

Quantitative Methods for Economics Tutorial 12 Katherine Eyal

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 2.5</u>

South Africa License.

TUTORIAL 12

25 October 2010

$\rm ECO3021S$

Part A: Problems

- 1. State with *brief reason* whether the following statements are true, false or uncertain:
 - (a) In the presence of heteroskedasticity OLS estimators are biased as well as inefficient.
 - (b) If heteroskedasticity is present, the conventional t and F tests are invalid.
 - (c) If a regression model is mis-specified (e.g., an important variable is omitted), the OLS residuals will show a distinct pattern.
 - (d) If a regressor that has nonconstant variance is (incorrectly) omitted from a model, the (OLS) residuals will be heteroskedastic.
- 2. In a regression of average wages, (W, in Rands) on the number of employees (N) for a random sample of 30 firms, the following regression results were obtained (*t*-statistics in parentheses):

$$\widehat{W} = \frac{7.5}{(N/A)} + \frac{0.009}{(16.10)} N \qquad \qquad R^2 = 0.90$$
$$\widehat{W}/N = \frac{0.008}{(14.43)} + \frac{7.8}{(76.58)} (1/N) \qquad \qquad R^2 = 0.99$$

- (a) How do you interpret the two regressions?
- (b) What is the researcher assuming in going from the first to the second equation? Was he worried about heteroskedasticity? How do you know?
- (c) Can you relate the slopes and intercepts of the two models?
- (d) Can you compare the R^2 values of the two models? Why or why not?

3. In 1914, the South African Robert Lehfeldt published what has become a well-known estimate of a price elasticity of demand that relied on a double logarithmic specification. Lehfeldt reasoned that variations in weather drive fluctuations in wheat production from one year to the next, and that the price of wheat adjusts so that buyers are willing to buy all the wheat produced. Hence, he argued, the price of wheat observed in any year reflects the demand for wheat. Consider the equation

$$\log(price) = \beta_0 + \beta_1 \log(wheat) + u$$

where *price* denotes the price of wheat, *wheat* denotes the quantity of wheat, and $1/\beta_1$ is the price elasticity of demand for wheat. Demonstrate that if the first four Gauss-Markov assumptions apply, the inverse of the OLS estimator of the slope in the above equation is a consistent estimator of the price elasticity of demand for wheat.

4. Suppose that the model

$$pctstck = \beta_0 + \beta_1 funds + \beta_2 risktol + u$$

satisfies the first four Gauss-Markov assumptions, where pctstck is the percentage of a worker's pension invested in the stock market, funds is the number of mutual funds that the worker can choose from, and risktol is some measure of risk tolerance (larger risktol means the person has a higher tolerance for risk). If funds and risktolare positively correlated, what is the inconsistency in $\tilde{\beta}_1$, the slope coefficient in the simple regression of pctstck on funds?

Part B: Computer Exercises

1. Does the separation of corporate control from corporate ownership lead to worse firm performance? George Stigler and Claire Friedland have addressed this question empirically using a sample of U.S. firms. A subset of their data are in the file EXECCOMP.DTA. The variables in the file are as follows:

ecomp	Average total annual compensation in thousands of dollars for a firm's
	top three executives
assets	Firm's assets in millions of dollars
profits	Firm's annual profits in millions of dollars
m control	Dummy variable indicating management control of the firm

Consider the following equation:

$$profits = \beta_0 + \beta_1 assets + \beta_2 mcontrol + u \tag{1}$$

- (a) Estimate the equation in (1). Construct a 95% confidence interval for β_2 .
- (b) Estimate the equation in (1) but now compute the heteroskedasticity-robust standard errors. (Use the command: reg profits assets mcontrol, robust) Construct a 95% confidence interval for β_2 and compare it with the nonrobust confidence interval from part (a).
- (c) Compute the Breusch-Pagan test for heteroskedasticity. Form both the F and LM statistics and report the p values. (You can use the command hettest to perform the LM version of the Breusch-Pagan test in Stata.)
- (d) Compute the special case of the White test for heteroskedasticity. Form both the F and LM statistics and report the p values. How does this compare to your results from (c)? (You can use the command imtest, white to perform the LM version of the original White test in Stata. Note that this test statistic will be different from the one you compute for the special case of the White test.)
- (e) Divide all of the variables (including the intercept term) in equation (1) by the square root of *assets*. Re-estimate the parameters of (1) using these data. What are these estimates known as? These new estimates are BLUE if what is true about the disturbances in (1)?
- (f) Conduct White's test for the disturbances in (e) being homoskedastic. What do you conclude at the 5% level?
- (g) Construct a 95% confidence interval for β_2 using the estimates from the regression in (e). Are you sympathetic to the claim that managerial control has no large effect on corporate profits?

