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Honours Introductory Maths Course 2011 

Integration, Differential and Difference Equations 
 

 

Reading:  Chiang Chapter 14 

 

Note: These notes do not fully cover the material in Chiang, but are meant to 

supplement your reading in Chiang.  

 

Thus far the optimisation you have covered has been static in nature, that is optimising the value of a 

function without any reference to time. In static optimisation and comparative static analysis we make the 

assumption that the process of economic adjustment leads to an equilibrium, and we then examine the 

effect of changes of the exogenous variables on the equilibrium values of the endogenous variables. With 

dynamic analysis, time is explicitly considered in the analysis. While we are not covering dynamic analysis 

at this point, certain mathematic tools are required for dynamic analysis, such as integration and differential 

equations. Without these tools, it becomes impossible to consider problems which are not static in nature. 

We will be covering both of these topics in a mainly mathematical way, leaving economic problems for a 

later date.  

 

Integration is the reverse process of differentiation. If a function )(xF has first derivative )(xf then the 

integral of )(xf  will yield )(xF . The notation to denote integration is as follows:  

∫ dxxf )( , where the integral sign is an elongated S.  )(xf  is referred to as the integrand, and the dx  

sign reminds us that we are integrating with respect to the variable x. We go through the following 

explanation to determine where this notation comes from.  

 

Suppose we are given an arbitrary  function )(xf and asked to find the area of the curve between 2 points, 

for example the area under the curve f(x) between 5 and 10. 
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Figure 1.1 

With a linear function, this equates to finding the area of a triangle and a rectangle as follows: 
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Figure 1.2 

However with a non-linear function the problem becomes slightly more complex. What we can do, 

however, is attempt to find the area under the curve using a number of approximating rectangles as follows: 

 

 

Figure 1.3 

We let each of the rectangles have equal width and we call this width ∆x. Each rectangle has a height equal 

to the function value, for example the height of the last rectangle where x=10 is equal to f(10)=20. Thus the 

area of the last rectangle is equal to 20(∆x), as area of a rectangle equals length times breadth, and here 

breadth is ∆x and length is f(10)=20. The area of any of the rectangles is equal to length times breadth, 

which equals f(x) times ∆x, as all rectangles have equal breadth equal to ∆x. To find the area under the 

curve we add up the area of each of the rectangles. This gives us the expression: 

 

xxfA
n

i

i ∆=∑
=1

)(  

Where 

n  = number of rectangles  

xi = the value of x at each point 

∑ = the sum of all the areas, starting from the first one (i = 1) and ending at the nth one (i = 1). 

 

Obviously this sum will not be a very accurate representation of the area. But perhaps if we make our ∆x 

smaller, then this expression will become a more accurate representation of the area under the curve, as 

there will be less overshooting by each rectangle. If initially we had ten rectangles, the area given by the 

sum of these rectangles’ areas would obviously be more of an over-estimate (or maybe underestimate) than 

if we doubled the number of rectangles, and then summed their area. The more rectangles we use in this 

approximating process the better our estimate for the area under the curve.  

 

For example, imagine we wish to find the area under the curve f(x) = x
2
 between 0 and 1.  
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Figure 1.4 

 

We could take four rectangles, each with a breadth ∆x equal to 0.25, and take the heights from the right 

hand side of each rectangle. Hence the height for each rectangle will be: 

(0.25)
2
 

(0.5)
 2
 

(0.75)
 2
 

1
2 

Therefore the entire area equals to  

0.25(0.25)
 2
 + 0.25(0.5)

 2
+0.25(0.75)

 2
+0.25(1)

 2
 = 15/32=0.46875 

 

If we double the amount of rectangles from four to eight, we will use a ∆x of 0.125, and the following right 

hand heights (remember the height of the rectangle is given by the function value f(x)).  

 

(0.125)
 2  

(0.25)
2
 

(0.375)
 2  

(0.5)
 2 

(0.625)
 2  

(0.75)
 2 

(0.875)
 2  

1
2 

 

The corresponding total area is given by the sum of each of the areas which is ∆x multiplied by each 

function value: The final value we get is 0.3984375 

 

As can be seen in figure 1.3, using right end points for the rectangles for an increasing function will give an 

over-estimate, while using right end points for a decreasing function will yield an over-estimate. Thus 

doubling the number of rectangles while trying to estimate the area under the graph f(x)=x
2
 will begin to 

bring our estimate down to its true value. It appears that as the number of rectangles increases, our 

estimations become better and better approximations of the area. If we let the number of rectangles tend to 

infinity, we will obtain a perfectly accurate estimate for the area under our graph.  

 

Our expression for the area under the curve now becomes: 

xxfA
n

i

i
n

∆= ∑
=

∞→
1

)(lim  

This gives us the expression for the definite integral, which gives us a way of finding the area under the 

continuous function f(x) between x=a and x=b: 

xxfdxxf
n

i

i
n

b

a

∆= ∑∫
=

∞→
1

)(lim)(  

 

An explanation of the terminology: 
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∫  The integration sign is an elongated S, and was so chosen because an integral is a limit of sums.  

ba,   are the limits of integration,  

a  is the lower limit of integration 

b  is the upper limit of integration. 

)(xf  is known as the integrand. 

dx  has no meaning by itself, but merely reminds us that we are integrating with respect to the variable 

x.  

 

Fortunately when we want to find the area under a curve, we do not have to go into the long process of 

finding an expression for the sum of the area of n rectangles: a number of theorems make the process  

easier.  

 

Before we set out the properties of the definite integral, some rules of integration are as follows: (see page 

439 and onwards in Chiang for examples). 

 

1. The Power Rule 

 

11
   ( 1)

1

n n
x dx x c n

n

+
= + ≠ −

+
∫  

2. The Exponential Rule 

 
x xe dx e c= +∫  

3. The Logarithmic Rule 

 

1
ln    ( 0)dx x c x

x
= + >∫  

Properties of the definite integral: 

 

∫ −=

b

a

abccdx )(.1     

∫ ∫∫ +=+

b

a

b

a

b

a

dxxgdxxfdxxgxf )()()]()([.2  

 

∫∫ =

b

a

b

a

dxxfcdxxcf )()(.3    

∫ ∫∫ −=−

b

a

b

a

b

a

dxxgdxxfdxxgxf )()()]()([.4  

 

5. ( ) ( ) ( )

c b c

a a b

f x dx f x dx f x dx= +∫ ∫ ∫  

 

Property 1 states that the integral of a constant function y=c is the constant times the length of the interval, 

as seen in figure 1.5 
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Figure 1.5 

Property 2 says that the integral of a sum is the sum of the integrals. The area under f+g is the area under f 

plus the area under g. This property follows from the property of limits and sums.  

