Biostat module supplementary notes

Exercise 2.
a. * Cross-sectional design –It would be generalisable to current populations of miners in the same industry with similar demographics and similar exposure range.

· Say someone has impaired lung function and high exposure – we won’t know if impaired function preceded high exposure or vice versa. 

· Won’t know about people who dropped out of profession before our study.

· Possible confounders (always a problem in observational studies): age (although not if we use percent predicted), smoking status, TB, alcohol consumption. Must argue in all cases that it affects both lung function and exposure.

b. Relevance of marital status?

· Additional questions: perhaps more about respiratory function.
One would always want to know response rate and, if refusal rate is high, be able to compare refusals to those enrolled on some relevant characteristics.
Exercise 3: 
Histogram: literally the frequency of FEV1 bins

Boxplot: median, IQR, whiskers, outliers

Symmetry

Significant digits to report: don’t give false sense of accuracy of recording.

What is SD: a measure of variability/spread. We will come back to additional interpretations a little later.

Appropriate summary: If “normal”, then mean (SD), otherwise median, IQR and/or range

BUT don’t talk about normality yet, but come back later to the fact that that is the context in which SD is most meaningful.

Exercise 4:
 This is quite important!
Summary statistics might vary simply because of sampling variability. What do we mean by this? If we have a population and draw a number of samples from that population, they will all have different summary statistics. As the sample size gets larger (and closer to population) , the closer we are to the true summary values for that population. (So, if we measured everyone in the mine, there would be one and only one answer for that mine (e.g. of the mean for that mine)). The smaller the sample, the more variability there will be from one sample to another.

Sampling variability may also be by design, if different samples represent different slices of the population.

Exercise 5:
Stress importance of EDA. This is where you get to know (and trust) your data and identify anomalies, errors.

With a view to identifying errors one might also, for instance, want to look at weight versus height. Someone who was 2m tall and weighed 47Kg would be surprising, but neither measurement individually would be out of the ordinary.

For this population, what do we expect in terms of prevalence of past and current 

cigarette smoking? Past TB?

Note: in some cases SD greater than mean – an indication of skewness. 

Note: different summaries for continuous and categorical variables.

Normal density
Do some exercises:

Say N(mean=100, SD=10), then 5% of observations in this population will be less than 80 or greater than 120, 16% of obsns will lie below 90 etc.
This is why SD is a useful measure of variability. You straight away have a sense of the proportion of observations in different regions.

4*SD in a normal population roughly would give you the range of the data.

Need to distinguish between the population distribution and the sampling distribution.

Exponential distn
Possible exposure distn, here mean is 5. Note very skew, bunched up at low values, but long tail.

HOWEVER, when we look at distn of average of samples of size 30, we see that it already looks normal. What do we mean by distn of samples of size 30? Well if we were to take many, many samples of size 30 from this population and work out the mean of each one and then look at a histogram of those means, it would look symmetric and “normal”. This is the CLT.

The larger the sample size, the less variability there will be in the sample means from one sample to the next. The variability of the sample mean depends on the variability in the original population and the size of the sample.

Exercise 6:
· the population of FEV1 values is symmetric and bell shaped , centered at 100 and with 68% of the individuals having FEV1 within 15 units (percent) of 100 and 95% of individuals within 30 units.

· 16%; 2.5%;  16%.

· Normal(100, SD=15/5=3)

· 2.5%

· need 2 SD/sqrt(n) to be equal to 1; or sqrt(n)=30; n=900.

Exercise 7:
Note the fair degree of overlap between the two samples. 
One might consider comparing the means or the medians as a comparison of “typical” FEV1 in those populations.

Here we have (n=30 comparison)
LOW exposure:






HIGH exposure

mean= 107.53






101.63
SD =15.72







 16.35
median=110.64






102.71
Here difference in means is 5.9%. Is this a clinically significant difference? Is it a greater difference than one would expect than simple random variation in samples of size 30 from the same population? How do we decide this?

n=100 comparison

LOW exposure:






HIGH exposure

mean= 107.23






101.99

SD =14.3







 16.36

median=106.5






101.90
Here difference in means is 5.2%. Is this a clinically significant difference? Is it a greater difference than one would expect than simple random variation in samples of size 100 from the same population? How do we decide this?

Hypothesis testing:

Have to decide on what aspect of the distribution you’re going to compare. Let’s say it’s the mean. Then the structure is that the null hypothesis assumes no difference, i.e. mean in population 1= mean in population 2. Note that we know that the sample means are different, we’ve already calculated them, we’re trying to infer whether that implies that the population means are also different. 