2. Let *arr*86 be a binary variable equal to unity if a man was arrested during 1986, and zero otherwise. The population is a group of young men in California born in 1960 or 1961 who have at least one arrest prior to 1986. A linear probability model for describing *arr*86 is

 $arr86 = \beta_0 + \beta_1 pcnv + \beta_2 avgsen + \beta_3 tottime + \beta_4 ptime86 + \beta_5 qemp86 + u,$

where

pcnv	=	the proportion of prior arrests that led to a conviction
avgsen	=	the average sentence served from prior convictions (in months)
tottime	=	months spent in prison since age 18 prior to 1986
ptime 86	=	months spent in prison in 1986
qemp86	=	the number of quarters $(0 \text{ to } 4)$ that the man was legally employed in 1986

The data set is in CRIME1.DTA.

- (a) Estimate this model by OLS and verify that all fitted values are strictly between zero and one. What are the smallest and largest fitted values?
- (b) Estimate the equation by weighted least squares, as discussed in Section 8.5 of Wooldridge.
- (c) Use the WLS estimates to determine whether *avgsen* and *tottime* are jointly significant at the 5% level.
- 3. Use the data in WAGE1.DTA for this question.
 - (a) Estimate the equation

 $wage = \beta_0 + \beta_1 \ educ + \beta_2 \ exper + \beta_3 \ tenure + u.$

Save the residuals and plot a histogram.

- (b) Repeat part (a) but with $\log(wage)$ as the dependent variable.
- (c) Would you say that Assumption MLR.6 in Wooldridge (Normality) is closer to being satisfied for the level-level model or the log-level model?
- 4. Use the data in CHARITY.DTA for this question.
 - (a) Using all 4,268 observations, estimate the equation

 $gift = \beta_0 + \beta_1 mailsyear + \beta_2 giftlast + \beta_3 propresp + u$

and interpret your results in full.

- (b) Reestimate the equation in part (a), using the first 2,134 observations.
- (c) Find the ratio of the standard errors on $\hat{\beta}_2$ from parts (a) and (b). Compare this with the result from equation (5.10) on page 175 of Wooldridge.

TUTORIAL 12 SOLUTIONS

25 October 2010

ECO3021S

Part A: Problems

- 1. State with *brief reason* whether the following statements are true, false or uncertain:
 - (a) In the presence of heteroskedasticity OLS estimators are biased as well as inefficient.
 - (b) If heteroskedasticity is present, the conventional t and F tests are invalid.
 - (c) If a regression model is mis-specified (e.g., an important variable is omitted), the OLS residuals will show a distinct pattern.
 - (d) If a regressor that has nonconstant variance is (incorrectly) omitted from a model, the (OLS) residuals will be heteroskedastic.

SOLUTION:

- (a) False. In the presence of heteroskedasticity OLS estimators are **unbiased**, but are inefficient.
- (b) True. If heteroskedasticity is present, the OLS standard errors are biased and are no longer valid for constructing confidence intervals and t statistics. The usual OLS t statistics do not have t/distributions, and F statistics are no longer F distributed in the presence of heteroskedasticity.
- (c) True. If there are specification errors, the residuals will exhibit noticeable patterns.
- (d) True. Often, what looks like heteroskedasticity may be due to the fact that some important variables are omitted from the model.
- 2. In a regression of average wages, (W, in Rands) on the number of employees (N) for a random sample of 30 firms, the following regression results were obtained (*t*-statistics in parentheses):

$$\widehat{W} = \frac{7.5}{(N/A)} + \frac{0.009}{(16.10)} N \qquad R^2 = 0.90$$

$$\widehat{W}/N = \frac{0.008}{(14.43)} + \frac{7.8}{(76.58)} (1/N) \qquad R^2 = 0.99$$

- (a) How do you interpret the two regressions?
- (b) What is the researcher assuming in going from the first to the second equation? Was he worried about heteroskedasticity? How do you know?
- (c) Can you relate the slopes and intercepts of the two models?
- (d) Can you compare the R^2 values of the two models? Why or why not?