Property 3 tells us that a constant (but only a constant) can be taken in front of an integral sign. This also 

follows from the properties of limits and sums.  

Property 4 follows from property 2 and 3, using c=-1. 

Property 5 tells us we can find the area under the graph between a and c, by splitting it up into two areas, 

between a and b, and between b and c.  

 

We now find our rule for evaluating the definite integral: 

∫ −=

b

a

aFbFdxxf )()()(  

 

where the derivative of F(x) is f(x), i.e. F is any anti-derivative of f.  

 

For example, if we differentiate 
3

)(
3x

xF = we obtain 
2)( xxf = , so F(x) is an anti-derivative of f(x). 

Thus .
3

1
0

3

1

3
)0()1(

1

0

31

0

2
=−==−=∫

x
FFdxx  

Therefore the area under the curve f(x) = x
2
 between 0 and 1, is equal to a third, or 0.33 recurring. 

Incidentally this answers our previous question which we attempted using the sum of the areas of n 

rectangles.  

 

The fundamental theorem of calculus motivates this use of the evaluation theorem. In short, it states that 

differentiation and integration are opposite processes. Thus, if we start with a function F(x), and 

differentiate it to obtain f(x), [ i.e. )()( xfxF =′ ], if we then integrate the function f(x), the result will be 

the initial function F(x). Similarly if we integrate f(x) to obtain F(x), [ i.e. CxFdxxf +=∫ )()(  where C 

is an arbitrary constant
1
]. Thus to find the integral of a function f(x), we must find the function which when 

differentiated yields f(x).  This theorem is very useful to us, as otherwise whenever we wish to find the 

value of the area that lies underneath a curve, we have to go through the entire process of finding the limit 

of the sum of the areas of n approximating rectangles, which is a time consuming process! Prior to the 

discovery of the fundamental theorem, finding areas, volumes and other similar types of problems were 

nigh on impossible. 

 

For completeness, the fundamental theorem is presented below: 

 

                                                 
1
 More about the arbitrary constant a little later 
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The fundamental theorem of calculus: 

 

Suppose f(x) is a continuous function on the closed interval [a,b] 

 

1.  If ∫=

x

a

dttfxg )()( then )()( xfxg =′  i.e. )()()( xfdttf
dx

d
xg

x

a

=







=′ ∫  

2. ∫ −=

b

a

aFbFdxxf )()()(  

 

where the derivative of F(x) is f(x), i.e. F is any anti-derivative of f. What it says, roughly speaking, is that 

if you integrate a function and then differentiate the result, you retrieve the original function.  

 

We now need to discuss two different types of integrals – definite and indefinite. A definite integral 

involves finding the integral of a function between two number limits i.e. ∫
b

a

dxxf )( . The answer to a 

definite integral is a number, as we know according to the evaluation rule the answer to this is just the anti-

derivative F(x) evaluated between a and b, i.e. F(b)-F(a).  An indefinite integral yields a function of x as its 

answer (if we are integrating with respect to x). An indefinite integral is an integral of the form 

∫ dxxf )( (i.e without upper and lower limits) and the solution is  

CxFdxxf +=∫ )()(  

where C is an arbitrary constant which can take on any value. 

 

The reason we include the arbitrary constant is illustrated in the following example. 

 

Given the problem: 

∫ dxx 23  a potential solution is 
3

x  as this is an antiderivative of the cubic function (If we differentiate 

3x we obtain 
23x . However 43

+x is also a solution to this problem, as is 1003
−x . This is because 

when differentiating these expressions, the constant differentiated moves to zero. So it would appear that 

the most general form to give the answer to this problem would be as follows: 

 

∫ += Cxdxx 323 ,  

where C is an arbitrary constant.  

 

Just a small note on arbitrary constants – when we add two together, we obtain a third one which has 

aggregated the first two, when multiplying, dividing adding or subtracting a number by/to/from an arbitrary 

constant, the result is just the arbitrary constant. However the arbitrary constant when multiplied by a 

function of x, will stay as just that:  

 

∫ ++=+++=+ CxGxFCxGCxFdxxgxf )()()()()()( 21
 

where C1 and C2 are two arbitrary constants, and F(x) and G(x) are two anti-derivates of f(x) and g(x) 

respectively.  

 

∫ +=+=+= CxFCxFCxFdxxf )(33)(3])([3)(3  

 

However: 
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∫ +=+= CxxxFCxFxdxxfx )(])([)(  

 

We now turn to some rules of integration (definite and indefinite) and then some examples.  

 

1. ∫ ∫= dxxfcdxxcf )()(     

2. ( ( ) ( )) ( ) ( )f x g x dx f x dx g x dx+ = +∫ ∫ ∫  

3. C
n

x
dxx

n
n

+
+

=∫
+

1

1

 (n cannot equal –1)  

4. Cxdx
x

+=∫ ln
1

 

5. Cedxe xx
+=∫      

6. C
a

a
dxa

x
x

+=∫ ln
 

7. Cxxdx +−=∫ cossin     

8. Cxxdx +=∫ sincos  

 

Remember – to check the answer to any integration sum just differentiate it and you should arrive back at 

the original function.  

 

Some examples: 

 

1. ∫ += Cxdx 33      

2. ∫ += Cxdx  

3. ∫ ∫ +== Cxdxxdxx 2

5

2

3

3

5

2
   

4. 

22 2 3
4

4

1 1 1

1 1 1 7
( )

3 24 3 24

x
dx x dx

x

−

−
= = = − − − =

−
∫ ∫  

5. CxxCx
x

dxxx +−=+−=+∫ cos2cos
5

10
]sin10[

5
5

4
 

 

6. 75.600)9(3
4

81
3

42
6

4
)6(

3

0

2
4

3

0

243

0

3
−=+−−=−=−=−∫ x

xxx
dxxx  

7. 

