Acute tonsillitis is treated with steroids e.g. dexamethasone, NSAIDs e.g. ibuprofen and beta-lactam antibiotics e.g. penicillin or cefuroxime. Only 10 days of antibiotic therapy has proven to be effective to prevent rheumatic fever and glomerulonephritis.

Tonsillectomy is only done for recurrent acute bacterial tonsillitis, or for noninfectious reasons such as suspected neoplasia.

Partial tonsillectomy (tonsillotomy) is the 1st line treatment for snoring due to tonsillar hyperplasia. It is low-risk, and postoperative pain and risk of haemorrhage are much less than with tonsillectomy. It is inmaterial whether the tonsillotomy is done with laser, radiofrequency, shaver, coblation, bipolar scissors or monopolar electrocautery, as long as the crypts remain open and some tonsil tissue remains.

Pain and haemorrhage are the main morbidity of tonsillectomy. Bleeding may occur anytime until the wound is completely healed, which is normally at 2-3 weeks. Patients have to be informed about what to do in case of haemorrhage. Life threatening haemorrhage often is preceded by smaller bleeds, which can spontaneously cease. That is why every haemorrhage, even the smallest, has to be treated as an inpatient. Massive haemorrhage is an extreme challenge for every paramedic or emergency doctor because of difficult airway management.

Function and anatomical structure of tonsils in childhood and adolescence

Tonsils allow one to acquire immunity and provide immune defence by antigen presentation. This is why they contain T-lymphocytes, germinal centres of B-lymphocytes and macrophages. They are the first and easiest-to-reach station of the mucosa associated lymphoid tissue system (MALT). As the main phase of the immune acquisition continues until the age of 6 yrs, the palatine tonsils are physiologically hyperplastic at this time. This is followed by involution, which is reflected by regression of tonsil size until age 12 yrs.

The lymphoid tissue is separated by a capsule from the surrounding muscle (superior pharyngeal constrictor). The blood supply originates from four different vessels, the lingual artery, the ascending pharyngeal artery and the ascending and descending palatine arteries. These vessels radiate mainly to the upper and lower tonsillar poles, as well as to the centre of the tonsil from laterally. The tonsils have deep crypts that create a large surface area to provide a docking surface for potential antigens.

Figure 1: Hyperplastic tonsils in a child

Tonsil diseases

Sore throat episodes (R07.0)

Synonyms include “acute sore throat”, and “throat infection”. "Sore throat" is an imprecise term and does not clinically distinguish between acute tonsillitis and pharyngitis. Neither the cause nor the exact loca-
tion is determined11. In “sore throat” it remains unclear whether one is dealing with acute (bacterial) tonsillitis which, if recurrent, is an indication for tonsillectomy12.

Acute tonsillitis (J03.0 - J03.9)

Also known as “severe tonsillitis”13, “true tonsillitis”, or “acute sore throat”11, this refers to viral or bacterial tonsillitis with odynophagia, swelling and redness of the tonsils, possibly with a tonsillar exudate, cervical lymphadenopathy and fever $>38.3^\circ$C (rectal)14, 15. Odynophagia for 24-48 hours, as part of prodromal symptoms of a common cold (viral infection of upper respiratory tract), is excluded from the term “acute tonsillitis”11. Depending on the stage and appearance of the tonsillar deposits or exudate, one can distinguish *catarrhal angina* with redness and swelling of the tonsils (early stage), from *fOLLICULAR ANGINA* with stipple-like fibrin deposits, from *lacunar angina* with con-fluent deposits (late stage)16, 17. “Acute tonsillitis” can be diagnosed by a specialist purely on clinical grounds18. Smears, blood tests or viral evidence are unnecessary in most cases19-23. Penicillin or another beta-lactam antibiotic is the first line of treatment.

