 

(2018)

• Castellani, Fiore, Marino et 

al. (2018)

• Doyle and Groendyke 

(2018)

• Gabrielli and Wüthrich 

(2018)

• Hejazi and Jackson (2016, 

2017)

• Wüthrich (2018)

• Zarkadoulas (2017)

• Gao and Wüthrich (2017)

• Gao, Meng and Wüthrich 

(2018)

• Gao, Wüthrich and Yang 

(2018)

• Castellani, Fiore, Marino 

et al. (2018)

• Hejazi and Jackson 

(2016, 2017)

Convolutional 

Neural Nets

• Gao and Wüthrich (2019)

Recurrent Neural 

Nets

• Kuo (2018a, 2018b) • Nigri, Levantesi, 

Marino et al. (2019)

Embedding 

Layers

• Richman (2018)

• Schelldorfer and 

Wüthrich (2019)

• Wüthrich and Merz 

(2019)

• Gabrielli, Richman and 

Wüthrich (2018)

• Gabrielli (2019)

• Richman and 

Wüthrich (2018)

Autoencoders
• Richman (2018) • Hainaut (2018)

• Richman (2018)
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• One hot encoding expresses 

the prior that categories are 

orthogonal => similar 

observations not categorized 

into groups

• Traditional actuarial solution 

– credibility

• Embedding layer prior –

related categories should 

cluster together:

Learns dense vector 
transformation of sparse 
input vectors and clusters 
similar categories together
Can pre-calibrate to MLE 
of GLM models, leading to 
CANN proposal of 
Wüthrich and Merz (2019)

Embedding Layer – Categorical Data

Actuary Accountant Quant Statistician Economist Underwriter

Actuary 1 0 0 0 0 0

Accountant 0 1 0 0 0 0

Quant 0 0 1 0 0 0

Statistician 0 0 0 1 0 0

Economist 0 0 0 0 1 0

Underwriter 0 0 0 0 0 1

Finance Math Stastistics Liabilities

Actuary 0.5 0.25 0.5 0.5

Accountant 0.5 0 0 0

Quant 0.75 0.25 0.25 0

Statistician 0 0.5 0.85 0

Economist 0.5 0.25 0.5 0

Underwriter 0 0.1 0.05 0.75
31



• Age embeddings extracted from LC NN model

• Five dimensions reduced using PCA

• Age relativities of mortality rates

• In deeper layers of network, combined with 

other inputs to produce representations specific 

to: 

Country
Gender
Time

• First dimension of PCA is shape of lifetable

• Second dimension is shape of child, young and 

older adult mortality relative to middle age and 

oldest age mortality 

Learned embeddings
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• Autoencoder = network is trained to produce 

output equal to the input

Vector input and output
Bottleneck in middle restricts dimension of 
encoded data…
… in this example, to 1, but can be to 
multiple dimensions
Performs a type of non-linear PCA

• Bottleneck layer expresses prior that data 

can be summarized in only a few dimensions

Autoencoder – Unsupervised Learning 
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• Prior - features in images are position invariant i.e. can 

recognize at any position within an image

Also applies to audio/speech and text/time series data

• Convolutional network is locally connected and shares 

weights => expresses prior of position invariance

Far fewer parameters than FCN

• Each neuron (i.e. feature map) in network derived by 

applying filter to input data 

Weights of filter learned when fitting network
Multiple filters can be applied

Convolutional NN - Images
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• Data with temporal structure implies that previous 

observations should influence the current 

observation

• Recurrent network maintains state of hidden 

neurons over time

Past representation useful for current prediction 
i.e. network has a ‘memory’

• Several implementations of the recurrent concept 

which control how network remembers and forgets 

state

Recurrent NN – Temporal data

O O1 O2 O3

x = Input vector

S = hidden state (layers)

O = output

Arrows indicate the direction

in which data flows.

x x1 x2 x3

Folded Unfolded

S S1 S2 S3 
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• Extra connections between disconnected layers of the NN