603.174

1ln
5

2
19ln)243(

5

2
81

ln
5

2
)2()2(

12
9

1

2

5

2

9

1

12

39

1

1

9

1

22

=

+−−−+=

−+=−+=−+=
−+

∫∫∫
−− tttdttttdtttttdt

t

ttt
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8. 
2

9
6

23
)6(

4

1

234

1

2
−=−−=−−∫ t

tt
dttt  

 

A few more useful properties: 

 

∫

∫∫

=

−=

a

a

a

b

b

a

dxxf

dxxfdxxf

0)(.2

)()(.1

 

 

We are going to be looking at two very useful techniques used in integration: use of substitution, and 

integration by parts. There are a whole host of other techniques which can be useful, however it is these 

two which are most useful to us in economics.  

 

Integration using Substitution 

 

We use substitution, when the integrand contains a function and its own derivative. i.e: 

 

∫ ′ dxxfxf )()(  

 

For example: 

∫ +−+ dxxxxx )103)(105( 223
 

 

If this is the case, we can make use of the following substitution: We let u equal to the function whose 

derivative we can spot (or create, using a constant: more about this later).  

 

Let u = 105
23

−+ xx  

Then we know that  

dxxxdu )103( 2
+=  

When we then substitute the values of u and du into the integral, we obtain the following integral: 

∫udu  

which has the answer 

C
u

udu +=∫ 2

2

 

but: u = 105 23
−+ xx  

 

Therefore our final answer is 

C
xx

dxxxxx +
−+

=+−+∫ 2

)105(
)103)(105(

223
223

 

 

Thus the general rule solution for the problem is as follows: 

C
xf

dxxfxf +=′∫ 2

)]([
)()(

2

 or more simply  C
f

dxff +=′∫ 2
).(

2
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However the substitution rule can be used for more complicated examples, when our function f(x) whose 

derivative we can spot occurs inside another function: 

For example: 

 

∫ ′ dxfgf )(  or  ∫ −++ dxxxx )23183()186(
2

 

 

In these cases the procedure does not change at all – we still make the substitution as follows: 

Let u = f(x) 

Therefore du=f`(x)dx 

And proceed as usual: 

 

Some examples: 

1. ∫ −++ dxxxx )23183()186(
2

 

Let )23183( 2
−+= xxu  

Therefore dxxdu )186( +=  

 

Therefore our transformed integral is as follows: 

 

C
xx

C
u

duuduu +
−+

=+==∫∫ 3

)23183(2

3

2 2

3

22

3

2

1

 

 

2. Sometimes we can find a function whose derivative we can create as follows: However only if we 

introduce a constant function. 

 

For example: 

dxe x

∫
+ )54(

 

 

If we let u = (4x+5), we know du = 4dx. However while we have the dx, we do not have a 4. This is easily 

solved however through the following manipulation: 

dxe
x

∫
+ )54(4

4

1
 

This integral now contains a function and its derivative, thus substitution can be used: 

Therefore let u = (4x+5), and du = 4dx. The integral becomes: 

 

CeCedue
xuu

+=+=
+

∫
)54(

4

1

4

1

4

1
 

 

Remember, the substitution of u into this function is a device that we employ. Therefore our final answer 

ought not to contain u, as the original problem does not contain it. Always remember to substitute back for 

u. 

 

Note:  Unlike differentiation, there exists no general formula giving the integral of a product of two 

function i.t.o. the separate integrals of those functions. There is also no general formula giving the integral 

of a quotient of 2 functions in terms of their separate integrals. As a result, integration is trickier than 

differentiation, on the whole. 

 

 

 

 



Integration by Parts

We use this technique when we have to integrate a product:

E.g.

ˆ
f(x).g(x)dx

When we are given this type of example, we make use of the following formula:�

�

�

�
ˆ

f(x).g′(x)dx = f(x).g(x)−
ˆ

f ′(x).g(x)dx

For example:

ˆ
xexdx

We pick f as the function which is easy to di�erentiate, and g′ as the function which is easy to integrate.

Often picking a squared or cubic term for your f is a good idea, as f ′ will have a power that is then one

lower, and hence simpler. It is a very good idea to make yourself a mini table with f ′, g′, f and g, to

keep things straight. Also, note that when �nding g, we do not bother with the arbitrary constant.

ˆ
xexdx

Therefore:

f = x g′ = ex

f ′ = 1 g = ex

ˆ
xexdx = xex −

ˆ
(1)exdx

= xex − ex + C

Thus we have managed to use the formula to integrate our original question.

(Can also use the alternative notation used in Chiang: where
´
vdu = uv −

´
udv)

Another example:

ˆ
xsinxdx

Therefore:

f = x g′ = sinx

f ′ = 1 g = − cosx

ˆ
xexdx = −x cosx+

ˆ
cosxdx

= −x cosx+ sinx+ C



An example with a trick:

ˆ
lnxdx

Obviously we do not know the integral of lnx, that is why we are using this method. So we make lnx

equal to f , and we can then �nd its derivative. But then what will our g′ be? Simple, make it 1.

f = lnx g′ = 1

f ′ = 1
x g = x

ˆ
lnxdx = x lnx−

ˆ
x

(
1

x

)
dx

= x lnx− x+ C

This is a handy trick which can also be used to �nd the integrals of some of the trigonometric functions.

Some more examples:

ˆ
xe2xdx

Therefore:

f = x g′ = e2x

f ′ = 1 g = e2x

2

ˆ
xe2xdx =

xe2x

2
−
ˆ

e2x

2
dx

=
xe2x

2
− e2x

4
+ C

Which can then be re-written if we want to:

ˆ
xe2xdx =

e2x

2

(
x− 1

2

)
+ C

Another example:

ˆ
x lnxdx

f = lnx g′ = x

f ′ = 1
x g = x2

2



ˆ
x lnxdx =

x2

2
lnx−

ˆ (
1

x

)
x2

2
dx

=
x2

2
lnx−

ˆ
x

2
dx

=
x2

2
lnx− x2

4
+ C

Another example:

ˆ
(lnx)

2
dx

f = (lnx)
2

g′ = 1

f ′ = 2 (lnx) 1
x g = x

ˆ
(lnx)

2
dx = x (lnx)

2 −
ˆ

x.2 lnx

(
1

x

)
dx

= x (lnx)
2 −
ˆ

2 lnxdx

= x (lnx)
2 − 2 (x lnx− x) + C

The last line uses a result that we proved a few examples ago.

Now let's try a de�nite integral using integration by parts:

ˆ 1

0

te−tdt

f = t g′ = e−t

f ′ = 1 g = −e−t

We �rst calculate the inde�nite integral, then go back and substitute in the limits.