SOLUTION:

- (a) The first regression is an OLS estimation of the relationship between average wages and number of employees. The results suggest that if a firm hires ten new employees, the average wage increases by R0.09. The second regression is weighted least squares (WLS) estimation of the relationship between average wages and number of employees. The results suggest that if a firm hires ten new employees, the average wage increases by R0.08.
- (b) The researcher is assuming that the error variance is proportional to N^2 : $\operatorname{Var}(u_i \mid N) = \sigma^2 N_i^2$. He was worried about heteroskedasticity because if $\operatorname{Var}(u_i \mid N) = \sigma^2 N_i^2$, the error variance is clearly non-constant. If this is a correct specification of the form of the variance, then WLS estimation (the second equation) is more efficient than OLS (the first equation).
- (c) The intercept of the second equation is the slope coefficient of the first equation, and the slope coefficient of the second equation is the intercept of the first equation.
- (d) You cannot compare the R^2 values because the dependent variables are different in the two models.
- 3. In 1914, the South African Robert Lehfeldt published what has become a well-known estimate of a price elasticity of demand that relied on a double logarithmic specification. Lehfeldt reasoned that variations in weather drive fluctuations in wheat production from one year to the next, and that the price of wheat adjusts so that buyers are willing to buy all the wheat produced. Hence, he argued, the price of wheat observed in any year reflects the demand for wheat. Consider the equation

$$\log(price) = \beta_0 + \beta_1 \log(wheat) + u$$

where *price* denotes the price of wheat, *wheat* denotes the quantity of wheat, and $1/\beta_1$ is the price elasticity of demand for wheat. Demonstrate that if the first four Gauss-Markov assumptions apply, the inverse of the OLS estimator of the slope in the above equation is a consistent estimator of the price elasticity of demand for wheat.

SOLUTION:

To show that $1/\hat{\beta}_1$ is a consistent estimator of $1/\beta_1$, we have to show that $\hat{\beta}_1$ is a consistent estimator of β_1 . This is just the proof of Theorem 5.1 (see page 169 in Wooldridge).

4. Suppose that the model

$$pctstck = \beta_0 + \beta_1 funds + \beta_2 risktol + u$$

satisfies the first four Gauss-Markov assumptions, where pctstck is the percentage of a worker's pension invested in the stock market, funds is the number of mutual funds that the worker can choose from, and risktol is some measure of risk tolerance (larger risktol means the person has a higher tolerance for risk). If funds and risktolare positively correlated, what is the inconsistency in $\tilde{\beta}_1$, the slope coefficient in the simple regression of pctstck on funds?

SOLUTION:

A higher tolerance of risk means more willingness to invest in the stock market, so $\beta_2 > 0$. By assumption, funds and risktol are positively correlated. Now we use equation (5.5) of Wooldridge, where $\delta_1 > 0$: plim $(\tilde{\beta}_1) = \beta_1 + \beta_2 \delta_1 > \beta_1$, so $\tilde{\beta}_1$ has a positive inconsistency (asymptotic bias). This makes sense: if we omit risktol from the regression and it is positively correlated with funds, some of the estimated effect of funds is actually due to the effect of risktol.

Part B: Computer Exercises

1. Does the separation of corporate control from corporate ownership lead to worse firm performance? George Stigler and Claire Friedland have addressed this question empirically using a sample of U.S. firms. A subset of their data are in the file EXECCOMP.DTA. The variables in the file are as follows:

ecomp	Average total annual compensation in thousands of dollars for a firm's
	top three executives
assets	Firm's assets in millions of dollars
nrofita	Firm's annual profits in millions of dollars

profits Firm's annual profits in millions of dollars

mcontrol Dummy variable indicating management control of the firm

Consider the following equation:

$$profits = \beta_0 + \beta_1 assets + \beta_2 mcontrol + u \tag{1}$$

(a) Estimate the equation in (1). Construct a 95% confidence interval for β_2 .