• NN then only needs to learn a “residual”:

H(x) := x + F(x) 

• Widely used in computer vision but also useful on tabular data

• Makes networks easier to optimize

Veit, Wilber and Belongie (2016) show that resulting NN 
functions as an ensemble (can delete layers)
Greff, Srivastava and Schmidhuber (2016) extend this view by 
showing that layers learn refined estimates of input 
representations

• Allows for combination of simple models together with “neural 

boosting”

Leads to the CANN proposal (Wüthrich and Merz 2019)

Skip Connections

x

F(x) H(x)
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• Machine learning problem where model trained on source domain/task  reused for target domain/task (Pan and 

Yang 2009)

• Formal definition  - Given source/target domain 𝑫𝑺/𝑫𝑻 and source/target task 𝑫𝑺/𝑫𝑻, improve a predictive 

function in 𝑫𝑻 using 𝑫𝑺/𝑻𝑺 where 𝑫𝑺 ≠ 𝑫𝑻 or 𝑻𝑺 ≠ 𝑻𝑻

• According to (Bengio 2012), DL ideal for transfer learning:

“it focuses on learning representations and in particular ‘abstract’ representations, representations that ideally 
disentangle the factors of variation present in the input.”

• Often useful when target domain does not contain enough data to train a full DL model => use pretrained model 

as a feature extractor

Computer vision – pretrained classification model
Natural langauge – pretrained language model
Model is then fine-tuned to adapt it to target domain/task
See the fast.ai Python library for excellent implementations of transfer learning algorithms

Transfer Learning
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• Model relies on disentangled representations 

for (Country, Sex, Age, Time), implying that:

Can fine tune only the Country 
representation for new data (i.e 𝑫𝑺 ≠ 𝑫𝑻 but 
𝑻𝑺 = 𝑻𝑻)

• Used data for Germany/Chile in 1999 to train a 

new Country embedding i.e. no temporal 

variation seen by model and projections made 

for 2015/2008

• Results are impressive for adult mortality

Example: TL in the LC NN model
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• Following examples chosen to showcase ability of deep learning to solve the issues with the traditional actuarial 

(or ML) approaches.

• In most of these instances, deep learning solution outperforms the traditional actuarial or machine learning 

approach 

• Complexity – which are the relevant features to extract/what is the correct model specification?

Multi-population mortality forecasting
Multi LoB IBNR reserving
Non-life pricing

• Expert knowledge – requires suitable prior knowledge, which can take decades to build

Analysis of telematics data

• Effort – designing relevant features is time consuming/tedious => limits scope and applicability

Lite valuation models

Selected Applications
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• Availability of multiple high quality series of 

mortality rates, but how to translate into better 

forecasts?

• Multi-population models (Kleinow 2015; Li and 

Lee 2005)

Many competing model specifications, 
without much theory to guide model 
selection
Relatively disappointing performance of two 
models (CAE and ACF)

• Richman and Wüthrich (2018) – deep neural net 

with embedding layers

• Outperforms both single and multiple 

populations models

Multi-population mortality forecasting
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• Even using triangles, most reserving exercises are more data rich than assumed by traditional (widely applied) 

methods (CL/BF/CC):

Incurred/Paid/Outstanding
Amounts/Cost per Claim/Claim Counts
Multiple LoBs
Multiple Companies

• Traditional solutions:

Munich Chain Ladder (Quarg and Mack 2004) reconciles Incurred and Paid triangles (for single LoB) by 
adding a correction term to the Chain Ladder formula based on regression
Credibility Chain Ladder (Gisler and Wüthrich 2008) derives LDFs for sub-portfolios of a main LoB using 
credibility theory
Double Chain Ladder (Miranda, Nielsen and Verrall 2013) relates incurred claim count triangles to payment 
triangles

