

Mathematics for Economists Tutorial Questions - Basic Concepts

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 2.5</u> <u>South Africa License.</u>

Maths for Economists

Tutorial 0: Revision of Basic Concepts

ECO4112F 2011

In the following paired statements, let p be the first statement and q the second. Indicate for each case whether q is necessary or sufficient or both necessary and sufficient for p (i.e. whether $p \Rightarrow q, p \Leftarrow q, p \Leftrightarrow q$) or whether none of these apply.

- 1. Alice has a brother-in-law. Alice is not an only child.
- 2. Alice's daughter is married. Alice is a parent.
- 3. Water contracts when it freezes. Not all substances expand when they freeze.
- 4. Some women pay taxes. Some taxpayers are women.
- 5. Everybody loves somebody (or other). There is some (one) person who is loved by everyone.

Simplify the following expressions:

6. $x^5 \times x^4$ - p^3	15. $\frac{(x^{1/2} \times x^{1/3})}{x^{2/3}}$	22. $\left(-\frac{8}{27}\right)^{4/3}$
7. $\frac{1}{p^5}$ 8. $x^a \times x^b \times x^c$	16. $\frac{y^{11}}{y^2}$	23. $(64a^3)^{2/3}$
9. $s^2 \times r^2 \times t^2$	17. $x^6 x^8$	24. $\frac{x^{-2}y^3}{z^{-2}}$
10. $(x^{1/2})^2$ 11. $x^4 + y^4$	18. $x^{11}x^{-5}$	25. $(x^5y^8)^5$
12. $s^5 - s^3$	19. $x^{2/5}x^{3/5}$	26. $(x^{5/9}y^{4/3})^{18}$
13. $x^7 + x^2$	20. $xx^{1/2}$	27. $x^{-1} + y^{-1}$
14. $\frac{s}{s^3}$	21. (-4)	28. $7x^{-2} + (7x)^{-2}$

Simplify the following expressions:

37. $\log_{10} (100)^{14}$ 45. $\ln\left(\frac{x}{x+1}\right)^3$ 29. $\log_{10} 1000$ 38. $\ln ABe^{-4}$ 30. $\log_3 81$ 39. $\ln \frac{3}{R}$ 46. $\ln \frac{x}{(x+1)(x+2)}$ 31. $\log_2 16$ 32. $\ln e^4$ 40. $\ln x - \ln (x+3)$ 47. $\ln\left(\frac{1}{x+2}\sqrt[5]{\frac{x^2}{x+1}}\right)$ 33. $\ln e$ 41. $\ln 3 + \ln 7 - \ln 2 - 2 \ln 4$ 34. $\ln e^4 + \ln e^7$ 42. $\ln e^{3x}$ 35. $\ln \frac{1}{e^3}$ 48. $9 \log_{10} 7 + 5 \log_{10} 23$ 43. $\log_{10} 1 + \log_{10} 1000$ 36. $\log_e \frac{1}{e^2}$ 44. $\ln\left(x\,(x+1)^2\right)$ 49. $e^{4\ln 3 - 3\ln 4}$

Solve for x:

- 50. $10^{\log_{10} x^2} = 25$ 51. $e^{\ln(2x)} = 5$ 52. $10^{\log_{10} x^2} = 4$ 53. $e^{3\ln x} = 8$
- 54. If $z = x^{1/2}y^{1/4}$ and y = 2x, find x and y in terms of z.
- 55. A firm's output Y is related to capital input K and labour input L by the production function

$$Y = 2K^{2/3}L^{1/3}$$

Suppose initially K = a and L = b. Find the percentage increase in Y resulting from 1% increases in both K and L. What happens when the changes are each 100%? Can you formulate a general result?

- 56. Use the properties of logarithms to show that $\log_a x = 1/\log_x a$.
- 57. A firm's output Y is related to capital input K, labour input L and natural resource input by the production function

$$Y = 2K^{1/2}L^{1/3}R^{1/6}$$

Write down a linear relationship between the logarithms of Y, K, L, R.

Find the rational roots, if any, of the following:

58. $x^2 - 8x + 15 = 0$ 59. $x^3 - 4x^2 + x + 6 = 0$ 60. $x^3 + \frac{3}{4}x^2 - \frac{3}{8}x - \frac{1}{8} = 0$

Solve for equilibrium values:

61.
$$Q_d = Q_s$$
62. $Q_d = Q_s$ 63. $Q_d = Q_s$ $Q_d = 24 - 2P$ $Q_d = 51 - 3P$ $Q_d = 3 - P^2$ $Q_s = -5 + 7P$ $Q_s = 6P - 10$ $Q_s = 6P - 4$

64. Consider the following national income model:

$$Y = C + I_0 + G_0$$

 $C = a + bY$ $a > 0, 0 < b < 1$

where Y and C represent the endogenous variables national income and consumption expenditure respectively, and I_0 and G_0 stand for exogenously determined investment and government expenditure respectively.