- (b) Estimate the equation in (1) but now compute the heteroskedasticity-robust standard errors. (Use the command: reg profits assets mcontrol, robust) Construct a 95% confidence interval for β₂ and compare it with the nonrobust confidence interval from part (a).
- (c) Compute the Breusch-Pagan test for heteroskedasticity. Form both the F and LM statistics and report the p values. (You can use the command hettest to perform the LM version of the Breusch-Pagan test in Stata.)
- (d) Compute the special case of the White test for heteroskedasticity. Form both the F and LM statistics and report the p values. How does this compare to your results from (c)? (You can use the command imtest, white to perform the LM version of the original White test in Stata. Note that this test statistic will be different from the one you compute for the special case of the White test.)
- (e) Divide all of the variables (including the intercept term) in equation (1) by the square root of *assets*. Re-estimate the parameters of (1) using these data. What are these estimates known as? These new estimates are BLUE if what is true about the disturbances in (1)?
- (f) Conduct White's test for the disturbances in (e) being homoskedastic. What do you conclude at the 5% level?
- (g) Construct a 95% confidence interval for β_2 using the estimates from the regression in (e). Are you sympathetic to the claim that managerial control has no large effect on corporate profits?

SOLUTION:

(a)

Source	SS	df	MS		Number of obs	= 69
Model Residual Total	6843.42169 16735.2881 23578.7098	2 3421 66 253. 68 346.	.71085 564972 745733		F(2, 66) Prob > F R-squared Adj R-squared Root MSE	= 13.49 $= 0.0000$ $= 0.2902$ $= 0.2687$ $= 15.924$
profits	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
assets mcontrol _cons	.0274626 -6.186284 8.087969	.0055847 3.844436 3.053642	4.92 -1.61 2.65	0.000 0.112 0.010	.0163124 -13.86195 1.991175	.0386128 1.48938 14.18476

The 95% confidence interval for β_2 is given in the Stata output: [-13.86195, 1.48938]. (You should also make sure that you can construct this CI by hand.)

Regression wit	egression with robust standard errors Number of obs = 69							
					F(2, 66)	= 2.92		
					Prob > F	= 0.0607		
					R-squared	= 0.2902		
					Root MSE	= 15.924		
		Robust						
profits	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
	+							
assets	.0274626	.0157674	1.74	0.086	0040181	.0589433		
mcontrol	-6.186284	3.765382	-1.64	0.105	-13.70411	1.331542		
_cons	8.087969	3.796616	2.13	0.037	.5077806	15.66816		

The 95% confidence interval for β_2 is given in the Stata output: [-13.70411, 1.331542]. (You should also make sure that you can construct this CI by hand.)

This CI is narrower than the nonrobust one from part (a).

(c) Stata commands:

reg profits assets mcontrol	(This is the usual OLS regression)
predict u, resid	(This saves the residuals from the regression
	in a variable named u)
gen u2=u^2	(This creates the squared residuals and
	saves them as $u2)$
reg u2 assets mcontrol	(This is regression (8.14) of Wooldridge)
Stata output:	

Source	SS	df	MS		Number of obs	=	69
+					F(2, 66)	=	10.77
Model	21041422.4	2 105	20711.2		Prob > F	=	0.0001
Residual	64482732.8	66 977	011.104		R-squared	=	0.2460
+					Adj R-squared	=	0.2232
Total	85524155.3	68 125	57708.17		Root MSE	=	988.44
u2	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
+							
assets	1.596643	.3466613	4.61	0.000	.9045113	2	.288775
mcontrol	-120.8976	238.637	-0.51	0.614	-597.3517	3	55.5566
_cons	-143.9968	189.5498	-0.76	0.450	-522.4451	2	34.4515

Breusch-Pagan test for heteroskedasticity (BP test):

(b)

• F statistic:

$$F = \frac{R_{\hat{u}^2}^2/k}{\left(1 - R_{\hat{u}^2}^2\right)/(n - k - 1)} = 10.77$$

This F statistic is easily obtained from the Stata output, as it is the F statistic for overall significance of a regression.

The p value is 0.0001 indicating that we can reject the null hypothesis of homoskedasticity.