There are various possible alternative hypotheses: non-directional, right sided, left-sided. 
The way we carry out a statistical test is to calculate a statistic which summarises the effect that we’re trying to evaluate (e.g. difference in means) and then ask the question as to whether an effect of that size could plausibly have been observed by chance if, in fact, there is no effect. This is where knowledge of the variability of, e.g. the sample mean comes into play. This allows us to set up a rule where we say something like “If the effect size that I observe is greater than xxxx, I am going to declare there to be difference, otherwise no detectable difference”. 

This kind of decision making may incur one of two errors: we may reject the null hypothesis (say that there is a significant difference) when, in fact, the two populations are the same. This is Type I error. Or, we may fail to reject the null hypothesis, when, in fact, there is a true difference. This is Type II error. Typically we choose the cutoff for when we declare the null hypothesis to be false to have a specified type I error probability (typically .05 or .01). The larger the sample, the smaller the associated Type II error rate, and the greater the power. Power is 1- prob(Type II error)= Prob reject null hypothesis when it is false). Typically one should have chosen sample size in advance to give sufficient power for the sort of difference that one wants to detect (the sort of difference that is clinically meaningful).

Draw two distns Ho and Ha.

Now, let’s say we’ve calculated the difference in sample means. How does one judge how typical this difference would be if there is, in fact, no difference in population means? Well, we need to know how variable the difference in means can be. This can be worked out mathematically and it can be shown that the SE of the difference in means is ….. If we standardize the difference in means then, for instance, a value greater than 2 would be unusual under Ho.
So, say we have two populations N(m1, SD=10) and N(m2, SD=10) and we take a sample of size 100 from each. Then the SE of the difference in sample means will be (1+1)^(0.5)=1.4. So, if the difference in means is approximately normal (which for n=100 it will be in most cases) and if m1=m2 then 95% of differences in the sample means will lie within (-2.8, 2.8). If you observe a difference greater than this, you would be led to suspect that Ho was false. Statistical hypothesis testing is a formalization of this line of thinking. For smaller sample sizes there is what is called the Student’s t test, which is just an adjustment for the CLT not having fully taken effect. For n>> 30, t and Normal indistinguishable.

Notes: 

· All this discussion was for two independent samples. If we have paired samples (e.g. before and after then we would carry out paired tests which involves taking the differences of the paired measurements
· We’re looking here at comparing continuous measurements. We might also want to compare proportions of individuals (say with a disease) in different groups. We’ll look at examples of this a little later.

· Non-parametric tests. The tests we’ve discussed all assume a particular underlying distribution for the observations, even if just via the CLT. There is also a body of non-parametric tests which make fewer assumptions, usually based on comparing ranks of observations rather than actual observations. If your sample size is small and non-normal you may prefer to use non-parametric tests, e.g. Mann-Whitney would be the equivalent to two sample t-test.
Exercise 8:

n=30

Difference in means=5.9

We’d estimate SE of difference as (2.87^2 + 2.99^2)^0.5=4.14

Standardised test statistic is then 5.9/4.14= 1.42; this is not an unusual value for a N(0,1) distribution and so no grounds to reject null hypothesis that the means in the two populations are the same. 

n=100

Difference in means=5.2

We’d estimate SE of difference as (1.43^2 + 1.64^2)^0.5=2.17

Standardised test statistic is then 5.2/2.17= 2.40; this is an unusual value for a N(0,1) distribution and so grounds to reject null hypothesis that the means in the two populations are the same. 

When discussing all results, note that the difference in means in the two examples is very similar, but that the SEs are much smaller when n=100. The larger sample size means that one has greater power to detect a difference.
Exercise 9:
This is formally carrying out what we did by hand in previous exercise. Additional points are:

· Different p-values depending on what Ha

· confidence intervals: if you have a two-sided alternative, then carrying out the test is equivalent to seeing whether null value lies in the CI

· What is the CI: 95% confident that true mean difference lies in this interval. What does that mean? In 95% of samples, the interval calculated in this way will include the true population mean. Interval is just (roughly) mean +- 2*SE

· CI can also be of interest if focus is not hypothesis testing but estimation. It gives you a plausible range of possible values for the difference in the means.