ˆ
te−tdt = −te−t +

ˆ
e−tdt

= −te−t − e−t + C

Therefore:

ˆ 1

0

te−tdt =
[
−te−t − e−t

]∣∣1
0

=
[
−1e−1 − e−1

]
−
[
−e−0

]
= 1− 2e−1

= 1− 2

e



You should now make sure you can do the integration practice questions.

An example of an economic application of integrals:

One simple application is to �nd a `total' quantity from a `marginal' quantity. Suppose a �rm has a

marginal cost C ′(x) = 1 + 2e
x
3 where x denotes output. Then total cost is:

C(x) =

ˆ (
1 + 2e

x
3

)
dx

= x+ 6e
x
3 +B,

where B is the constant of integration.

Di�erential Equations

A DE is an equation containing a function y = f(x) and one or more of its derivatives, i.e. y′, y′′ etc. It

shows the relationship between the function and its derivatives. If only the �rst derivative dy
dt is present,

the di�erential equation is said to be of the �rst order.

Some examples include:

y′ = y′′ + y

dy

dx
+ xy = x

3y − 2y′ = x

As you can see, these equations contain a dependent variable y, some or more of its derivatives y′, y′′

and some occurrences of the independent variable, in these cases x. Our aim with di�erential equations

is to solve for our function y, in terms of the independent variable x, with none of the derivatives still

present. How we do this depends largely on the type of di�erential equation present. What form a DE

takes will determine how we solve it. Your main task in this section is to identify the type of DE. Once

this is done it is usually fairly simple to proceed from there.

We will be considering 4 types of di�erential equations:

1. Directly integrable DEs

2. Separable DEs

3. 1st Order Linear DEs

4. 2nd Order DEs



1 Directly Integrable Di�erential Equations:

This type of DE contains only one of the function's derivatives, and a function of the independent variable.

For example:

1. y′ = x2 + 2

2. d2y
dx2 + x = ex

3. y′′′ = 6

Solving these DE's just requires that we integrate as many times as is necessary, including the necessary

constants of integration. Eg:

1. y′ = x2 + 2

y = x3

3 + 2x+ C

2. d2y
dx2 + x = ex

d2y
dx2 = ex − x
dy
dx = ex − x2

2 + C

y = ex − x3

6 + Cx+D

3. y′′′ = 6

y′′ = 6x+ C

y′ = 3x2 + Cx+D

y = x3 + Cx2

2 +Dx+ E

This procedure gives us the general solution for these DE's. To obtain the speci�c solution, i.e. without

the presence of arbitrary constants, we require some initial conditions.

Eg: y(0) = 2 or y′(0) = 1

To solve for the speci�c solution to one of these DE's, we use the initial conditions as follows:

y′′′ = 6

y(0) = 1

y′(0) = 2

We know that the general solution to this problem is:

y′ = 6x+ C

y = 3x2 + Cx+D

Therefore we substitute in the initial conditions, obtain some simple simultaneous equations, and solve

for the two arbitrary constants.

y = 3x2 + Cx+D

y(0) = 1 = D

y′(0) = 2 = C

y = 3x2 + 2x+ 1

Directly integrable DE's are the simplest type of DE, and sadly we won't encounter them very often.



2 Separable DE's

The general form for a separable DE is:�
�

�
�

dy

dx
= f(x).g(y)

i.e. the RHS can be separated into a function of x times a function of y. Sometimes you may have to do

some manipulation to achieve this.

E.g.

(1 + x)dy − ydx = 0

(1 + x)dy = ydx

becomes

dy

dx
=

y

1 + x

= y.
1

1 + x

which is separable.

E.g.

xy4dx+
(
y2 + 2

)
e−3xdy = 0

becomes
dy

dx
= e3x.

−xy4

y2 + 2

which is separable.

To solve a separable DE, we rewrite it as follows, and then integrate both sides with respect to x and y.'

&

$

%

dy

dx
= f(x).g(y)

1

g(y)
dy = f(x)dx

ˆ
1

g(y)
dy =

ˆ
f(x)dx

Since the LHS involves only y and the RHS involves only x, the solution method is known as separating

the variables. If possible, one then solves for y in terms of x, but if not, one simply leaves the equation

in simplest form, making sure the derivatives are no longer present.

For example:

1. dy
dx = y

1+x
1
ydy = 1

1+xdx´
1
ydy =

´
1

1+xdx

ln y = ln(1 + x) + C

eln y = eln(1+x)+C



y = A(1 + x),

where

A = eC

2. dy
dx = −x

y

ydy = −xdx´
ydy =

´
−xdx

y2

2 = −x2

2 + C

It is often hard or almost impossible to solve explicitly for y in terms of x in a separable DE. We then

usually are content to just solve the DE, i.e. eliminate the presence of derivatives. You will waste large

portions of time in your exam if you do not realise this.

E.g.

dy

dt
=

t3 + 1

y6 + 1ˆ (
y6 + 1

)
dy =

ˆ (
t3 + 1

)
dx

y7

7
+ y =

t4

4
+ t+ C

It is impossible here to solve for y in terms of t, so we just leave it as is.

An initial value problem:

dy
dx = y − 4

y(7) = 5
´

1
y−4dy =

´
dx

ln(y − 4) = x+ C

Sub in y(7) = 5

ln(5− 4) = 7 + C

ln 1 = 7 + C

C = −7

ln(y − 4) = x− 7

y − 4 = ex−7

y = 4 + ex−7

Some more examples:

1. dx+ e3xdy = 0

dy = −e−3xdx´
dy =

´
−e−3xdx

y = e−3x

3 + C



2. (x+ 1) dydx = x+ 6´
dy =

´
x+6
x+1dx´

dy =
´

x+1+5
x+1 dx´

dy =
´
1 + 5

x+1dx

y = x+ 5 ln(x+ 1) + C

The next example uses integration by parts:

ex dy
dx = 2x

´
dy =

´
2xe−xdx

For
´
2xe−xdx:

f = 2x

f ′ = 2

g = e−x

g′ = −e−x
´
2xe−xdx = −2xe−x − 2e−x + C

y = −2xe−x − 2e−x + C

Solve the di�erential equation dy
dt + ay = 0, where a is non-zero constant.

Separating the variable gives
´
y−1dy =

´
(−a)dt.

Integrating we obtain :

ln y = −at+ C, where C is an arbitrary constant.

Hence

y = eC−at = eCe−at

Setting A = eC , we may write the general solution as y = Ae−at, where A is a constant.