• *LM* statistic:

$$LM = n \cdot R_{\hat{u}^2}^2$$

= 69 (0.2460)
= 16.974

The p value is less than 0.01 (the 1% critical value from the χ^2 distribution with 2 degrees of freedom is 9.21), indicating that we can reject the null of homoskedasticity.

Performing the BP test in Stata:

```
reg profits assets mcontrol
hettest
```

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of profits
chi2(1) = 171.40
Prob > chi2 = 0.0000
```

Stata performs a different version of the BP test to the one discussed in Wooldridge, but the conclusion is the same. We reject the null of homoskedasticity.

(d) Stata commands:

reg profits assets mcontrol	(This is the usual OLS regression)
predict u, resid	(This saves the residuals from the regression
	in a variable named u)
gen u2=u^2	(This creates the squared residuals and
	saves them as u^2)
predict profitshat	(This calculates the predicted values of profits
	and saves them as $profitshat$)
gen profitshat2=profitshat^2	(This squares the predicted values of profits
	saves them as $profitshat2$)
reg u2 profitshat profitshat2	(This is regression (8.20) of Wooldridge)

(Note that you do not need to recreate the squared residuals if you already did so in (c).)

Stata output:

Source	SS	df	MS		Number of obs	= 69
	+				F(2, 66)	= 10.32
Model	20378554.1	2 1	0189277.1		Prob > F	= 0.0001
Residual	65145601.1	66 9	87054.563		R-squared	= 0.2383
	+				Adj R-squared	= 0.2152
Total	85524155.3	68 1	257708.17		Root MSE	= 993.51
u2	Coef.	Std. Er:	r. t	P> t	[95% Conf.	Interval]
	+					
profitshat	70.87986	37.6439	2 1.88	0.064	-4.278665	146.0384
profitshat2	2983731	.641375	8 -0.47	0.643	-1.578921	.982175
_cons	-588.2597	348.329	5 -1.69	0.096	-1283.722	107.2025

Special case of White test for heteroskedasticity:

- F statistic = 10.32, p value = 0.0001 (easily obtained from Stata output). We can reject the null of homoskedasticity.
- LM statistic = $n \cdot R_{\hat{u}^2}^2 = 69(0.2383) = 16.443$, and the *p* value is less than 0.01 (the 1% critical value from the χ^2 distribution with 2 degrees of freedom is 9.21). We can reject the null of homoskedasticity.

Performing the White test in Stata:

reg profits assets mcontrol

imtest, white

```
White's test for Ho: homoskedasticity
against Ha: unrestricted heteroskedasticity
```

chi2(4)	=	18.05
Prob > chi2	=	0.0012

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	p
Heteroskedasticity Skewness Kurtosis	18.05 3.69 1.48	4 2 1	0.0012 0.1581 0.2230
Total	23.22	7	0.0016

Stata performs the original version of the White test (equation 8.19 of Wooldridge). The test statistic is different to the one we computed for the special case of the White test, but the conclusion is the same. We can reject the null of homoskedasticity.

(e)

 $\begin{array}{lll} profits/\sqrt{assets} &=& \beta_0/\sqrt{assets} + \beta_1 assets/\sqrt{assets} + \beta_2 m control/\sqrt{assets} + u/\sqrt{assets} \\ profits/\sqrt{assets} &=& \beta_0 \left(1/\sqrt{assets} \right) + \beta_1 \sqrt{assets} + \beta_2 m control/\sqrt{assets} + u^* \end{array}$

Stata commands:

```
gen sqrtassets=assets^(1/2)
gen profits_sqrtassets = profits/sqrtassets
gen one_sqrtassets = 1/sqrtassets
gen mcontrol_sqrtassets = mcontrol/sqrtassets
reg profits_sqrtassets one_sqrtassets sqrtassets mcontrol_sqrtassets,
noconstant
```

Results:

Source	SS	df	MS		Number of obs	= 69
	+				F(3, 66)	= 33.56
Model	41.8974441	3 13	3.9658147		Prob > F	= 0.0000
Residual	27.4621735	66 .4	16093538		R-squared	= 0.6041
	+				Adj R-squared	= 0.5861
Total	69.3596176	69 1.	00521185		Root MSE	= .64505
profits_sq~s	Coef.	Std. Err	:. t	P> t	[95% Conf.	Interval]
one_sqrtas~s	2.492719	1.708424	1.46	5 0.149	9182605	5.903698
sqrtassets	.0406921	.0068165	5.97	0.000	.0270825	.0543017
mcontrol_s~s	-2.029233	1.886417	-1.08	0.286	-5.795586	1.737119

These estimates are known as the weighted least squares (WLS) estimates. The WLS estimates are BLUE if $Var(u_i \mid assets_i) = \sigma^2 assets_i$.

(f) Special case of the White test:

