

Mathematics for Economists Tutorial Questions - Comparative Statics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 **South Africa License.**

Tutorial 2: Comparative Statics

ECO4112F 2011

1 Derivatives and Rules of Differentiation

For each of the functions below:

- (a) Find the difference quotient.
- (b) Find the derivative $\frac{dy}{dx}$.
- (c) Find $f'(4)$ and $f'(3)$.

1.
$$
y = 4x^2 + 9
$$

2. $y = 5x^2 - 4x$
3. $y = 5x - 2$

Find the derivative of each of the following:

Find the derivative of each of the following by first taking the natural log of both sides:

41.
$$
y = \frac{x^2}{(x+3)(2x+1)}
$$

42. $y = \frac{3x}{(x+2)(x+4)}$

43. Given $y = u^3 + 1$ where $u = 5 - x^2$, find $\frac{dy}{dx}$.

44. Given
$$
w = ay^2
$$
 where $y = bx^2 + cx$, find $\frac{dw}{dx}$.

- 45. Are the following functions monotonic?
	- (a) $y = -x^6 + 5 \ (x > 0)$ (b) $y = 4x^5 + x^3 + 3x$
- 46. Given the function $f(x) = ax + b$, find the derivatives of

(a)
$$
f(x)
$$

\n(b) $xf(x)$
\n(c) $\frac{1}{f(x)}$
\n(d) $\frac{f(x)}{x}$

- 47. Given the total cost function $C = Q^3 5Q^2 + 14Q + 75$, what is the variable cost function? Find the derivative of the variable cost function, and give the economic meaning of this derivative.
- 48. Given the average cost function $AC = Q^2 4Q + 214$, find the marginal cost function.
- 49. Given that average revenue is given by $AR = 60 3Q$, find the marginal revenue curve.
- 50. If $f(H, h) = \lambda (1 \beta H) h$, where λ and β are positive constants, find f_H and f_h .
- 51. If $f(T,t) = TQn + TQnm(t-T) T^2rQn$, where Q, n, m and r are positive constants, find f_T and f_t .

Find
$$
\frac{\partial y}{\partial x_1}
$$
 and $\frac{\partial y}{\partial x_2}$ for each of the following functions:
\n52. $y = 2x_1^3 - 11x_1^2x_2 + 3x_2^2$
\n53. $y = 7x_1 + 5x_1x_2^2 - 9x_2^3$
\n54. $y = (2x_1 + 3)(x_2 - 2)$
\n55. $y = \frac{4x_1 + 3}{x_2 - 2}$

Find f_x and f_y for each of the following functions:

56.
$$
f(x,y) = x^2 + 5xy - y^3
$$

\n58. $f(x,y) = \frac{2x - 3y}{x + y}$
\n57. $f(x,y) = (x^2 - 3y)(x - 2)$
\n59. $f(x,y) = \frac{x^2 - 1}{xy}$

- 60. If the utility function of an individual takes the form $U = U(x, y) = (x + 2)^2 (y + 3)^3$, where U is total utility and x and y are the quantities of the two commodities consumed.
	- (a) Find the marginal utility of each of the two commodities.
	- (b) Find the value of the marginal utility of commodity x when 3 units of each commodity are consumed.
- 61. Given the national income model below

$$
Y = C + I + G
$$

\n
$$
C = a + b(Y - T)
$$

\n
$$
T = d + tY
$$

\n
$$
a > 0, 0 < b < 1
$$

\n
$$
d > 0, 0 < t < 1
$$

where Y is national income, C is (planned) consumption expenditure, I is investment expenditure, G is government expenditure and T is taxes.

- (a) Solve for Y^*, C^* and T^* using Cramer's Rule.
- (b) Find the government expenditure multiplier and the investment multiplier.
- (c) How is consumption affected by increased government spending. Do your findings accord with economic logic?