Chronic tonsillitis (J35.0 and J35.9)

Also called “chronic (hyperplastic) tonsillitis”, it is not well-defined and thus should not be used24. It is better to speak of (chronic) recurrent tonsillitis25, 26, because true *chronic* tonsillitis with persistent symptoms lasting >4 weeks with adequate treatment and recovery of the mucosa (as in rhinosinusitis) does not exist.

Recurrent acute tonsillitis (J35.0)

Also called “recurrent tonsillitis” or “recurrent throat infections”27, this refers to recurrent bouts of acute tonsillitis. In contrast to a single attack of acute tonsillitis, it is usually caused by many different bacterial pathogens28, 29 and flare up again a few weeks after cessation of antibiotic therapy30. Depending on the frequency and severity of such episodes, this is an indication for tonsillectomy.

Peritonsillar abscess (J36)

This is also called “peritonsillitis”, or “quinsy”31, 32, and is acute tonsillitis complicated by an abscess, typically unilateral33. The abscess may form in the intratonsillar, para/ peritonsillar or retrotonsillar spaces. The pathogens are typically staphylococci34, streptococci and fusobacterium necrophorum35. In contrast to acute tonsillitis, viruses play no role in abscesses36. A peritonsillar abscess is drained by aspiration or drainage or by unilateral tonsillectomy.

Tonsil hyperplasia (J35.1 and J35.3)

Tonsil hyperplasia37, also known as (idiopathic) tonsillar hypertrophy38, refers to abnormal enlargement of the palatine tonsil. It has to be distinguished from *physioloGical paediatric palatine tonsil hyperplasia*39, 40 which is not a sign or consequence of recurrent inflammation41, 42. Also, children with tonsil hyperplasia do not suffer from acute tonsillitis43, 44 or middle ear infections45. A paediatric tonsil is only “pathologically” hyperplastic if snoring (with or without obstructive sleep apnoea) or rarely dysphagia46 or even more rarely dysphonia47 occur.

Surgical procedures

Tonsillectomy

(Extracapsular) tonsillectomy means that the entire tonsil, including its capsule, is removed from the tonsil fossa; no lymphatic tissue remains between the anterior and posterior palatal arches48. Since the late 1960s, with the realisation that the tonsil is
a focus of infection \(^{49-52}\), this form of tonsil operation has been the gold standard and is still the most common surgery done in the world \(^{53}\).

Video 1: Extracapsular tonsillectomy
(http://youtu.be/V__tloYXfwQ)

Tonsillotomy (partial tonsillectomy)

Only the medial part of the tonsil is removed. It requires that the (well-perfused) lymphatic tissue is resected, and that the remaining crypts remain open to the oropharynx \(^{54,55}\). Active lymphatic tissue, with secondary follicles and crypts, is left in the tonsil fossae \(^{56}\). Tonsillotomy can be done with most dissecting and coagulating methods. The most common are laser tonsillotomy and radiofrequency tonsillotomy and are described in detail in this chapter.

Video 2: Laser tonsillotomy
(http://youtu.be/2AUzLY3rewM)

Video 3: Radiofrequency tonsillotomy
(http://youtu.be/eQ7bbT0mj0k)

Intracapsular tonsillectomy

Intracapsular, subcapsular or subtotal tonsillectomy describes a method in which the lymphatic tissue of the tonsil, including all crypts and follicles, is removed \(^{57,58}\), but the capsule of the tonsil is preserved; thus the underlying muscles are not exposed \(^{59}\). At the end of the operation there is an empty tonsil fossa without typical subsequent scarring \(^{59}\). Indications for intracapsular tonsillectomy are *foetor ex ore* (halitosis) and recurrent detritus (debris) in the tonsillar crypts. It differs from tonsillotomy in which a lot more tonsillar tissue is left behind.