The next type of di�erential equation we encounter:

3 First Order Linear Di�erential Equations:

The general form of a �rst order linear DE is:�
�

�
�

dy

dx
+ P (x)y = Q(x)

NB: If your equation is NOT in this format, you must REWRITE it before you can work with it. The

general method for a linear �rst order DE is as follows:

1. Put it into standard form.
dy

dx
+ P (x)y = Q(x)

2. Identify P (x) and �nd the integrating factor I, which is equal to:

I = e
´
P (x)dx



3. Multiply LHS and RHS by I.

e
´
P (x)dx dy

dx
+ e

´
P (x)dxP (x)y = e

´
P (x)dxQ(x)

4. The LHS becomes the derivative of the product of I and y, so we rewrite it as such. We are

essentially doing the product rule for di�erentiation here, but in REVERSE. Instead of going from

(f.g)′ = f ′g+ fg′, we are moving from the RHS to the LHS. Thus the LHS of the equation in step

three becomes:
d

dx
(I.y) = Q(x).I

5. We then integrate both sides. For the LHS, this is simple, as the integral and derivative signs cancel

each other out, and we simply obtain I.y on that side.

ˆ
d

dx
(I.y) =

ˆ
[Q(x).I] dx

I.y =

ˆ
[Q(x).I] dx

6. The last step is simply to solve for y. Like the separable equations, it is sometimes not possible to

solve explicitly for y in terms of x, and we just work towards eliminating derivatives.

Example:

Given:

x.
dy

dx
− 4y = x6ex

1. Rewrite in standard form.
dy

dx
− 4

x
y = x5ex

2. Find the integrating factor.

P (x) = − 4

x

I = e
´
− 4

xdx

= e−4 ln x

= eln x−4

= x−4

3. Multiply LHS and RHS by it.

x−4
dy

dx
− x−4

4

x
y = x−4x5ex

x−4
dy

dx
− 4x−5y = xex

4. Rewrite the LHS as d
dx (I.y).

d

dx

(
x−4y

)
= xex



5. Integrate both sides.

ˆ
d

dx

(
x−4y

)
=

ˆ
xexdx

x−4y = xex − ex + C

6. Solve for y (which is possible in this case).

y = x5ex − x4ex + Cx4

Another example:

(Note: although it is a separable DE but we solve it using the method for �rst-order linear DE's).

(x2 + 9)
dy

dx
+ xy = 0

dy

dx
+

x

(x2 + 9)
y = 0

I = e
´

x
(x2+9)

dx

= e
1
2

´
2x

(x2+9)
dx

= e
1
2 ln(x2+9)

= eln
√

(x2+9)

=
√
x2 + 9

Now multiply the LHS and RHS by the integrating constant:

√
x2 + 9

dy

dx
+
√
x2 + 9

x

(x2 + 9)
y = 0

d

dx

(√
x2 + 9.y

)
= 0ˆ

d

dx

(√
x2 + 9.y

)
=

ˆ
0dx√

x2 + 9.y = C

y =
C√

x2 + 9

Another example, using an initial value:

Solve x dy
dx + y = 2x, where y(1) = 0.

Solution:

dy

dx
+

1

x
y = 2



Example 2:

3
dy

dx
+ 12y = 9

dy

dx
+ 4y = 3

I = e
´
4dx

= e4x

e4x
dy

dx
+ 4e4xy = 3e4x

d

dx

[
e4x.y

]
= 3e4xˆ

d

dx

[
e4x.y

]
=

ˆ
3e4xdx

e4xy =
3e4x

4
+ C

y =
3

4
+ Ce−4x

Homogeneous and Non-Homogeneous Cases of Di�erential Equations:

The equation dy
dx + ay = 0, where a is some constant, is said to be homogenoeus on account of the zero

constant term. This equation can be re-written as

1

y

dy

dt
= −a

The solutions to this DE are as follows:

y(t) = Ae−at [general solution]

y(t) = y(0)e−at [de�nite solution]

Non-Homogenous Case:

When a constant takes the place of the zero in the above equations, we have a non-homogeneous linear

di�erential equation:

dy

dt
+ ay = b

The solution to this equation consists of the sum of two terms, one of which is called the complementary

function (denoted by yc) and the other known as the particular integral, denoted by yp.

In this case:



yc = Ae−at [general solution]

yp = b
a , a 6= 0 [de�nite solution]

General solution of the complete equation is the sum of yc and yp:

y(t) = yc + yp

= Ae−at +
b

a

Try the following exercise and see if you get the same answer:

xy′ + y = ex

y(1) = 2

The solution is:

x.y = ex(x− 1) + 2

Our last type of problem involves:

4 2nd Order Di�erential Equations

General Form:�
�

�
�y′′ + a1y

′ + a2y = b

Where a1, a2 and b are constants.

2nd order DE's can involve cases wherea1, a2 and b are not constant but for our purposes we don't need

to worry about these.

A general solution for the DE above is:�
�

�
�y = yc + yp

where yc denotes the complementary function and yp denotes the particular integral.

We �nd yc and yp using the following set of rules:

In solving for the particular integral, we can distinguish between 3 di�erent cases:

Case 1: If a2 is non-zero

yp =
b

a2



Case 2: If a2 = zero

yp =
b

a1
t

Case 3: Both a2 and a1 are zero

yp =
b

2
t2

And to �nd yc , we �nd the solution to the homogeneous version of the DE, i.e. yc is the solution to:�
�

�
�y′′ + a1y

′ + a2y = 0

Which is the same as saying that b = 0.

The complementary solution to the second-order di�erential equation takes the form:

y(t) = A1e
r1t +A2e

r2t

where A1, A2 are two arbitrary constants and r1 and r2 are the roots from the characteristic equation:

r2 + ar + b = 0

given by

r1,r2 =
1

2

(
−a±

√
a2 − 4ab

)
In other words:

To solve this, we form the corresponding characteristic equation:�
�

�
�r2 + a1r + a2 = 0

And solve for r1 and r2, which are the roots of the characteristic equation.

These then yield the following general solutions for yc:

In the case r1 and r2, are unequal:�

�

�

�
r1 6= r2

yc = Aer1t +Ber2t

In the case where r1 and r2, are equal:�

�

�

�
r1 = r2

yc = Aert +Btert



There is also the case where r1 and r2, are complex roots, which we ignore for our purposes. Hopefully

you all have not forgotten the formula to solve a quadratic equation, but in case you have:#

"

 

!
ax2 + bx+ c = 0

x =
−b±

√
b2 − 4ac

2a

So our �nal solution is:�
�

�
�y = yc + yp

Where we have found yc and yp using the relevant rules.