62. Let the national income model be

$$
Y = C + I + G
$$

\n
$$
C = a + b(Y - T)
$$

\n
$$
G = gY
$$

\n
$$
0 < g < 1
$$

where Y is national income, C is (planned) consumption expenditure, I is investment expenditure, G is government expenditure and T is taxes.

- (a) Solve for Y^* , C^* and G^* and state what restriction is required on the parameters for a solution to exist.
- (b) Give the economic meaning of the parameter g.
- (c) Find the tax multiplier and the investment multiplier, and give the economic intuition behind their signs.
- (d) Show that an increase in tax has a negative impact on consumption.
- 63. Consider the following simple Keynesian macroeconomic model

$$
Y = C + I + G
$$

\n
$$
C = 200 + 0.8Y
$$

\n
$$
I = 1000 - 2000R
$$

where Y is national income, C is (planned) consumption expenditure, I is investment expenditure, G is government expenditure and R is the interest rate.

Use Cramer's Rule to solve for Y^* , and evaluate the effect of a R50 billion decrease in government spending on national income.

64. Use Jacobian determinants to test the existence of functional dependence between the paired functions below:

(a)
$$
y_1 = 3x_1^2 + x_2
$$

\n $y_2 = 9x_1^4 + 6x_1^2 (x_2 + 4) + x_2 (x_2 + 8) + 12$
\n(b) $y_1 = 3x_1^2 + 2x_2^2$
\n $y_2 = 5x_1 + 1$

2 General Function Models (Total Differentiation)

- 1. Find the total differential dy , given:
	- (a) $y = -x(x^2 + 3)$ (b) $y = (x - 8) (7x + 5)$ (c) $y = \frac{x}{2}$ $x^2 + 1$ (d) $y = 10x_1^3 - 2x_2^3$ (e) $y = 3x_1^2 + 4x_2^3$ (f) $y = 3x^2 + xz - 2z^3$ (g) $y = 2x_1 + 9x_1x_2 + x_2^2$
- 2. Given the consumption function $C = a + bY$ (where $a > 0, 0 < b < 1, Y > 0$), find the income elasticity of consumption ε_{CY} .
- 3. Find the total derivative $\frac{dz}{dy}$, given
	- (a) $z = f(x, y) = 2x + xy y^2$ where $x = g(y) = 3y^2$
	- (b) $z = f(x, y) = (x + y)(x 2y)$ where $x = g(y) = 2 7y$
- 4. Find the rate of change of output with respect to time, if the production function is $Q = A(t)K^{\alpha}L^{\beta}$, where $A(t)$ is an increasing function of t, $K = K_0e^{at}$ and $L = L_0 + bt$.
- 5. Given an isoquant which represents a production function
	- $\overline{y} = f(x_1, x_2)$, where \overline{y} is some constant level of output. Use total differentials to derive an expression for the marginal rate of technical substitution between the factors of production, x_1 and x_2 .