Video 4: Intracapsular tonsillectomy with radiofrequency
(http://youtu.be/4A6JhQJlabg)

Thermal- or cryotherapy of palatine tonsil

The tonsil tissue is heated (or cooled) interstitially; subsequent scarring causes shrinkage of the lymphoid tissue. No tissue is removed and a large part of the lymphoid tissue allegedly remains functional. The indication is mild tonsillar hyperplasia. Synonyms and different methods include interstitial (electro)coagulation, laser coagulation, thermal coagulation, and cryocoagulation of the palatine tonsil \(^{60,61}\), photodynamic therapy, ultrasound therapy \(^{62}\), radiofrequency-induced thermo therapy \(^{63}\), temperature-controlled tonsil treatment \(^{64,65}\), and tonsil thermotherapy.

Preoperative evaluation, swabs & diagnosis

Pathogens, biofilms, and normal findings

With the discovery of rheumatic fever, group A streptococci (GAS) were primarily blamed for all ills in the upper respiratory tract in the 70’s \(^{66-73}\). However more recently, anaerobes, e.g. *Fusobacterium necrophorum*, *Streptococcus Intermedius* and *Prevotella Melaninogenica* and *Histiola* have also been incriminated \(^{28,74,75}\).

Children up to 8yrs of age have a tendency towards diffuse intracellular pathogen enrichment with interstitial abscesses, while in adults or adolescents a more superficial bacterial accumulation at the edge of the crypts occurs. Particularly in the case of recurrent tonsillitis, several pathogens and microorganisms play a joint role. These can jointly form biofilms and bacterial clusters and thus evade antibiotics \(^{76}\). The oral cavity and especially the furrowed tonsil is a reservoir for multiple pathogens (viruses and bacteria), parasites \(^{77}\) and fungi \(^{78}\). However, all these microbes belong to resident flora with which we have lived symbiotically for aeons \(^{28,79}\). Streptococci still play the largest role in acute tonsillitis (30%) \(^{80}\).
followed by Haemophilus Influenzae and Neisseria. Mostly, however, mixed infections (viral and bacterial initially) are responsible.

Diagnosis

"Acute tonsillitis" in children and adults is a clinical diagnosis. In viral tonsillitis, in addition to pain and fever, primarily cough, hoarseness, and rhinorrhea occur, while in bacterial tonsillitis, in addition to pain with lymph node swelling, there is mainly a tonsillar exudate and fever >38.3°C. A streptococcal antigen test can confirm the diagnosis and is 98% specific for streptococci, although not particularly sensitive. A problem with these tests is the high number of asymptomatic chronic carriers of staphylococci and streptococci (10% of healthy children), who are definitely not in need of therapy. In the early stages, a distinction between viral and bacterial tonsillitis is often difficult to make, especially when one considers that in 97.5% of cases, at least one virus, even in bacterial tonsillitis, is found (adenovirus and parainfluenza virus respectively in 47.5% and influenza virus) 81.

Conservative Treatment

Antibiotic therapy: In clinically apparent or proven bacterial tonsillitis associated with distress, antibiotics (beta-lactam) are justified. Beta-lactam antibiotic therapy also provides relatively reliable protection against the dreaded rheumatic fever and glomerulonephritis which often cause, especially in developing countries, arthritis, myocarditis and death. Studies have shown that antibiotic therapy can prevent sequelae such as peritonsillar abscesses, acute otitis and sinusitis. The penicillins, particularly in children and adolescents, have the greatest benefit at the lowest cost. There is no difference to cephalosporins. Macrolides and clindamycin have more side-effects with the same efficacy and should be reserved for patients with proven penicillin allergy.

Postoperative antibiotic therapy is not indicated as it neither reduces pain nor postoperative bleeding.

Steroids: In acute tonsillitis or after tonsillectomy, oral or intramuscular steroids (dexamethasone 10mg), as well as betamethasone (8mg) and prednisolone (60mg), significantly improve symptoms with minimal side effects and no adverse effects relating to disease progression.