```
predict ustar, resid
gen ustar2 = ustar^2
predict profits_sqrtassetshat
gen profits_sqrtassetshat2 = profits_sqrtassets^2
```

Source	SS	df	MS		Number of obs	=	69
+					F(2, 66)	=	94.16
Model	47.6341764	2 23	.8170882		Prob > F	=	0.0000
Residual	16.6939312	66 .2	52938352		R-squared	=	0.7405
+					Adj R-squared	=	0.7326
Total	64.3281077	68 .9	46001583		Root MSE	=	.50293
ustar2	Coef.	Std. Err	. t	P> t	[95% Conf.	Int	[erval]
+							
profits_sq~t	.5869394	.2360104	2.49	0.015	.1157295	1	.058149
profits_sq~2	.3605197	.0306082	11.78	0.000	.2994084	• •	4216309
_cons	3926059	.1748171	-2.25	0.028	7416394	(0435724

reg ustar2 profits_sqrtassetshat profits_sqrtassetshat2

The F statistic = 94.16, with a p value of 0.0000. We can reject the null of homoskedasticity. This may be because our assumed form for the error variance is incorrect, or the model is mis-specified.

Original version of the White test:

reg profits_sqrtassets one_sqrtassets sqrtassets mcontrol_sqrtassets, noconstant

imtest, white

White's test for Ho: homoskedasticity against Ha: unrestricted heteroskedasticity

chi2(7)	=	16.49	
Prob > chi2	=	0.0210	

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	p
Heteroskedasticity Skewness Kurtosis	16.49 2.92 2.13	7 3 1	0.0210 0.4039 0.1440
Total	21.54	11	0.0282

We can reject the null of homoskedasticity at the 5% level of significance.

(g) The 95% confidence interval for β_2 is given in the Stata output: [-5.795586, 1.737119]. (You should also make sure that you can construct this CI by hand.) We cannot reject the null that management control has no effect on profits. 2. Let *arr*86 be a binary variable equal to unity if a man was arrested during 1986, and zero otherwise. The population is a group of young men in California born in 1960 or 1961 who have at least one arrest prior to 1986. A linear probability model for describing *arr*86 is

 $arr86 = \beta_0 + \beta_1 pcnv + \beta_2 avgsen + \beta_3 tottime + \beta_4 ptime86 + \beta_5 qemp86 + u,$

where

pcnv	=	the proportion of prior arrests that led to a conviction
avgsen	=	the average sentence served from prior convictions (in months)
tottime	=	months spent in prison since age 18 prior to 1986
ptime 86	=	months spent in prison in 1986
qemp86	=	the number of quarters $(0 \text{ to } 4)$ that the man was legally employed in 1986

The data set is in CRIME1.DTA.

- (a) Estimate this model by OLS and verify that all fitted values are strictly between zero and one. What are the smallest and largest fitted values?
- (b) Estimate the equation by weighted least squares, as discussed in Section 8.5 of Wooldridge.
- (c) Use the WLS estimates to determine whether *avgsen* and *tottime* are jointly significant at the 5% level.

SOLUTION:

You will have to first create the arr86 variable:

gen arr86 = 0 replace arr86 = 1 if narr86 > 0

Source	SS	df		MS		Number of obs	=	2725
+						F(5, 2719)	=	27.03
Model	25.8452455	5	5.16	5904909		Prob > F	=	0.0000
Residual	519.971268	2719	.191	236215		R-squared	=	0.0474
+						Adj R-squared	=	0.0456
Total	545.816514	2724	.20	037317		Root MSE	=	.43731
arr86	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
+								
pcnv	1624448	.0212	368	-7.65	0.000	2040866	-	.120803
avgsen	.0061127	.006	452	0.95	0.344	0065385		.018764
tottime	0022616	.0049	781	-0.45	0.650	0120229	•	0074997
ptime86	0219664	.0046	349	-4.74	0.000	0310547		0128781