3 Derivatives of Implicit Functions

- 1. Given $F(y, x) = x^3 2x^2y + 3xy^2 22 = 0$, is an implicit function $y = f(x)$ defined around the point $(y = 3, x = 1)$? If so, find $\frac{dy}{dx}$ by the implicit function rule, and evaluate it at this point.
- 2. Given $F(y, x) = 2x^2 + 4xy y^4 + 67 = 0$, is an implicit function $y = f(x)$ defined around the point $(y = 3, x = 1)$? If so, find $\frac{dy}{dx}$ by the implicit function rule, and evaluate it at this point.
- 3. For each of the given equations $F(y, x) = 0$, find $\frac{dy}{dx}$ by (i) solving for y, (ii) the implicit function rule, and (iii) taking the total differential:
	- (a) $F(y, x) = x^2 + xy 14 = 0$ (b) $F(y, x) = xy - 12 = 0$ (c) $F(y, x) = 3x^3y - 2x^2 + 6 = 0$
- 4. Given $F(y, x) = x^2 3xy + y^3 7 = 0$, check that an implicit function $y = f(x)$ is defined around the point $(y = 3, x = 4)$. Hence find $\frac{dy}{dx}$ by the implicit function rule.
- 5. Given $F(y, x) = ye^y x = 0$, verify the conditions of the implicit function theorem.
- 6. Consider the function corresponding to the upper semi-circle of the set of points in the xy-plane satisfying $x^2 + y^2 = 4$. Find $\frac{dy}{dx}$ by:
	- (a) explicitly writing out the function $y = f(x)$ and finding its derivative.
	- (b) the implicit function rule.
- 7. Given $F(y, x) = 10x_1y + x_1^2x_2 + y^2x_2 = 0$, find the value x_2 for which the implicit function $y = f(x_1, x_2)$ is defined around the point $(y = 1, x_1 = -2, x_2 = ?)$? Hence find the values of $\frac{\partial y}{\partial x}$ ∂x_1 and $\frac{\partial y}{\partial x}$ $\frac{\partial g}{\partial x_2}$ at this point.
- 8. Assuming that the equation $F(U, x, y) = 0$ implicitly defines a utility function $U = f(x, y)$, find an expression for the marginal rate of substitution.

9. The market for a single commodity is described by the following set of equations

$$
Q_d = Q_s
$$

\n
$$
Q_d = D(P, G)
$$

\n
$$
Q_s = S(P, N)
$$

where G is the price of substitutes and N is the price of inputs, and G and N are exogenously given. The following assumptions are imposed

$$
\frac{\partial D}{\partial P} < 0, \frac{\partial D}{\partial G} > 0 \\
\frac{\partial S}{\partial P} > 0, \frac{\partial S}{\partial N} < 0
$$

Use the implicit function theorem to show that the system implicitly defines the functions $P^*(G, N)$ and $Q^*(G, N)$. Hence use the implicit function rule to find and sign the derivatives $\frac{\partial P^*}{\partial G}$, $\partial \dot{Q}^*$ $\frac{\partial \mathcal{L}}{\partial G},$ $\frac{\partial \hat{P}^*}{\partial N}$ and $\frac{\partial Q^*}{\partial N}$.

10. Consider the system of equations

$$
F^{1}(x, y; a) \equiv x^{2} + axy + y^{2} - 1 = 0
$$

$$
F^{2}(x, y; a) \equiv x^{2} + y^{2} - a^{2} + 3 = 0
$$

around the point $(x = 0, y = 1, a = 2)$. What is the impact of a change in a on x and y ?

11. Let the national income model be written in the form

$$
Y - C - I_0 - G_0 = 0
$$

\n
$$
C - \alpha - \beta (Y - T) = 0
$$

\n
$$
T - \gamma - \delta Y = 0
$$

where the endogenous variables are Y (national income), C ((planned) consumption expenditure) and T (taxation), and the exogenous variables are I_0 (investment expenditure) and G_0 (government expenditure).

- (a) Find the government expenditure multiplier by the implicit function rule.
- (b) Find the nonincome tax multiplier by the implicit function rule.

Tutorial 2: Comparative Statics

SELECTED SOLUTIONS

ECO4112F 2011

1 Derivatives and Rules of Differentiation

1. (a)
$$
\frac{\Delta y}{\Delta x} = 8x_0 + 4\Delta x
$$
 (b) $\frac{dy}{dx} = 8x$ (c) $f'(4) = 32, f'(3) = 24$.
\n2. (a) $\frac{\Delta y}{\Delta x} = 10x_0 + 5\Delta x - 4$ (b) $\frac{dy}{dx} = 10x - 4$ (c) $f'(4) = 36, f'(3) = 26$.
\n3. (a) $\frac{\Delta y}{\Delta x} = 5$ (b) $\frac{dy}{dx} = 5$ (c) $f'(4) = 5, f'(3) = 5$.