• Would assume that multi-LoB methods have better predictive performance compared univariate methods, but no 

study (yet) comparing predictive performance of multi-LoB methods (Meyers (2015) compares several univariate

reserving models)

• General statistical solution for leveraging multiple data sources not proposed

Multi LoB IBNR reserving (1)
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• Recent work embedding the ODP CL model into 

a deep neural network (multi-LoB solution)

• 6 Paid triangles generated using the simulation 

machine of Gabrielli and Wüthrich (2018)

Know true reserves
Relatively small data (12*12*6=478 data 
points)

• Gabrielli, Richman and Wüthrich (2018) use 

classical ODP model plus neural boosting on 6 

triangles simultaneously

Dramatically reduced bias compared to ODP 
model
Model learns smooth development factors 
adjusting for accident year effects

• Gabrielli (2019) extends model to include both 

paid and count data

Further reduction in bias versus the previous 
model

Multi LoB IBNR reserving (2)
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• DeepTriangle model of Kuo (2018) takes 

different approach; models claims paid and 

outstanding for NAIC Schedule P data for 6 

LoBs and multiple companies

• For each accident year, development is seen as 

a time series => model with Recurrent Neural 

Network

• Predictions of RNN combined with company 

specific embedding layers to produce forecasts

• Compares results to models in Meyers (2015)  

and an AutoML model; DeepTriangle model 

shows impressive performance on all lines

• Lastly, granular reserving for claim 

type/property damaged/region/age etc difficult 

with normal chain-ladder approach as too much 

data to derive LDFs judgementally; see solution 

in Wüthrich (2018). 

Table and Diagram from Kuo (2018)

Multi LoB IBNR reserving (3)
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Non-life pricing (1)
• Non-life Pricing (tabular data fit with GLMs) seems like obvious application of ML/DL 

• Noll, Salzmann and Wüthrich (2018) is tutorial paper (with code) in which apply GLMs, regression trees, boosting 

and (shallow) neural networks to French TPL dataset to model frequency

ML approaches outperform GLM
Boosted tree performs about as well as neural network…
….mainly because ML approaches capture some interactions automatically
In own analysis, found that surprisingly, off the shelf approaches do not perform particularly well on frequency 
models. 
These include XGBoost and ‘vanilla’ deep networks
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Non-life pricing (2)
• Deep neural network applied to raw 

data (i.e. no feature engineering) did 

not perform well

• Embedding layers provide 

significant gain in performance over 

GLM and other NN architectures

Beats performance of best non-
deep model in Noll, Salzmann and 
Wüthrich (2018) (OOS Loss = 
0.3141 using boosting)

• Layers learn a (multi-dimensional) 

schedule of relativities at each age 

(shown after applying t-SNE)

• Transfer learning – use the 

embeddings learned on one 

partition of the data, for another 

unseen partition of data

Boosts performance of GLM
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GLM                0.3217  

GLM_Keras                0.3217  

NN_shallow                0.3150  

NN_no_FE                0.3258  

NN_embed                0.3068  

GLM_embed                0.3194  

NN_learned_embed                0.2925  
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Telematics data (1)
• Telematics produces high dimensional data (position, velocity, acceleration, road type, time of day) at high 

frequencies – new type of data for actuarial science!

To develop “standard” models/approaches for incorporating into actuarial work might take many years => rely 
on deep learning

• Mot immediately obvious how to incorporate into pricing - most approaches look to summarize telematics data 

streams before analysis with deep learning

• From outside actuarial literature, feature matrices containing summary statistics of trips analysed using RNNs 

plus embedding layers such as Dong, Li, Yao et al. (2016), Dong, Yuan, Yang et al. (2017) and Wijnands, 

Thompson, Aschwanden et al. (2018)

• For pricing (within actuarial literature) series of papers by Wüthrich (2017), Gao and Wüthrich (2017) and Gao, 

Meng and Wüthrich (2018) discuss analysis of velocity and acceleration information from telematics data feed

• Focus on v-a density heatmaps which capture velocity and acceleration profile of driver but these are also high 

dimensional

• Wüthrich (2017) and Gao and Wüthrich (2017) apply unsupervised learning methods (K-means, PCA and shallow 

auto-encoders) to summarize v-a heat-maps - Stunning result = continuous features are highly predictive

Unsupervised learning applied to high dimensional data produces useful features for supervised learning
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Telematics data (2)
• Analysis using deep convolutional 

autoencoder with 2 dimensions. 

