BATTERIES

Types of cells

1 Complete / choose from the options to summarise the types of cells.

	Primary	Secondary
Rechargeable?	[rechargeable / non-rechargeable]	[rechargeable / non-rechargeable]
Voltaic / Electrolytic?	[only voltaic / voltaic and electrolytic]	[only voltaic / voltaic and electrolytic]
Name some examples		

Voltaic cells

- 2 On the following diagram:
 - a Add these labels: electrolyte, salt bridge, + electrode, electrode
 - b Complete / choose from the options to summarise the composition of a voltaic cell.

- 3 Answer concerning the salt bridge:
 - a What is its purpose?
 - b What kind of substance must it be made of?
 - c Why must it be made of this type of substance?

4 Choose from the options for a voltaic cell.

VOLTAIC CELL				
Anode	Cathode			
[oxidation / reduction]	[oxidation / reduction]			
[positive / negative]	[positive / negative]			

5 Circle the correct option (True / False) for each of the following referring to a voltaic cell.

VOLTAIC CELL:

- a A battery makes one electrode positive and the other negative, and this causes a chemical reaction to occur. [True / False]
- b A chemical reaction occurs, and this causes one electrode to be made positive and the other negative. [True / False]
- c As oxidation happens, chemicals lose electrons, which then go onto the anode, making it negative. [True / False]
- d The anode is made to be negative, and this makes chemicals lose electrons there, causing oxidation to happen. [True / False]
- e As reduction happens, chemicals accept electrons, taking them from the cathode, causing it to become positive. [True / False]
- f The cathode is made to be positive, and this makes chemicals gain electrons there, causing oxidation to happen. [True / False]

Lead acid battery (Car battery)

Overview

6 A lead acid battery consists of [primary / secondary] cells.

7 Complete / choose from the options.

	Discharging	Charging
	[electrolytic / voltaic] cells	[electrolytic / voltaic] cells
	[produces / requires] electrical energy	[produces / requires] electrical energy
Chemical	[spontaneous / non-spontaneous]	[spontaneous / non-spontaneous]
reaction	[exothermic / endothermic]	[exothermic / endothermic]
Energy con- version	energy → energy	energy →
Anode	[<u>Pb / PbO₂]</u>	[<u>Pb / PbO₂]</u>
Oxidation ¹ / ₂ reaction		
Cathode	[<u>Pb / PbO₂]</u>	[<u>Pb / PbO₂]</u>
Reduction ½ reaction		
Net redox reaction		

Discharging

8 Complete the explanation by filling the gaps or choosing from the options. Do this before, or after, but not during, watching the animations. Mark during re-watching.

Overview

When the lead acid battery is discharging it behaves as a set of [electrolytic/voltaic] cells. Each lead acid battery consists of six cells. Only one of these is shown here. Each cell converts ______ energy into ______ energy,

as a [spontaneous/non-spontaneous] chemical reaction [requires/ creates] a potential difference across two electrodes. A lead acid battery has one electrode made of lead dioxide and another of lead. These are inside a ______ acid electrolyte.

Anode

Lead atoms in the lead electrode are [<u>oxidised/reduced</u>]: they [<u>gain/lose</u>] two electrons each. This changes them into [<u>positively/negatively/neutrally</u>] charged lead [<u>atoms/ions</u>] of formula ______. Since [<u>oxidation/reduction</u>] occurs at this electrode, we call it the anode. The Pb²⁺ ions move away from the electrode, leaving the electrons they had just lost behind on the electrode. This makes this electrode, the anode, [<u>positively/negatively/neutrally</u>] charged, creating a ______

between it and the other electrode, which is positive relative to it. This causes electricity to flow between the two electrodes.

Cathode

Electrons move from the [lead/lead dioxide] anode to the [lead/lead dioxide]	cathode. There the
electrons are [accepted/released] by positively charged	ions in the
lead dioxide electrode. The lead ions here have a $[4+/2+]$ charge. Each lead $[4+/2+]$	<u>+/2+]</u> ion accepts two
and is reduced to a lead [4+/2+] ion. [Oxidation/Rec	<u>luction]</u> occurs at this
electrode. It is therefore called the [cathode/anode]. Because electrons are removed	d from the electrode in
this way, it is charged [negatively/positively]. These lead ions combine with	
ions from the sulfuric acid electrolyte to form Hyperson electrolyte to form	drogen ions from the
sulfuric acid electrolyte combine with ions from the I	ead dioxide electrode
to form	

Overall reaction

The	e overall reaction of the d	scharging lead acid ba	attery is the reaction of	and
	electr	odes with	acid to form	
and	d Tł	is is a spontaneous, re	dox reaction which converts che	mical into electric
ene	ergy.			
•	It is spontaneous because	ł		<u> </u>
•	It is a redox reaction: it inv chemical to another.	olves the transfer of		from one
•	It converts	into	energy as	

Charging

9 Complete the explanation by filling the gaps or choosing from the options. Do this before, or after, but not during, watching the animations. Mark during re-watching.

Overview

When the lead acid battery is charging it behaves as a set of [electrolytic/voltaic] cells. It converts _______ energy into _______ energy as a [spontaneous/ non-spontaneous] chemical reaction is forced to occur due to an external potential difference being placed across two electrodes.

Charging

To charge a lead acid battery, the lead dioxide electrode must be connected to the [positive/ negative] terminal of an external power source, e.g. another battery. The lead electrode must be connected to the [positive/negative] terminal of this other battery. This pulls electrons from the [lead/lead dioxide] electrode and forces electrons into the [lead/lead dioxide] electrode. This causes the reactions which had occurred in the discharging reaction to take place [in the same direction/in reverse].

Anode

The battery pulls electrons out of the electrode connected to its [positive/negative] terminal. Because of this, electrons are pulled out of the Pb²⁺ ions in the ______ around this electrode. This produces [Pb²⁺/Pb⁴⁺] ions. Because the [Pb²⁺/Pb⁴⁺] ions [gain/lose] electrons as they become Pb⁴⁺ ions, [oxidation/reduction] is taking place. This electrode is therefore called the [anode/cathode]. Notice that in an electrolytic cell, such as this one, the anode is [positively/ negatively] charged. This is opposite to the case of a voltaic cell. In an electrolytic cell the external ______ charges the anode positively, which forces oxidation to occur there.

Cathode

The external battery [pushes electrons into/pulls electrons out of] the electrode connected to its negative terminal, charging that electrode [positively/negatively]. This forces lead ions, of formula _______, to accept two electrons each, changing them into lead atoms, of formula _______. This is called [oxidation/reduction], since it involves _______. Grey lead metal is formed through this reduction reaction. The electrode at which reduction happens is called the cathode. Therefore in an electrolytic cell, such as this one, the [positively/negatively] charged electrode is the cathode.

Overall reaction

The overall reaction of the charging lead acid battery is the reaction of ______ ions in lead sulfate to form ______ at the cathode and ______ at the anode. This is a non-spontaneous, redox reaction which converts electrical into chemical energy.

- It is non-spontaneous because ______.
 It is a redox reaction: it involves the transfer of ______ from one chemical to another.
- It converts ______ energy as