4.
$$
f'(x) = 13x^{12}
$$

\n5. $f'(x) = 42x^5$
\n6. $f'(u) = -2u^{-1/2} = \frac{-2}{\sqrt{u}}$ 15. $\frac{dy}{dx} = 28x^3 + 6x^2 - 3$
\n7. $f'(x) = 0$
\n8. $f'(x) = -3x^{-2} = \frac{-3}{x^2}$
\n9. $f'(x) = 4x^{-5} = \frac{4}{x^5}$
\n10. $f'(u) = abu^{b-1}$
\n11. $f'(x) = 2cx$
\n12. $f'(x) = 2cx$
\n13. $f'(w) = w^{1/3}$
\n14. $f'(x) = w^{1/3}$
\n15. $\frac{dy}{dx} = 2x + b$
\n16. $\frac{dy}{dx} = 28x^3 + 6x^2 - 3$
\n17. $f'(x) = 0$
\n18. $\frac{dy}{dx} = 3(27x^2 + 6x - 2)$
\n19. $\frac{dy}{dx} = (2ax + b)e^{ax^2 + bx + c}$
\n10. $\frac{dy}{dx} = 4x^{-5} = \frac{4}{x^5}$
\n11. $f'(w) = 36w^3$
\n12. $f'(x) = 2cx$
\n13. $f'(t) = \frac{1}{t}$
\n14. $f'(t) = 2t^2(1 + 3 \ln t)$
\n15. $\frac{dy}{dt} = \frac{1}{t}$
\n16. $\frac{dy}{dx} = 12x(x + 1)$
\n17. $f'(u) = 4x^{-5} = \frac{4}{x^5}$
\n18. $\frac{dy}{dx} = 12x(x + 1)$
\n19. $\frac{dy}{dt} = \frac{5}{t}$
\n10. $\frac{dy}{dt} = \frac{1}{t+9}$
\n11. $f'(u) = abu^{b-1}$
\n12. $f'(x) = 2cx$
\n13. f

41.
$$
\frac{dy}{dx} = \frac{x(7x+6)}{(x+3)^2(2x+1)^2}
$$
42.
$$
\frac{dy}{dx} = \frac{3(8-x^2)}{(x+2)^2(x+4)^2}
$$

47. $VC = Q^3 - 5Q^2 + 14Q$ (Recall that to find variable costs, you drop the fixed costs) $\frac{dVC}{dQ} = 3Q^2 - 10Q + 14$ This is the same as the marginal cost function. (Check this by differentiating the total cost function - you will get the same result)

64. (a) $|J| = 0$ The functions are dependent.
(b) $|J| = -20x_2$ The functions are independent. The functions are independent.

2 General Function Models (Total Differentiation)

1.

(a)
$$
dy = -3(x^2 + 1) dx
$$

\n(b) $dy = (14x - 51) dx$
\n(c) $dy = \left(\frac{1 - x^2}{(x^2 + 1)^2}\right) dx$
\n(d) $dy = 30x_1^2 dx_1 - 6x_2^2 dx_2$
\n(e) $dy = 6x_1 dx_1 + 12x_2^2 dx_2$
\n(f) $dy = (6x + z) dx + (x - 6z^2) dz$
\n(g) $dy = (2 + 9x_2) dx_1 + (9x_1 + 2x_2) dx_2$

2.

$$
\frac{dC}{dY} = b \text{ and } \frac{C}{Y} = \frac{a + bY}{Y}
$$

$$
\therefore \varepsilon_{CY} = \frac{dC/dY}{C/Y}
$$

$$
= \frac{b}{(a + bY)/Y}
$$

$$
bY
$$

$$
= \frac{b}{(a+bY)}
$$

3.