Analgesics: Nonsteroidal anti-inflammatory drugs have been used successfully for pain relief for >40yrs. For acute tonsillitis, ibuprofen has the best efficacy with minimal side-effects compared to paracetamol and acetylsalicylic acid (ASA). Another advantage of ibuprofen is its longer duration of action (6-8hrs) compared to paracetamol. Both substances have a large therapeutic range and at the correct dosage, the safety is comparable. Metamizol and ketorolac are very effective, but in children have fewer docking sites and are metabolised more quickly, which is why the dose should be adjusted to a higher level than in adults. In postoperative management these substances play a role in opioid reduction, but as first-line therapy in paediatrics are not suitable for a sore throat. Metamizol is not recommended as first or second choice analgesic in children due to a small but real risk of agranulocytosis.

Complications of tonsillitis

In general, acute tonsillitis runs its course without complications and heals within 3-4 days. Rare but serious complications after streptococcal tonsillitis are glomerulonephritis and rheumatic fever, which triggers cardiomyopathies and rheumatic-like joint pain. Early and a long course (10
days) of antibiotics (penicillin or cephalosporin) reduces the frequency of both these complications by 70% \(^\text{108}\). In parts of the developing world where rheumatic fever is more common, preventing this complication is the main argument in favour of penicillin therapy \(^\text{108}\).

Peritonsillar abscess is a second, more frequent complication. It is typically unilateral, although bilateral abscesses occur in up to 4% \(^\text{109}\). It is preceded by acute tonsillitis in only 1/3 of cases \(^\text{110}\). Even correctly administered antibiotic treatment of acute tonsillitis cannot really prevent peritonsillar abscesses (in contrast to rheumatic fever) \(^\text{111}\). Since peritonsillar abscesses can rapidly spread to the soft tissues of the neck and are potentially life-threatening, the primary therapy is urgent and surgical \(^\text{112-114}\). It does not matter whether the abscess is needle aspirated, incised or treated by tonsillectomy \(^\text{115}\). But the surgeon has to keep in mind that a stab incision can fail to drain inferiorly-located abscesses \(^\text{109, 116}\). Before the operation, high-dose steroid therapy, as well as penicillin should be administered, as is often done for mixed infections \(^\text{117}\).

Indications for tonsil surgery

Surgery is done for infections, to relieve airway obstruction, for halitosis and for diagnosis when a tumour is suspected. Surgery for recurrent tonsillitis depends on its frequency and severity, and the presence of additional diseases (antibiotic allergies, immunosuppression and PFAPA syndrome).

Paradise criteria for tonsillectomy \(^\text{118}\)

Paradise (1984) reported that tonsillectomy significantly lowers the frequency of severe recurrent sore throats in children aged 3-15yrs. Most published guidelines incorporate the so-called **Paradise criteria for tonsillectomy**:

- 7 episodes of tonsillitis per year in one year or.
- 5 episodes of tonsillitis per year in 2 consecutive years or,
- 3 episodes of tonsillitis per year in 3 consecutive years

A diagnosis of "purulent tonsillitis" must however be documented and confirmed by an elevated temperature (>38.3°C), tonsillar exudate, enlarged lymph nodes at the angle of the jaw, and antibiotic treatment \(^\text{119, 120}\). The authors also reported that on average only a few (not all) throat infections can be prevented by tonsillectomy in the following 2 years; 47 of 187 patients withdrew from the planned three-year follow-up \(^\text{121}\). For less severe sore throat inflammation or less frequent throat inflammation, the risk of tonsillectomy does not outweigh the benefits \(^\text{122}\).

While tonsils contribute to immune competence until 12yrs, a negative long-term effect on the immune system cannot be proven \(^\text{123}\). Nevertheless, in children under 8yrs, the indications for complete removal must be strictly adhered to, as the risks of serious or fatal bleeding are higher \(^\text{124}\).