Some examples:

y′′ + y′ − 2y = −10

Therefore:

a1 = 1 a2 = −2 b = −10

We �nd the appropriate case for yp, which is the �rst one, i.e. a2 is non-zero.

yp =
b

a2
=
−10
−2

= 5

We then �nd the solution for yc which is the solution to:

y′′ + y′ − 2y = 0

r2 + r − 2 = 0

(r + 2)(r − 1) = 0

r1 = −2 r2 = 1

This is the case of unequal roots:

r1 6= r2

yc = Aer1t +Ber2t

= Ae−2t +Bet

y = yc + yp

yp = 5

y = 5 +Ae−2t +Bet

Given initial conditions, we could also solve for A and B.

For example, given that y(0) = 12, y′(0) = −2



We can now solve for the speci�c solution:

y = 5 +Ae−2t +Bet

12 = 5 +A+B

7 = A+B

y′ = −2Ae−2t +Bet

−2 = −2A+B

7 = A+B

−2 = −2A+B

−9 = −3A

A = 3

B = 4

y = 5 + 3e−2t + 4et

Example Two: (This is a case of repeated roots)

y′′ + 6y′ + 9y = 27

y(0) = 5 y′(0) = −5

a1 = 1 a2 = 6 b = 27

yp =
27

9
= 3

y′′ + 6y′ + 9y = 0

r2 + 6r + 9 = 0

(r + 3)(r + 3) = 0

r = −3

r1 = r2

yc = Aert +Btert

= Ae−3t +Bte−3t

yp = 3

y(t) = yc + yp

= Ae−3t +Bte−3t + 3

y′(t) = −3Ae−3t +Be−3t − 3Bte−3t

y(0) = 5



5 = 3 +A

A = 2

y′(0) = −5
−5 = −3A+B

B = 1

y = 3 + 2e−3t + te−3t
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DIFFERENCE EQUATIONS 

 
What are difference equations? 

 

Whereas differential equations deal with problems in continuous time, difference equations are concerned 

with problems in discrete time. Here the variable t is allowed to take integer values only, making the 

concept of a derivative or differential no longer appropriate. 

Instead the pattern of change of the variable y must be described by ‘differences’, rather than by derivatives 

or differentials of y(t). 

 

When we are dealing with discrete time, the value of variable y will change only when the variable t 

changes from one integer value to the next, such as from t =1 to t=2. Meanwhile nothing is supposed to 

happen to y. It is therefore more convenient to interpret the values of t as referring to periods – rather than 

points – of time, with t =1 denoting period 1,  t=2 denoting period 2 and so forth. Then we can regard y as 

having one unique value in each time period.  

In view of this interpretation, the discrete-time version of economic dynamics is often referred to as period 

analysis.  

 
 

In difference equations, the pattern of change is represented by the difference quotient 
y

t

∆

∆
. t can only take 

integer values, so if we compare the values of y in two consecutive periods, we must have t = 1. For this 

reason the difference quotient 
y

t

∆

∆
 can be simplified to the expression y∆ ; this is called the first-

difference of y. 

This refers to the rate of change of y in period t, which is equal to 1t ty y
+

− . 

 

We can therefore define the forward difference operator ∆  by 
ty∆ =

1t ty y
+

− . 

Application of the operator ∆  may be regarded as the discrete-time counterpart of differentiation with 

respect to time.  

 

Difference equations are therefore like differential equations, except that derivatives are replaced by 

differences. This the discrete-time analogue of the differential equation 
dy

ay b
dt

+ = , where a and b are 

constants, is the first-order difference equation  

 

ty∆ + tay b= . 

 

Recalling the definition of the operator ∆ , we may write this equation as: 

 

1t ty cy b
+

+ = , where c=-1. 

Since this equation simply relates the value of y in a period to its value in the previous period, it can be 

written in the equivalent form: 

1t ty cy b
−

+ =  
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Solving first-order difference equations. 

 

In this section we are concerned with difference equations which contain 1 2 and ,  but not t t ty y y
+ +

 or 

further terms in the sequence.  

 

Before looking at a general method to solve difference equations, we will consider an iterative method, 

which will additionally provide some insight into the nature of the solution to a difference equation.  

Particularly in the case of first order difference equations, simple iteration of the differencing or recursive 

rule ‘plays out’ the recursive rule over a number of time periods, in order to see whether we can depict a 

general characterisation of the time path in y(t). 

 

 For example: 

 

1 02,  15.t ty y y
+

= + =  

From this equation we can deduce step-by-step that: 

 

1 0

2 1 0 0

3 2 0 0

0

2

2 ( 2) 2 2(2)

2 [ 2(2)] 2 2(2)

.......

And in general, for any period 

(2) 15 2
t

y y

y y y y

y y y y

t

y y t t

= +

= + = + + = +

= + = + + = +

= + = +

 

 

This equation indicates the y value of any time period and therefore constitutes the solution of the 

difference equation.  

 

This method is crude and quickly runs into limitations and essentially corresponds to the process of direct 

integration, which is feasible for certain types of differential equations. For this reason we have to use more 

general solution methods.  

 

 

General Solutions 

 

To find the general solution of the difference equation means finding a formula giving all sequences {
ty } 

which satisfy 
1t ty cy b

−
+ = . As in the differential equation case this will contain an arbitrary constant 

which will be tied down if we specify the value of 
ty  for some particular t. 

 

We start with the simple case where b = 0. Then 1t ty cy
+

= −  for all t  and hence: 

1 0

2

2 1 0

3

3 0

( )

( )

y cy

y cy c y

y c y

= −

= − = −

= −

 

and so on. It follows that: 

 

0( )  for 0,1,2....t

ty c y t= − = . 
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To summarise, if b = 0, (i.e. a linear, homogenous difference equation) the general solution to 

1t ty cy b
+

+ =  is ( )  t

ty A c= − , where A is an arbitrary constant which may be interpreted as y0. 

 

In the case where 0b ≠ , (a liner, non-homogenous DE) we use a method similar to the one we used to 

solve the analogous differential equation.  

 

The general solution will consist of the sum of  two components: a particular solution yp, which is any of 

the complete non-homogenous equation 1t ty cy b
−

+ = , and a complementary function yc, which is the 

general solution of the reduced equation 1 0t ty cy
−

+ = . 