• Within these dimensions (left hand 

plot):

Right to left = amount of density 
in high speed bucket
Lower to higher = “discreteness” 
of the density

• Another application is to identify 

drivers for UBI at correct rate (and 

use resulting features for pricing). 

See Gao and Wüthrich (2019) who 

apply CNNs to identify drivers 

based on 

velocity/acceleration/angle

75% accuracy on 180s of data
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Lite Valuation Models (1)
• Major challenge in valuation of Life business with embedded options/guarantees or with-profits is run time of 

(nested) stochastic models

• In general, for Variable Annuity business, guarantees are priced and hedged using Monte Carlo simulations

• Under Solvency II, Life business with nested options/guarantees must be valued using nested Monte Carlo to 

derive the Solvency Capital Requirements (SCR)

Outer loop - MC simulations to derive risk factors at t+1 under the real world measure
Inner loops - MC simulations to derive valuation given risk factors at t+1 under risk neutral measure

• Running full MC valuation is time consuming; common solutions are:

high performance computing
replicating portfolios
Least Squares Monte Carlo (LSMC), where regression fit to results of inner loop conditional on outer loop 
“lite” valuation models, see work by Gan and Lin (2015)
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Lite Valuation Models (2)
• Recent work using neural networks to enhance this 

process 

• Hejazi and Jackson (2016, 2017) provide novel approach 

based on matching prototype contracts

• For VA valuation and hedging, Doyle and Groendyke

(2018) build a lite valuation model using a shallow neural 

network that takes key market and contract data and 

outputs contract value and hedging parameters. 

Achieve highly accurate results versus full MC 
approach. 

• For modelling with-profits contracts in SII, Nigri, 

Levantesi, Marino et al. (2019) replace inner loop basis 

function regression of LSMC with SVM and a deep neural 

network, and compare results with full nested MC. 

Find that DL beats the basis function regression and 
SVM, producing highly accurate evaluations of the 
SCR.

Diagram from Nigri, Levantesi, Marino et al. (2019 50
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• The training of neural networks contains some 

randomness due to:

Random initialization of parameters
Dropout
Shuffling of data

• Leads to validation and test set results that can exhibit 

variability. Not a “new” problem; see Guo and Berkhahn 

(2016).

• Problem worse on small datasets (where other ML 

techniques are stable) and autoencoders

• Example – validation and test set results of 6 DL models 

run 10 times on LC NN model applied to full HMD dataset.

• Solutions - Average models over several runs or at several 

points in the training (see Gabrielli (2019))

• Results of network might not match portfolio average due 

to early stopping. See Wüthrich (2019) for analysis and 

solutions,

Stability of results
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• A common complaint is that neural networks are “black boxes” i.e. in some way, it is not possible to understand 

how the network has derived its results from the input.

• Taken to an extreme, some views are that neural networks might not be suitable for the insurance industry.

• We should differentiate between explaining a phenomenon versus interpreting a model

Explaining = causal understanding built via modelling; not necessarily achievable using models built for 
prediction (since model parameters are biased)
Interpretability =  understanding why a model makes a prediction. 

• General purpose machine learning interpretability techniques such as LIME (Ribeiro, Singh and Guestrin 2016) and 

ANCHOR (Ribeiro, Singh and Guestrin 2018) allow for the interpretation of neural networks

• To what extent are neural networks black boxes?

Can inspect learned representations at each stage of the model, leading to an understanding of what 
representation/model has been specified
Many visualization techniques developed, especially for convolutional neural networks

• Can neural networks be designed for interpretability?