qemp86	0428294	.0054	046	-7.92	0.000	0534268		0322319
_cons	.4406154	.0172	329	25.57	0.000	.4068246	•	4744063

Stata commands to get the fitted values and check that they lie between zero and one:

predict arr86hat

sum arr86hat

Variable	Obs	Mean	Std. Dev	. Min	Max
+					
arr86hat	2725	.2770642	.0974062	.0066431	.5576897

All the fitted values are between zero and one. The smallest fitted value is 0.0066431 and the largest fitted value is 0.5576897.

(b) The estimated heteroskedasticity function for each observation *i* is $\hat{h}_i = \widehat{arr86_i} \left(1 - \widehat{arr86_i}\right)$, which is strictly between zero and one because $0 < \widehat{arr86_i} < 1$ for all *i*. The weights for WLS are $1/\hat{h}_i$. We transform all the variables (including the intercept) by multiplying each variable by $1/\sqrt{\hat{h}_i}$. Then we run OLS using the transformed variables to get the WLS estimates: Stata commands to do this easily: gen hhat = arr86hat * (1 - arr86hat)

reg arr86 pcnv avgsen tottime ptime86 qemp86 [aw = 1/hhat]

(a)

(sum of wgt is 1.5961e+04)

Source	SS	df	MS		Number of obs	= 2725
	+				F(5, 2719)	= 43.70
Model	36.631818	57	.3263636		Prob > F	= 0.0000
Residual	455.826896	2719 .1	57645052		R-squared	= 0.0744
	+				Adj R-squared	= 0.0727
Total	492.458714	2724 .13	30785137		Root MSE	= .40944
arr86	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
	+					
pcnv	1678436	.0189122	-8.87	0.000	2049272	13076
avgsen	.0053665	.0051146	1.05	0.294	0046624	.0153954
tottime	0017615	.0032514	-0.54	0.588	008137	.004614
ptime86	0246188	.0030451	-8.08	0.000	0305898	0186479
qemp86	0451885	.0054225	-8.33	0.000	0558212	0345558
_cons	.4475965	.0179922	24.88	0.000	.4123167	.4828763

(c) Stata command: test avgsen tottime

(1) avgsen = 0
(2) tottime = 0
F(2, 2719) = 0.88
Prob > F = 0.4129

We cannot reject the null hypothesis and conclude that *avgsen* and *tottime* are not jointly significant at the 5% level of significance.

3. Use the data in WAGE1.DTA for this question.

(a) Estimate the equation

 $wage = \beta_0 + \beta_1 \ educ + \beta_2 \ exper + \beta_3 \ tenure + u.$

Save the residuals and plot a histogram.

- (b) Repeat part (a) but with $\log(wage)$ as the dependent variable.
- (c) Would you say that Assumption MLR.6 in Wooldridge (Normality) is closer to being satisfied for the level-level model or the log-level model?

SOLUTION:

(a) reg wage educ exper tenure predict uhat, resid histogram uhat, normal

Source	SS	df	MS		Number of obs	= 526
	+				F(3, 522)	= 76.87
Model	2194.1116	3 731.	370532		Prob > F	= 0.0000
Residual	4966.30269	522 9.51	398984		R-squared	= 0.3064
	+				Adj R-squared	= 0.3024
Total	7160.41429	525 13.6	388844		Root MSE	= 3.0845
wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
educ	.5989651	.0512835	11.68	0.000	.4982176	.6997126
exper	.0223395	.0120568	1.85	0.064	0013464	.0460254
tenure	.1692687	.0216446	7.82	0.000	.1267474	.2117899
conc		7000640	2 04	0 000	1 201700	1 440671
_cons	-2.8/2/35	./289643	-3.94	0.000	-4.304/99	-1.4400/1

Use the Stata command histogram varname, normal to generate a histogram of varname with the normal density overlaid.

Source	SS	df	MS		Number of obs	=	526
	+				F(3, 522)	=	80.39
Model	46.8741776	3 15	5.6247259		Prob > F	=	0.0000
Residual	101.455574	522 .1	94359337		R-squared	=	0.3160
	+				Adj R-squared	=	0.3121