(a)
$$
\frac{dz}{dy} = 10y + 9y^2
$$

(b)
$$
\frac{dz}{dy} = 102y - 30
$$

$$
4. \,
$$

$$
dQ = \frac{\partial Q}{\partial A} dA + \frac{\partial Q}{\partial K} dK + \frac{\partial Q}{\partial L} dL
$$

\n
$$
\frac{dQ}{dt} = \frac{\partial Q}{\partial A} \frac{dA}{dt} + \frac{\partial Q}{\partial K} \frac{dK}{dt} + \frac{\partial Q}{\partial L} \frac{dL}{dt}
$$

\n
$$
= \left[K^{\alpha} L^{\beta}\right] \left[A'(t)\right] + \left[\alpha A(t)K^{\alpha-1}L^{\beta}\right] \left[aK_0e^{at}\right] + \left[\beta A(t)K^{\alpha}L^{\beta-1}\right] \left[b\right]
$$

\n
$$
= \left[K^{\alpha} L^{\beta}\right] \left(A'(t) + a\alpha \frac{A}{K}K_0e^{at} + b\beta \frac{A}{L}\right)
$$

5. We know that \overline{y} will be constant along a given isoquant. The total differential is given by

$$
d\overline{y}=\frac{\partial f}{\partial x_1}dx_1+\frac{\partial f}{\partial x_2}dx_2
$$

Because \overline{y} is constant, $d\overline{y} = 0$. Thus

$$
d\overline{y} = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 = 0
$$

$$
\Rightarrow \frac{\partial f}{\partial x_2} dx_2 = -\frac{\partial f}{\partial x_1} dx_1
$$

$$
\frac{dx_2}{dx_1} = -\frac{\partial f}{\partial f/\partial x_1} = MRTS
$$

3 Derivatives of Implicit Functions

1. (a) Does the function F have continuous partial derivatives?

$$
F_y = -2x^2 + 6xy
$$

$$
F_x = 3x^2 - 4xy + 3y^2
$$

Yes.

(b) Is $F_y \neq 0$ at a point satisfying $F(y, x) = 0$?

$$
F (y = 3, x = 1) = (1)3 - 2(1)2 (3) + 3(1)(3)2 - 22 = 1 - 6 + 27 - 22 = 0
$$

and $F_y (y = 3, x = 1) = -2(1)2 + 6(1)(3) = 16 \neq 0$

Therefore, an implicit function $y = f(x)$ is defined around the point $(y = 3, x = 1)$ and we can use the implict function rule to find

$$
\frac{dy}{dx} = -\frac{F_x}{F_y} = -\left(\frac{3x^2 - 4xy + 3y^2}{-2x^2 + 6xy}\right)
$$

At the point $(y=3, x=1)$

$$
\frac{dy}{dx} = -\left(\frac{3(1)^2 - 4(1)(3) + 3(3)^2}{-2(1)^2 + 6(1)(3)}\right) = -\frac{9}{8}
$$

2. An implicit function $y = f(x)$ is defined around the point $(y = 3, x = 1)$ and we can use the implict function rule to find

$$
\frac{dy}{dx} = -\left(\frac{4x + 4y}{4x - 4y^3}\right)\frac{2}{13}
$$

at the point $(y = 3, x = 1)$.

4. (a) Does the function F have continuous partial derivatives?

$$
F_y = -3x + 3y^2
$$

$$
F_x = 2x - 3y
$$

Yes.

(b) Is $F_y \neq 0$ at a point satisfying $F(y, x) = 0$?

$$
F (y = 3, x = 4) = (4)2 - 3 (4) (3) + (3)3 - 7 = 0
$$

and $F_y (y = 3, x = 4) = -3 (4) + 3 (3)2 = 15 \neq 0$

Therefore, an implicit function $y = f(x)$ is defined around the point $(y = 3, x = 4)$ and we can use the implict function rule to find

$$
\frac{dy}{dx} = -\frac{F_x}{F_y} = -\left(\frac{2x - 3y}{-3x + 3y^2}\right)
$$

5. (a) Does the function F have continuous partial derivatives?

$$
F_y = (1+y) e^y
$$

$$
F_x = -1
$$

Yes.