With tonsillotomy (unlike tonsillectomy), some active lymphatic tissue is retained; it continues to grow in about 15% of cases, but rarely causes problems such as renewed snoring or recurrent tonsillitis \(^\text{125}\). The fear that frequent tonsillitis or peritonsillar abscesses will occur after tonsillotomy is unfounded \(^\text{126-128}\). All crypts remain open during laser, ultrasound, shaver, high- and radiofrequency technique \(^\text{129, 130}\).

Surgical technique

Extracapsular tonsillectomy

Cold steel dissection is the most commonly performed surgical technique in children and adults, and is described in detail in the
chapter on *Paediatric Tonsillectomy*. The technique is similar in adults.

The tonsils are dissected from the tonsil bed partly sharply and partly bluntly with a rasparatorium and scissors. The feeding vessels, especially at the upper and lower tonsil pole, are pinched off and then selectively ligated. After removal of the tonsil, a dry swab is pressed for about 1 minute into the tonsil bed to stop bleeding from small vessels. Some surgeons perform additional suturing of the lower pole (so-called “pole suturing”, a controversial method 131).

This method of tonsillectomy has been known for decades and has been very commonly used, especially in the 70s and 80s with the discovery of that tonsils are a source of infection 132. Optical magnifica- tion (microscope or loupes), makes it possible to specifically identify the smaller vessels and perform bipolar coagulation before dissection 133.

Due to its good long-term results and low morbidity and mortality, *cold steel dissection* is still the most common method of tonsillectomy 134.

Tonsillotomy (partial tonsillectomy)

The tonsil is not completely removed, but only the portion that bulges into the throat, which due to its size causes functional problems. By preserving some tonsil tissue a lymphatic and immunologically active rudiment is retained.

The tonsil has a rich blood supply and has to be sufficiently cut and coagulated (not crushed) during surgery so that there is no postoperative bleeding, infection or pain. To this end, several dissection procedures have been developed (in principle, a tonsillectomy can also be performed with all these methods):

- CO₂ laser 135 136
- Monopolar high frequency current 137
- Ultrasound scalpel 138
- Bipolar radiofrequency coablation 139
- Bipolar scissors 140
- Argon gas-assisted monopolar needle 141
- Microdebrider 142

Advantages of tonsillotomy (regardless of what method is used to reduce the tonsils) are significantly less pain 143 and a lower postoperative bleeding rate 144 compared with tonsillectomy.

The quickest and easiest way to perform tonsillotomy is with monopolar high frequency dissection *(Video 3)*. Instrumentation is shown in *Figure 2*.

Figure 2: Instruments to perform radiofrequency dissected tonsillotomy / partial tonsillectomy

- Following induction of general anaesthesia the patient is positioned supine with neck slightly extended
- Select an appropriate length Boyle Davis blade and insert the gag to retract the tongue and expose the tonsils *(Figure 1)*
- Grasp a tonsil with a broad tonsil holding forceps and gently pull it toward the midline. Avoid pulling too hard to avoid doing a complete tonsillectomy
- Insert a Colorado needle into the tonsil at the edge of the anterior faucal pillar
• Spare the mucosa of the velopalatinal arch to avoid bleeding and pain in the incision line
• Amputate the protruding part of the tonsil by dissecting with continuous movements of the needle. Do not remain too long in the same place with the cutting needle as it may burn holes in the tonsil
• Pack the wound with a gauze swab for at least 1 minute
• Minor bleeding stops spontaneously. Larger bleeding vessels can be coagulated with bipolar forceps. A suture or ligature is not required
• Repeat the process on the contralateral side

Intracapsular (subtotal) tonsillectomy

The tonsil capsule covering the underlying muscle remains in the tonsil fossa. Slightly less postoperative pain and earlier food intake have been reported. The instrumentation and technique is similar to tonsillotomy. All the methods of tonsillotomy previously listed may also be used. The microdebrider has been reported to be a useful tool.