 

 

First we consider the complementary function: 

 

Our experience with the example above suggests that we might try a solution of the form ( )  t

ty A c= − . 

 

Now we must look for the particular solution, which relates to the complete equation 
1t ty cy b

+
+ = . 

 

We note that for yp  we can choose any solution of 1t ty cy b
+

+ = . Therefore, if a trial solution of the 

simplest form ty k=  (a constant) can work out, no real difficulty will be encountered.  

Now, if ty k= , then y  will maintain the same constant value over time and we must have 1ty k
+

= . If 

we substitute these values into 1t ty cy b
+

+ = , we get: 

 

k ck b+ =  and 
1

b
k

c
=

+
. 

 

Since this particular value of k satisfies the equation, the particular solution can be written as: 

 

( )    ( 1)
1

p

b
y k c

c
= = ≠ −

+
. 

Since this is a constant, a stationary equilibrium is indicated in this case.  

  

What if 1c = − ? 

If 1c = − , the particular solution  
1

p

b
y

c
=

+
is not defined and some other solution of the non-

homogenous equation 1t ty cy b
+

+ =  must be found.  

In this case we use the trick of trying a solution of the form 1. This implies that ( 1).t ty kt y k t
+

= = +  

Substituting these  into 1t ty cy b
+

+ =  we find: 

 

( 1)

  [becasue 1]
1

( )p

k t ckt b

and

b
k b c

t ct

y kt bt

+ + =

= = = −
+ +

∴ = =
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This form of the particular solution is a non-constant function of t, it therefore represents a moving 

equilibrium.  

 

Adding cy and py together, we may now write the general solution in one of the two following forms: 

( )  t

ty A c= − +            [general solution, case of 1]
1

b
c

c
≠ −

+
 

( )  t

ty A c= − + bt   [general solution, case where 1]A bt c= + = − . 

 

To eliminate the arbitrary constant., we have to use the initial condition that 0  when 0ty y t= = . 

Letting  0t = , we have: 

For  1c = − : 

 

0

0

 and  
1 1

(  )( )  
1 1

t

t

t

b b
y A A y

c c

b b
y y c

c c

= + = −
+ +

∴ = − − +
+ +

 

and for  1c ≠ −  

0  y A= , so the definite version of this equation is: 

 

0ty y ct= +  

 

 

 

Example: 

 

Find the solution of the difference equation 
1

1
2

2
t ty y
+

− = , which satisfies the boundary condition 

0 2y = . 

 

As a particular solution py  we try  ty k=  (a constant). 

This satisfies the equation provided : 

 

1
2.

2

4

k k

k

− =

∴ =

 

 

We can find 
cy  by trying a solution ( )  t

ty A c= −  

I.e. 
1

( )
2

t

ty A= , where  A is an arbitrary constant.  

 

The general solution to the difference equation is therefore: 
1

4 ( ) 4 2
2

t t

ty A A
−

= + = +  

 

It remains to use the boundary condition 
0 2y = to find A.  Setting t =0 in the general solution we have  
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1

2 4

2

4 2 t

t

A

A

and

y
−

= +

∴ =

= −

 

 

 

Second-Order Difference Equations 

 

 A second-order difference equation is one that involves an expression 
2

ty∆ , called the second-difference 

of ty , but contains no differences of order higher than 2. The symbol 
2

∆ is an instruction to take the 

second-difference as follows: 

 
2

1

2 1 1

2 1

( ) ( )

( ) ( )

2

t t t t

t t t t

t t t

y y y y

y y y y

y y y

+

+ + +

+ +

∆ = ∆ ∆ = ∆ −

= − − −

= − +

 

 

A simple variety of second-order difference equation takes the form: 

 

(1) 
2 1 1 2t t ty a y a y c

+ +
+ + =  

 

This equation is linear, non-homogenous and with constant coefficients 1 2,a a and constant term c. 

 

As before, the solution has two components: a particular solution yp, and a complementary function yc, 

 

The particular solution – defined as any solution of the complete equation – can be found simply by trying 

a solution of the form ty k= . Substituting this value into (1) above, gives:  

1 2

1 2

1 2

1 2

1 2

1

Thus, so long as (1 ) 0,  the particular solution is:

( ) ,  where 1
1

p

k a k a k c

c
k

a a

a a

c
y k a a

a a

+ + =

∴ =
+ +

+ + ≠

= = + ≠ −
+ +

 

 

Example: Find the particular solution of 

 

2 1

1 2

1 2

3 4 6.

 3,  4,  6

6
  1, 3

1 3 4

t t t

p

y y y

Here a a c

Since a a y

+ +
− + =

= − = =

+ ≠ − = =
− +

 

 

Case where 1 2 1a a+ = − : 
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Here the trial solution 
ty k=  breaks down and it is necessary to try 

ty kt=  instead.  

Substituting this into (1) above and keeping in mind that we now have: 

 

1

2

1 2

1 2

1 2 1 1

( 1)

( 2)

( 2) ( 1)

   [since 1]
(1 ) 2 2

t

t

y k t

y k t

k t a k t a kt c

and

c c
k a a

a a t a a

+

+

= +

= +

∴ + + + + =

= = + = −
+ + + + +

 

 

Thus we can write the particular solution as 
1 2 1

1

( ) ,  where 1, 2
2

p

c
y kt t a a a

a
= = + = − ≠ −

+
. 

 

Example: Find the particular solution of 2 1 2 12.t t ty y y
+ +

+ − =   

 

The Complementary Solution: 

 

To find the complementary function, we must concentrate on the reduced equation:  

(2) 2 1 1 2 0t t ty a y a y
+ +

+ + =  

 

The solution procedure involves solving the for the roots of the characteristic equation. In this case the 

characteristic equation is 
2

1 2 0b ba a+ + =  and it possesses two characteristic roots: 

 

2

1 1 2

1 2

4
,

2

a a a
b b

− ± −
= . 

 

Three possible situations may be encountered with regard to the characteristic roots: 

 

1. Distinct real roots, i.e. 1 2b b≠ . 

 

If the characteristic equation has got two distinct real roots, the solution is: 

 

1 1 2 2 1 2,  where  and  are constantst t

cy Ab A b A A= +  

2. Repeated real roots, i.e. 
1 2b b=  

If the characteristic equation has co-incident roots, 1
1 2

2

a
b b b= = = − , then the solution is as 

follows: 

 

1 2 1 2 3( + )  =
t t t t

cy Ab A b A A b A b= + =  

 

BUT since the two components have collapsed into a single term, we are short of a constant. We 

therefore have to supply the missing component. We use the trick of multiplying 
t

b  by the 

variable t.  