(b) Is $F_y \neq 0$ at a point satisfying $F(y, x) = 0$? From (a) we can see that

$$
F_y = 0 \Leftrightarrow y = -1
$$

Thus we can find combinations of $(y_0, x_0), y_0 \neq -1$ that satisfy $F(y_0, x_0) = 0$ and $F_y(y_0, x_0) \neq 0$. For example, the point $(y = 1, x = e)$

$$
F (y = 1, x = e) = (1) e1 - e = 0
$$

and $F_y (y = 1, x = e) = (1 + 1) e1 = 2e \neq 0$

Therefore, an implicit function $y = f(x)$ is defined around the point $(y = 1, x = e)$ and we can use the implict function rule to find

$$
\frac{dy}{dx} = -\frac{F_x}{F_y} = -\left(\frac{-1}{(1+y)\,e^y}\right) = \frac{1}{(1+y)\,e^y}
$$

6. (a)

$$
\frac{dy}{dx} = -x\left(4 - x^2\right)^{-1/2}
$$

(b)

$$
\frac{dy}{dx} = -\frac{x}{y}
$$

 \hat{y}

7. $x_2 = 4$

9. Rewrite the system as two equations by letting $\boldsymbol{Q} = \boldsymbol{Q_d} = \boldsymbol{Q_s}$:

$$
Q = D(P, G)
$$

$$
Q = S(P, N)
$$

or equivalently:

$$
F^{1}(P,Q;G,N) = D(P,G) - Q = 0
$$

$$
F^{2}(P,Q;G,N) = S(P,N) - Q = 0
$$

Check the conditions for the implicit function theorem:

(a)

$$
F_P^1 = \frac{\partial D}{\partial P}
$$

\n
$$
F_Q^1 = -1
$$

\n
$$
F_G^1 = \frac{\partial D}{\partial G}
$$

\n
$$
F_N^1 = 0
$$

\n
$$
F_P^2 = \frac{\partial S}{\partial P}
$$

\n
$$
F_Q^2 = -1
$$

\n
$$
F_Q^2 = 0
$$

\n
$$
F_N^2 = \frac{\partial S}{\partial N}
$$

Therefore, continuous partial derivatives wrt all endogenous and exogenous variables exist.

(b)

$$
|J| = \begin{vmatrix} F_P^1 & F_Q^1 \\ F_P^2 & F_Q^2 \end{vmatrix}
$$

=
$$
\begin{vmatrix} \frac{\partial D}{\partial P} & -1 \\ \frac{\partial S}{\partial P} & -1 \end{vmatrix}
$$

=
$$
\begin{vmatrix} \frac{\partial D}{\partial P} + \frac{\partial S}{\partial P} \\ \frac{\partial S}{\partial P} - \frac{\partial D}{\partial P} \end{vmatrix}
$$

=
$$
\frac{\partial S}{\partial P} - \frac{\partial D}{\partial P}
$$

Therefore, $|J| \neq 0$

Conditions for implicit function satisfied, and so system implicitly defines the functions $P^*(G, N)$ and $Q^*(G, N)$.

Use the implicit function rule:

First, take the total differential of each equation:

$$
dF^{1} = F_{P}^{1}dp + F_{Q}^{1}dQ + F_{G}^{1}dG + F_{N}^{1}dN = 0
$$

$$
\Rightarrow \frac{\partial D}{\partial P}dp - 1dQ + \frac{\partial D}{\partial G}dG + 0 = 0
$$

$$
\frac{\partial D}{\partial P}dp - 1dQ = -\frac{\partial D}{\partial G}dG
$$
 (1)

$$
dF^2 = F_P^2 dp + F_Q^2 dQ + F_G^2 dG + F_N^2 dN = 0
$$

\n
$$
\Rightarrow \frac{\partial S}{\partial P} dp - 1 dQ + 0 + \frac{\partial S}{\partial N} dN = 0
$$

\n
$$
\frac{\partial S}{\partial P} dP - 1 dQ = -\frac{\partial S}{\partial N} dN
$$
 (2)

Putting equations (1) and (2) in matrix form

$$
\begin{bmatrix} \frac{\partial D}{\partial P} & -1\\ \frac{\partial S}{\partial P} & -1 \end{bmatrix} \begin{bmatrix} dP\\ dQ \end{bmatrix} = \begin{bmatrix} -\frac{\partial D}{\partial G}\\ 0 \end{bmatrix} dG + \begin{bmatrix} 0\\ -\frac{\partial S}{\partial N} \end{bmatrix} dN \tag{3}
$$

Note that the coefficient matrix is the Jacobian matrix J .