• The surgeon has to pull harder on the tonsil to subluxate the capsule, but the capsule itself has to remain in place and not be breached
• It may be very difficult to determine the exact proportion of residual tonsil that remains in the fossa
• After tonsillitis with subsequent scarring it is difficult even with loupes or a microscope to identify the exact plane of the tonsil capsule and only to remove only the active lymphatic tissue
• Because the vessels are bigger in the abyss of the crypts and near the capsule, bleeding has to be controlled with bipolar forceps more often than with (more superficial) tonsillotomy

Postoperative pain

Tonsillectomy is very painful, especially if the capsule is breached and the muscle is exposed. Severe pain and superinfection of the wound bed can cause delayed healing and prolong hospital stay. Especially adolescent and adult patients report pain, exhaustion and fatigue weeks after surgery. In tonsillectomy the wound remains open and heals in 2-3 weeks secondarily by granulation. Sealing the wound beds postoperatively *e.g.* with fibrin glue or sucralfate has no advantage in terms of postoperative bleeding or pain.

With tonsillotomy, however, pain was reported as only around 2-3 on the numerical analogue scale.

Intracapsular tonsillectomy is allegedly less painful than tonsillectomy. However, it is unlikely that intracapsular tonsillectomy produces as little pain as tonsillotomy. Pain is perceived very differently by individuals. In children and adults, the differences, regardless of surgeon and method, can be enormous. Children of African descent have more postoperative pain than Europeans and respond better to opiates. This complicates both objective pain measurement (which does not exist), as well as a standard therapy. Pain therapy must therefore be individualised and adjusted, especially in children. Questionnaires (*e.g.* Ramsay Sedation Scale) for analgesic use, food intake, otalgia, and downtime use popular surrogate parameters.

Because pain is perceived and processed multimodally, the treatment must be multimodal. Firstly, a local long-lasting pain reliever (*e.g.* Bupivacaine or Ropivacaine) should be injected into the wound postoperatively or perioperatively to prevent activation of the early pain pathway. Then already perioperatively it should be cooled locally by a cold compress and...
later a lot of ice should be eaten (local cooling and calorie intake). Mouth-washes with gingicaine, benzocaine or tetracaine also provide pain relief, but also numb the taste buds and respiratory flow receptors, which is often perceived as very unpleasant.

The perioperative and postoperative administration of high-dose steroids (dexamethasone or prednisolone) is clearly recommended in all guidelines. This reduces postoperative nausea and analgesic consumption significantly.

A fixed analgesic regimen with ibuprofen or diclofenac makes sense in adults and adolescents, but for children and infants rescue medication is often enough. An increased risk of bleeding due to non-steroidal anti-inflammatory drugs, (except for aspirin) should not be feared. One should therefore adhere to the WHO staging system (http://www.who.int/cancer/palliative/painladder/en/). After tonsillectomy, it may well be that in the first days WHO stage III drugs (strong opioid, e.g. piritramide iv) or even a pain pump must be administered to ensure pain under 4 on the visual analogue scale and adequate food intake. Pain and nausea (with and without vomiting) after tonsillectomy are often trivialized by both nurses as well as physicians and therefore it is more likely that few analgesics will be administered postoperatively.

Post-tonsillectomy bleeding

Early and late postoperative bleeding

Postoperative bleeding can occur anytime until the wound is completely healed, despite careful intraoperative haemostasis and dissection; usually after 2-3 weeks.

Postoperative bleeding occurs either as so-called early bleeding within the first 24 hours, or in the form of late bleeding with a peak incidence between the 5th and 8th day after surgery. From the 3rd postoperative week bleeding occurs only very rarely. Therefore late postoperative bleeding presents a special problem because it often occurs only at home and therefore the time factor to get a professional play a major role.

The most common cause of late bleeding is the physiological detachment of the fibrin layer from the open wound bed and usually results in harmless bleeding. This bleeding almost always ends spontaneously, or due to local icing (sucking ice cubes, applying an ice cravat) or by tranexamic acid intravenously or locally (rinsing). If bleeding does not spontaneously subside because a larger vessel is bleeding, vessel ligation or suturing under anaesthesia is required. Massive haemorrhage is an extreme challenge for every paramedic or emergency doctor because of the difficult airway management. Intubation is only possible with suctioning the airway with suction tubes (Figure 3).