Total	148.329751	525 .	28253286		Root MSE	=	.44086
lwage	Coef.	Std. Eri	:. t	P> t	[95% Conf.	Int	terval]
lwage educ	Coef. 	Std. Ern 	12.56	P> t 0.000	[95% Conf. .0776292	Int	terval]
lwage educ exper	Coef. .092029 .0041211	Std. Ern .0073299 .0017233	r. t 12.56 3 2.39	P> t 0.000 0.017	[95% Conf. .0776292 .0007357	Int 	terval] 1064288
lwage educ exper tenure	Coef. .092029 .0041211 .0220672	Std. Eri .0073299 .0017233 .0030936	t 12.56 2.39 5 7.13	<pre>P> t 0.000 0.017 0.000</pre>	[95% Conf. .0776292 .0007357 .0159897	Int . (. (terval] 1064288 0075065 0281448
lwage educ exper tenure _cons	Coef. .092029 .0041211 .0220672 .2843595	Std. Err .0073299 .0017233 .0030936 .1041904	t 12.56 2.39 7.13 2.73	<pre>P> t 0.000 0.017 0.000 0.007</pre>	[95% Conf. .0776292 .0007357 .0159897 .0796756	Int 	terval] 1064288 0075065 0281448 4890435

(c) The residuals from the log(wage) regression appear to be more normally distributed. Certainly the histogram in part (b) fits under its comparable normal density better than in part (a), and the histogram for the wage residuals is notably skewed to the left. In the wage regression there are some very large residuals (roughly equal to 15) that lie almost five estimated standard deviations

(b)

 $(\hat{\sigma} = 3.085)$ from the mean of the residuals, which is identically zero, of course. Residuals far from zero does not appear to be nearly as much of a problem in the log(*wage*) regression.

- 4. Use the data in CHARITY.DTA for this question.
 - (a) Using all 4,268 observations, estimate the equation

 $gift = \beta_0 + \beta_1 mailsyear + \beta_2 giftlast + \beta_3 propresp + u$

and interpret your results in full.

- (b) Reestimate the equation in part (a), using the first 2,134 observations.
- (c) Find the ratio of the standard errors on $\hat{\beta}_2$ from parts (a) and (b). Compare this with the result from equation (5.10) on page 175 of Wooldridge.

SOLUTION:

(a)

Source	SS	df		MS		Number of obs	=	4268
Model Residual	+ 80700.7052 887399.134	 3 4264	2690 208.	 0.2351 114244		F(3, 4264) Prob > F R-squared	= = =	129.26 0.0000 0.0834
Total	+ 968099.84	4267	226.	880675		Adj R-squared Root MSE	=	0.0827 14.426
gift	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
mailsyear giftlast propresp _cons	2.166259 .0059265 15.35861 -4.551518	.3319 .0014 .8745 .8030	271 324 394 336	6.53 4.14 17.56 -5.67	0.000 0.000 0.000 0.000 0.000	1.515509 .0031184 13.64405 -6.125882	2 1 -2	.817009 0087347 7.07316 .977155

Source	SS	df	MS			Number of obs	=	2134
	-+					F(3, 2130)	=	44.95
Model	37014.4346	3	12338.14	449		Prob > F	=	0.0000
Residual	584626.368	2130	274.4724	473		R-squared	=	0.0595
	-+					Adj R-squared	=	0.0582
Total	621640.803	2133	291.4390	664		Root MSE	=	16.567
gift	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	-+							
mailsyear	4.975756	.9807	182 !	5.07	0.000	3.052491	б	.899021
giftlast	.0040329	.0016	511 2	2.44	0.015	.000795		0072708
propresp	14.03846	1.566	5064 8	8.96	0.000	10.96729	1	7.10963
_cons	-10.40117	2.419	694 -4	4.30	0.000	-15.14638	-5	.655958

(b) Stata command: reg gift mailsyear giftlast propresp in 1/2134

(c) The ratio of the standard error of $\hat{\beta}_2$ using 2,134 observations to that using 4,268 observations is $\frac{0.0016511}{0.0014324} = 1.1527$. From (5.10) we compute $\sqrt{\frac{4268}{2134}} = 1.4142$, which is somewhat below the ratio of the actual standard errors.