To find $\frac{\partial P^*}{\partial G}$ and $\frac{\partial Q^*}{\partial G}$ we partially differentiate with respect with G, holding N constant which implies that $dN = 0$. Setting $dN = 0$ and dividing through by dG in (3) gives: \overline{a}

$$
\begin{bmatrix}\n\frac{\partial D}{\partial P} & -1 \\
\frac{\partial S}{\partial P} & -1\n\end{bmatrix}\n\begin{bmatrix}\n\frac{\partial P^*}{\partial G} \\
\frac{\partial Q^*}{\partial G}\n\end{bmatrix} = \begin{bmatrix}\n-\frac{\partial D}{\partial G} \\
0\n\end{bmatrix}
$$

(Note the *partial derivative* signs - we are differentiating with respect to G , holding N constant).

Use Cramer's rule to solve for $\frac{\partial P^*}{\partial G}$ and $\frac{\partial Q^*}{\partial G}$:

$$
\frac{\partial P^*}{\partial G} = \frac{\begin{vmatrix} -\frac{\partial D}{\partial G} & -1 \\ 0 & -1 \end{vmatrix}}{\begin{vmatrix} J \\ \frac{\partial D}{\partial G} \\ \frac{\partial S}{\partial P} - \frac{\partial D}{\partial P} \end{vmatrix}}
$$

$$
= \frac{\frac{\partial D}{\partial G}}{\frac{\partial S}{\partial P} - \frac{\partial D}{\partial P}}
$$

$$
\frac{\partial Q^*}{\partial G} = \frac{\begin{vmatrix} \frac{\partial D}{\partial P} & -\frac{\partial D}{\partial G} \\ \frac{\partial S}{\partial P} & 0 \end{vmatrix}}{\begin{vmatrix} J \\ -\frac{\partial D}{\partial G} & \frac{\partial S}{\partial P} \\ \frac{\partial S}{\partial P} & -\frac{\partial D}{\partial P} \end{vmatrix}}\n\n> 0
$$

To find $\frac{\partial P^*}{\partial N}$ and $\frac{\partial Q^*}{\partial N}$ we partially differentiate with respect with N, holding G constant which implies that $dG = 0$. Setting $dG = 0$ and dividing through by dN in (3) gives: \mathbf{r}

$$
\begin{bmatrix}\n\frac{\partial D}{\partial P} & -1 \\
\frac{\partial S}{\partial P} & -1\n\end{bmatrix}\n\begin{bmatrix}\n\frac{\partial P^*}{\partial N} \\
\frac{\partial Q^*}{\partial N}\n\end{bmatrix}\n=\n\begin{bmatrix}\n0 \\
-\frac{\partial S}{\partial N}\n\end{bmatrix}
$$

(Note the *partial derivative* signs - we are differentiating with respect to N , holding G constant).