During induction and intubation, the ENT doctor should be present and prepared to perform emergency Cricothyroidotomy. Aspirated blood or incorrect intubation is the most common clinical complication of postoperative bleeding. Intraoperatively the surgeon must decide whether targeted bipolar coagulation and swab pressure are sufficient or whether suturing or ligation are
necessary. If that fails, either the lingual artery, ascending pharyngeal artery, facial artery or even the external carotid artery must be ligated from externally or embolisation the feeding vessels by interventional radiology should be done. Such massive bleeding is signalled in most cases by a minor "warning bleeding" 180, 181, so any bleeding must be taken seriously and the patient must be hospitalized.

Postoperative bleeding depending on method of surgery

In principle, intraoperative and postoperative bleeding can occur with all interventions involving the tonsils. However, for the tonsillotomy the postoperative bleeding rate is, by a factor of 5–10, lower than that for tonsillectomy 182. In cryolysis and thermotherapy of the tonsils postoperative bleeding is a rarity 183, 184. Only extracapsular tonsillectomy remains problematic. "Cold dissection" with ligature or suturing has the lowest postoperative bleeding rates. Significantly more severe late bleeding has been reported after laser, coblation, monopolar or bipolar techniques 185–187.

Videos

Video 1: Extracapsular Tonsillectomy: http://youtu.be/V__tloYXfwQ
Video 3: Radiofrequency Tonsillectomy: http://youtu.be/eQ7bbT0mj0k

References

38. Semberova J, Rybly B, Hanzelova J, Jakubikova J. The immune status in situ
of recurrent tonsillitis and idiopathic tonsillar hypertrophy. *Bratisl Lek Listy*. 2013;114(3):140-4

72. Matanoski GM, Price WH, Ferencz C. Epidemiology of streptococcal infections in rheumatic and non-rheumatic families. II. The interrelationship of streptococcal infections to age, family transmission and type of group A. *Am J Epidemiol.* 1968 Jan;87(1):190-206

104. Romsing J, Ostergaard D, Drozdziewicz D, Schulz P, Ravn G. Diclofenac or

162. Stelter K, Hiller J, Hempel JM, et al. Comparison of two different local anaesthetic infiltrations for...
postoperative pain relief in tonsillectomy: a prospective, randomised, double blind, clinical trial. Eur Arch Otorhinolaryngol. 2010 Jul;267(7):1129-34

179. Chan CC, Chan YY, Tanweer F. Systematic review and meta-analysis of the use of tranexamic acid in tonsillectomy. Eur Arch

Authors

PD Dr. med. Klaus Stelter
Dep. of Otorhinolaryngology, Head and Neck Surgery
RoMed Clinic Bad Aibling
Harthauser Str. 16
83043 Bad Aibling
info@alpenpraxisklinik.de

Prof. Dr. med. Götz Lehnerdt
Dep. of Otorhinolaryngology, Head and Neck Surgery
St. Anna Clinic Wuppertal
Vogelsangstr. 106
42109 Wuppertal
Hno.kh-anna@cellitinnen.de

Editor

Johan Fagan MBChB, FCORL, MMed
Professor and Chairman
Division of Otolaryngology
University of Cape Town
Cape Town, South Africa
johannes.fagan@uct.ac.za

THE OPEN ACCESS ATLAS OF OTOLARYNGOLOGY, HEAD & NECK OPERATIVE SURGERY
www.entdev.uct.ac.za

The Open Access Atlas of Otolaryngology, Head & Neck Operative Surgery by Johan Fagan (Editor) johannes.fagan@uct.ac.za is licensed under a Creative Commons Attribution - Non-Commercial 3.0 Unported License