· Non-parametric test is just two-sided (as presented here). Very similar results to parametric in this case. In part because FEV distn is quite normal to start off with and in part because sample sizes are large enough.

· All conclusions here are subject to the two groups being comparable on all other relevant characteristics, i.e. we want to be sure that comparison is not driven by some other variable or variables that are related to both lung function and exposure. Let’s say that the high exposed subjects earn a higher salary and so can afford to smoke more, then poorer lung fun in high exposure might not be to the exposure itself, but to cigarette consumption. We will consider adjusting for other variables a little later.

Exercise 10:
Why are A, C and B,D comparisons different? They’re both comparing LOW versus HIGH means but in the latter case, the sample size is greater and so there is greater power to detect a difference. Note that estimated differences are very similar. One should not forget, however, that statistical significance does not imply clinical significance. If your sample size is large enough, you can statistically “detect” even the smallest difference, but it may not be of practical importance.
Exercise 11:
So far we’ve been considering comparing two continuous outcomes. Now we’re going to shift to looking at an outcome that is binary: yes/no; diseased/ not-diseased. To maintain our example, we’ll, somewhat artificially, create two categories of satisfactory and poor lung function as out binary outcome. In many epidemiologic contexts the outcome of interest IS a disease: cancer, HIV, TB, asbestosis, ….

Actual figures answering the posed questions about proportions are given in the next exercise.

How might we compare the two proportions? We might take differences (null = 0) or the ratio (null=1)

Here we’re looking at whether the PROBABILITY of poor lung function is higher in high exposed group, whereas previously we were comparing mean lung function. Different windows on the same research hypothesis, but the categorical approach does throw away some information.

Exercise 12:
Here we’re given all possible summaries of effect: risk difference, risk ratio, odds ratio. Odds ratio is elevated relative to risk ratio as condition is not rare (about 20%).

The confidence intervals have null value 0 or 1. The hypothesis test for zero difference or risk ratio 1 or OR 1 are all the same (each implies the other). It is what is called a “Chi-squared” test. Chi-square is another statistical distribution which apples when one is looking at contingency tables.

When comparing both sets of results, we again see similar effect sizes in both examples, but greater power with the larger sample.

Linear regression
Remember to mention logistic regression being the equivalent for binary outcomes.

Now we move to both a continuous outcome AND continuous exposure, not just high and low. We’ve augmented the sample with 193 individuals who have mid-exposure 15< E < 85). First step is a plot to look at the nature of the relationship. We are going to be fitting a line through the data, where the slope of the line estimates the effect of exposure on lung fn. if the slope were zero, i.e. line parallel to x-axis, then no effect. There are certain assumptions underlying the regression: linearity, homoskedasticity, normality, independence.
Correlation is a measure of the association between two variables. Scaled to lie between -1 and 1. Closer to unity (in abs value) the greater the association. 

Multivariable regression adjusts for other factors, so, you’re looking at the expected change in outcome, corresponding to a 1 unit change in exposure, among people who have the same status on all other variables.

Exercise 13:
Exposure and lung function are negatively correlated, but correlation is modest, this is in keeping with the scatter around the line that we saw in the plot. Note that R2 is just this correlation squared.
People with zero exposure have estimated mean lung function 106.9

For each 10 unit increase in exposure, average FEV1 pp goes down by .4 . Highly statistically significant. Again look at interpretation of CI.  In interpreting units of change need to look at range of exposure : typical of occ epi, heavy cluster around low values and then thinner to the tails, largest values around 250.
Exercise 14:
Note that number of observations has dropped by 3, as you add variables you will often lose individuals who do not have complete records, if this becomes substantial one might need to make an argument that those excluded were no different from those included.

Note that R2 has increased somewhat, but still only 10%: there’s a lot going on in lung fn which is not explained by any of these variables.

Constant now has no meaning as it is the expected lung fn when everything else is zero and age can’t be zero. So, it is just a scaling factor.

Coefficients of cough and phlegm years are in the wrong direction, but also not significant. Strong negative effect of smoking. Not much moderation of effect of exposure, so no confounding by these variables. However, interpretation of exposure coefficient is now that, if we compare two individuals who differ by 10 units in exposure but are the same in all other characteristics measured (same age, same TB status etc), then the individual with the lower exposure will have a .4 unit better lung fn. This adjustment attempts to do what one would like to have done by a randomized trial: make individuals in the two groups as similar as possible, except for their exposure status. 

Power and sample size
Effect size to be detected

Variance in population

sample size