 

The complementary function for the repeated-root case is therefore: 
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3 4

t t

cy A b A tb= +  

 

3. Complex roots.  

If 
2

1 24a a< , we have complex conjugate roots. We won’t deal with this possibility in this 

course.  

 

 

SYSTEMS OF DIFFERENTIAL & DIFFERENCE EQUATIONS 

 

Refer to Chiang, Chapter 18 

 

So far we have solved only stand-alone differential and difference equations. However, we may be 

confronted with simultaneous differential and difference equations. 

 

When? 

 

These arise from a set of interacting changes, e.g. in multi-sector markets when changes in one market 

affects conditions in another.  

 

To deal with systems of equations, we have to transform higher-order equations into a more manageable 

form (i.e. all of the first-order). 

 

Suppose we have: 

 

2 1 1 2t t ty a y a y c
+ +

+ + =  

 

Then we can let: 

 

1

1 2

t t

t t

x y

x y

+

+ +

=

⇒ =
 

 

This gives us: 

1 1 2

1 0

t t t

t t

x a x a y c

x y

+

+

+ + =

− =
 

 

Similarly we can transform a n
th

 order differential equation into a system of n first-order equations. Given 

the differential equation 

 

1 2''( ) '( ) ( ) 0y t a y t a y t+ + =  we introduce a new variable x(t) defined by  

 

( ) '( )     [implying '( ) ''( )]x t y t x t y t= =  

 

Then we can re-write the differential equation as the following system of two first-order equations: 

1 2'( ) ( ) ( ) 0

'( ) ( ) 0

x t a x t a y t

y t x t

+ + =

− =
 

 

We therefore have to transform any higher order difference/ differential equation into a system of 

first-order difference or differential equations.  
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Solving Systems of Dynamic Equations: 
 

The methods for solving simultaneous differential equations and simultaneous difference equations are 

quite similar. We’ll only consider linear equations with constant coefficients. 

 

 

1. Simultaneous Difference Equations 
 

Suppose we have 

 

1

1

6 9 4

0

t t t

t t

x x y

y x

+

+

+ + =

− =
 

 

Since particular solutions represent intertemporal equilibrium values, let us denote them by x  

and y . As before we first try constant solutions, namely 1 1  and t t t tx x x y y y
+ +

= = = = . 

 

This works in the present case, because when we substitute these into the system of equations we 

get: 

 

7 9 4

0

1

4

x y

x y

x y

+ =

− + =

⇒ = =

 

 

(If these constant solutions don’t work then you have to try solutions of the form 

1 2,  t tx k t y k t= =  etc. 

 

For the complementary functions, we should – using our previous experience – adopt trial 

solutions of the form: 

 

 and ,  where  and  are arbitrary constants and the base 

represents the characteristic root. 

t t

t t
x mb y nb n m b= =

 

 

It is automatically implied that 
1 1

1 1 and t t

t tx mb y nb+ +

+ +
= = . 

To simplify matters we are using the same base b for both  variables, although their coefficients 

are allowed to differ.  

 

It is our aim to find the values of b, m and n that can make the trial solutions above satisfy the 

reduced homogenous version of 
1

1

6 9 4

0

t t t

t t

x x y

y x

+

+

+ + =

− =
. 

 

Upon substituting the trial solutions into the reduced versions of 
1

1

6 9 4

0

t t t

t t

x x y

y x

+

+

+ + =

− =
 and 

cancelling the common factor 0 t
b ≠ , we obtain two equations: 
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( 6) 9 0

0

b m n

m bn

+ + =

− + =
 

 

This can be considered as a linear homogenous-equation system in two variables m and n 

(considering b as a parameter for the time being). 

Rule out the trivial solution of m = n = 0, by requiring the coefficient matrix of the system to be 

singular. That is, we require the determinant of the matrix to be equal to zero: 

2

1 2

6 9
det 6 9 0

1

( ) 3

b
b b

b

b b b

+ 
= + + = 

− 

∴ = = = −

 

The above equation is called the characteristic equation and its roots the characteristic roots, of the 

given simultaneous difference-equation system.  

 

Given the value of b, we can get the values of m and n from 
( 6) 9 0

0

b m n

m bn

+ + =

− + =
. 

Since the system is homogenous, an infinite number of solutions for (m, n) will emerge, 

expressible in the form of the equation m = kn, where k is a constant. 

 

In fact, for each root bi, there will in general be a distinct equation mi =kini,. Even with repeated 

roots, we should still use two such equations m1 =k1n1, and m2 =k2n2  in the complementary 

functions.  

 

Moreover, with repeated roots, we recall that we can write the complementary functions as: 

1 2

1 2

( 3) ( 3)

( 3) ( 3)

t t

t

t t

t

x m m t

y n n t

= − + −

= − + −
 

 

The factors of proportionality between mi  and ni  must of course satisfy the given equation system  

which mandates that 
1t ty x

+
= , i.e. 

 
1 1

1 2 1 2

1 2 1 2

1 2 2 1 2

( 3) ( 1)( 3) ( 3) ( 3)

Dividing through by ( 3) :

3 3 ( 1)

3( ) 3

t t t t

t

n n t m m t

n n t m m t

or

n n n t m m t

+ +
− + + − − − + −

−

− − + = +

− + − = +

 

 

Equating terms with t on two sides of the equals sign and similarly for the terms without t,  we 

find that  
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1 1 2

2 2

1 3 2 4,

1 3 4

2 4

3( )

3

If we now write  and  then it follows that:

3( )

3

m n n

and

m n

n A n A

m A A

m A

= − +

= −

= =

= − +

= −

 

 

Thus the complementary functions can be written as: 

3 4 4

3 4

3 4

3( )( 3) 3 ( 3)

3 ( 3) 3 ( 1)( 3)

( 3) ( 3)

t t

c

t t

t t

c

x A A A t

A A t

and

y A A t

= − + − − −

= − − − + −

= − + −

 

 

2. Simultaneous Differential Equations 
 

The solution to a first-order linear differential equation is similar. The only major modification is 

to change the trial solutions to: 

 

( )

( )

rt

rt

x t me

and

y t ne

=

=

 

  

 This implies that '( )  and '( )rt rtx t rme y t rne= = . 

 

 

 