Interpretability
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• Combine a traditional actuarial model together with a neural net 

(Wüthrich and Merz 2018). Implemented so far for pricing 

(Schelldorfer and Wüthrich 2019) and reserving (Gabrielli 2019; 

Gabrielli, Richman and Wuthrich 2018)

Traditional model (calibrated with MLE) directly connected 
with output of network using skip connection
Model output then enhanced by model structure learned by 
neural net to explain residuals
Easy to interpret (and fast to calibrate)

• Can use the CANN model to highlight major differences from 

predictions of traditional model i.e. isolate the network output. 

Can be used as model diagnostic (Schelldorfer and Wüthrich 
2019) 
Shifts the interpretability problem

• See Breeden and Leonova (2019) who use a similar proposal to 

incorporate prior economic information into a credit model 

Age and Economic effects via skip connection; Cohort effects 
via neural networks

Bottom diagram from Breeden and Leonova (2019) 

Combined Actuarial Neural Net (CANN) 
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• Ability to quantify extent of uncertainty in predictions is key to many actuarial tasks; however, focus of deep 

learning literature is on best estimate

• Several approaches proposed:

Use of dropout as an approximation of model uncertainty (Gal 2016; Kendall and Gal 2017)
Quantile regression to derive prediction bounds (Smyl 2018)
Use neural networks for GAMLSS regression

• Not immediately obvious how to reconcile to traditional actuarial framework (often relies on bootstrapping) 

Seemingly, framework of Kendall and Gal (2017) for computer vision correlates with traditional actuarial 
understanding (model and parameter risk = epistemic uncertainty; process risk = aleatoric uncertainty)

• Gabrielli, Richman and Wüthrich (2018) apply bootstrap to the multi-LoB ODP NN model – found that decreased 

bias but increased RMSEP versus separate ODP models

• More research needed

Uncertainty bounds
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Conclusion
• Deep learning can enhance the predictive power of models built by actuaries

• Emphasis on predictive performance and potential gains of moving from traditional actuarial and statistical 

methods to machine and deep learning approaches. 

• Measurement framework utilized within machine learning – focus on testing predictive performance => focus on 

measurable improvements in predictive performance led to refinements and enhancements of deep learning 

architectures

• Learned representations from deep neural networks often have readily interpretable meaning

• Very useful for high-frequency and high-dimensional data

• Application of deep learning techniques to actuarial problems is rapidly emerging field within actuarial science => 

appears reasonable to predict more advances in the near-term. 

• Deep learning is not a panacea for all modelling issues - applied to the wrong domain, deep learning will not 

produce better or more useful results than other techniques.

57



Acknowledgements
• Mario Wüthrich

• Nicolai von Rummell

• Data Science working group of the SAA

58



• Dropout (Srivastava, Hinton, Krizhevsky et al. 2014)

used to regularize NNs, can be combined with L1 or L2 regularizers
• Batchnorm (Ioffe and Szegedy 2015)

technique used to make NNs easier to optimize and also provides a regularization effect 
• Attention (Bahdanau, Cho and Bengio 2014)

allows networks to choose most relevant parts of a representation 
• Generative Adversarial Models (GANs) (Goodfellow, Pouget-Abadie, Mirza et al. 2014)

Game between two NNs, whereby a generator network produces output that tries to trick a discriminator 
network. 
Useful for generative modelling, but other interesting applications such as BiGAN (Donahue, Krähenbühl and 
Darrell 2016)
Variational autoencoders (VAEs) (Kingma and Welling 2013)
Autoencoder with distributional assumptions made on codes Neural 

• Network Architecture Search (NNAS)

Techniques used to design NNs automatically 
• Pruning

New technique that takes a trained NN and tries to reduce redundancy (number of layers/parameters) while 
maintaining performance
Part of Tensorflow 2 API

Appendix - Other Techniques
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