- (a) What do the parameters a and b in the consumption function represent?
- (b) Solve for the equilibrium values of income (Y^*) and consumption (C^*) using the substitution method. Be sure to specify any restrictions that are necessary for your solution values to hold.
- 65. Sketch the graph of the following supply function for petrol:

$$q = \frac{1}{4}p^4$$

where p represents price and q represents quantity.

Now consider the function

$$q = 8p^{-1}$$

where p is positive. Explain why q decreases as p increases. If this function is the demand function for petrol, find the equilibrium price and quantity.

Also find the equilibrium price and quantity by expressing the supply and demand functions in log-linear form and solving the resulting linear equations simultaneously.

Maths for Economists Tutorial 0: Revision of Basic Concepts SELECTED SOLUTIONS

ECO4112F 2011

1. For Alice to have a brother-in-law it is not necessary that Alice is not an only child so $p \Rightarrow q$.

If Alice is not an only child, then it is not sufficient to conclude that Alice to has a brother-in-law, so $p \notin q$.

Thus none of these apply.

For Alice's daughter to be married, it is necessary that Alice is a parent, so p ⇒ q.
 If Alice is a parent, it is not sufficient to conclude that Alice's daughter is married, so p ∉ q.

Thus q is necessary but not sufficient for p, i.e. $p \Rightarrow q$.

3. If water contracts when it freezes, then it is necessary that not all substances expand when they freeze, so $p \Rightarrow q$

If not all substances expand when they freeze, then it is not sufficient to conclude that water contracts when it freezes, so $p \notin q$.

Thus q is necessary but not sufficient for p, i.e. $p \Rightarrow q$.

4. If some women pay taxes, then it is necessary that some tax payers are women, so $p \Rightarrow q$.

If ome taxpayers are women, then it is sufficient to conclude that some women pay taxes, so $p \leftarrow q$.

Thus q is necessary and sufficient for p, i.e. $p \Leftrightarrow q$.

5. For everybody to love somebody (or other), it is not necessary that there is some (one) person who is loved by everyone, so $p \neq q$.

If there is some (one) person who is loved by everyone, then it is sufficient to conclude that everybody loves somebody (or other), so $p \leftarrow q$.

Thus q is sufficient but not necessary for p, i.e. $p \leftarrow q$.

6. x^9	14. s^2	22. $\frac{16}{21}$
7. $\frac{1}{p^2}$	15. $x^{1/6}$	81 23. $16a^2$
8. x^{a+b+c}	16. y^9	24. $\frac{y^3 z^2}{z^2}$
9. $(srt)^2$	17. x^{14}	x^2
10. <i>x</i>	18. x^6	25. $x^{-1}y^{-1}$
11. Cannot be simp	blified 19. x	20. x y $x + y$
12. Cannot be simp	plified 20. $x^{3/2}$	$27. \frac{1}{xy}$
13. Cannot be simp	blified 21. $\frac{1}{8}$	28. $\frac{7}{x^2} + \frac{1}{49x^2}$

29. 337. 2845.
$$3(\ln x - \ln (x + 1))$$
30. 438. $\ln A + \ln B - 4$ note¹46. $\ln x - \ln (x + 1) - \ln (x + 1) - \ln (x + 2)$ 31. 439. $\ln 3 - \ln B$ 46. $\ln x - \ln (x + 2) - \ln (x + 2) - \ln (x + 2)$ 32. 440. $\ln \frac{x}{x + 3}$ 47. $-\ln (x + 2) + \frac{2}{5} \ln x - \frac{1}{5} \ln (x + 1)$ 33. 141. $\ln \frac{21}{32}$ 47. $-\ln (x + 2) + \frac{2}{5} \ln x - \frac{1}{5} \ln (x + 1)$ 34. 1142. $3x$ 48. $\log_{10} (7^9 (23^5))$ 35. -343. 344. $\ln x + 2\ln (x + 1)$ 49. $\frac{81}{64}$

50.
$$x = \pm 5$$

51. $x = \frac{5}{2}$
52. $x = \pm 2$
53. $x = 2$

54.
$$x = \frac{z^{4/3}}{2^{1/3}}, y = 2^{2/3} z^{4/3}$$

55. If K and L both increase by $s\%,\,Y$ increases by s%.

¹The question was ambiguous and should have read $\ln(ABe^{-4})$.

56. ...
57.
$$\ln Y = \ln 2 + \frac{1}{2} \ln K + \frac{1}{3} \ln L + \frac{1}{6} \ln R$$

58. 3, 5 59.
$$-1, 2, 3$$
 60. $-1, \frac{1}{2}, -\frac{1}{4}$

61.
$$P^* = 3\frac{2}{9},$$

 $Q^* = Q^*_d = Q^*_s = 17\frac{5}{9}$
62. $P^* = \frac{61}{9}, Q^* = \frac{92}{3}$
63. $P^* = 1 (P^* = -7 \text{ not valid}),$
 $Q^* = 2$

64. (a) a is autonomous consumption, b is marginal propensity to consume

(b)
$$Y^* = \frac{a + I_0 + G_0}{1 - b}, \quad a > 0, 0 < b < 1$$

 $C^* = \frac{a + b(I_0 + G_0)}{1 - b}, \quad a > 0, 0 < b < 1$

65. ...