Use Cramer's rule to solve for $\frac{\partial P^*}{\partial N}$ and $\frac{\partial Q^*}{\partial N}$:

$$
\frac{\partial P^*}{\partial N} = \frac{\begin{vmatrix} 0 & -1 \\ -\frac{\partial S}{\partial N} & -1 \end{vmatrix}}{\begin{vmatrix} J \end{vmatrix}} = \frac{\frac{\partial S}{\partial N}}{\frac{\partial S}{\partial P} - \frac{\partial D}{\partial P}} > 0
$$

$$
\frac{\partial Q^*}{\partial N} = \frac{\begin{vmatrix} \frac{\partial D}{\partial P} & 0\\ \frac{\partial S}{\partial P} & -\frac{\partial S}{\partial N} \end{vmatrix}}{\begin{vmatrix} J \end{vmatrix}} = \frac{-\frac{\partial D}{\partial P} \frac{\partial S}{\partial N}}{\frac{\partial S}{\partial P} - \frac{\partial D}{\partial P}} < 0
$$

10. At the point $(x = 0, y = 1, a = 2)$, the equations $F^1 = 0$ and $F^2 = 0$ are satisfied.

The $Fⁱ$ functions possess continuous partial derivatives:

$$
F_x^1 = 2x + ay
$$

\n
$$
F_y^1 = ax + 2y
$$

\n
$$
F_a^1 = xy
$$

\n
$$
F_x^2 = 2x
$$

\n
$$
F_y^2 = 2y
$$

\n
$$
F_a^2 = -2a
$$

Thus, if the Jacobian $|J| \neq 0$ at point $(x = 0, y = 1, a = 2)$ we can use the implicit function theorem.

First take the total differential of the system

$$
(2x+ay) dx + (ax+2y) dy + xyda = 0
$$

$$
2xdx + 2ydy - 2ada = 0
$$

Moving the exogenous differential da to the RHS and writing in matrix form we get

$$
\begin{bmatrix} 2x + ay & ax + 2y \ 2x & 2y \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix} = \begin{bmatrix} -xy \\ 2a \end{bmatrix} da
$$

where the coefficient matrix of the LHS is the Jacobian $\,$

$$
|J|=\begin{vmatrix}F_x^1&F_y^1\\F_x^2&F_y^2\end{vmatrix}=\begin{vmatrix}2x+ay & ax+2y\\2x & 2y\end{vmatrix}
$$

At the point $(x = 0, y = 1, a = 2)$,

$$
|J| = \begin{vmatrix} 2 & 2 \\ 0 & 2 \end{vmatrix} = 4 \neq 0
$$

Therefore the implicit function rule applies and

$$
\begin{bmatrix} 2x + ay & ax + 2y \ 2x & 2y \end{bmatrix} \begin{bmatrix} \left(\frac{\partial x}{\partial a}\right) \\ \left(\frac{\partial y}{\partial a}\right) \end{bmatrix} = \begin{bmatrix} -xy \\ 2a \end{bmatrix}
$$

Use Cramer's rule to find an expression for $\frac{\partial x}{\partial a}$ at the point $(x = 0, y = 1, a = 2)$:

$$
\left(\frac{\partial x}{\partial a}\right) = \frac{\begin{vmatrix} -xy & ax + 2y \\ 2a & 2y \end{vmatrix}}{\begin{vmatrix} 1 & 1 \end{vmatrix}}
$$

$$
= \frac{\begin{vmatrix} 0 & 2 \\ 4 & 2 \end{vmatrix}}{\begin{vmatrix} 4 & 2 \end{vmatrix}}
$$

$$
= -\frac{8}{4}
$$

$$
= -2
$$

Use Cramer's rule to find an expression for $\frac{\partial y}{\partial a}$ at the point $(x = 0, y = 1, a = 2)$:

$$
\left(\frac{\partial x}{\partial a}\right) = \frac{\begin{vmatrix} 2x + ay & -xy \\ 2x & 2a \end{vmatrix}}{\begin{vmatrix} 2 & 0 \\ 0 & 4 \end{vmatrix}}
$$

$$
= \frac{8}{4}
$$

$$
= 2
$$

11. See Chiang, example 6, pages 203 - 204.

(a)
\n
$$
\frac{\partial Y^*}{\partial G} = \frac{1}{1 - \beta + \beta \delta}
$$
\n(b)
\n
$$
\frac{\partial Y^*}{\partial \gamma} = \frac{-\beta}{1 - \beta + \beta \delta}
$$