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Section 5: Dynamic Analysis

Eigenvalues and Eigenvectors

ECO4112F 2011

This is an important topic in linear algebra. We will lay the foundation for the discus-
sion of dynamic systems. We will also discuss some properties of symmetric matrices that
are useful in statistics and economics.

1 Diagonalisable matrices

We can calculate powers of a square matrix, A:

A2 = AA, A3 = A2A, A4 = A3A

Matrix multiplication is associative, so Ar+s = ArAs, so we could calculate A11 as
A6A5 =

(
A3A3

) (
A3A2

)
.

Is there a general relation that holds between the entries of Ak and those of A?

First, note how simple it is to calculate powers of a diagonal matrix:

If A =

[
a 0
0 d

]
, then

A2 =

[
a 0
0 d

] [
a 0
0 d

]
=

[
a2 0
0 d2

]
, A3 =

[
a2 0
0 d2

] [
a 0
0 d

]
=

[
a3 0
0 d3

]
, etc.

We use the following notation for diagonal matrices:

diag (d1,d2,..., dn) is the diagonal matrix whose diagonal entries are d1,d2,..., dn.

Example 1 diag(a, d) =

[
a 0
0 d

]
, diag(−7, 0, 6) =

 −7 0 0
0 0 0
0 0 6

 .
Powers of diagonal matrices obey the following rule:

If D = diag (d1,d2,..., dn) then Dk = diag
(
dk1,d

k
2,..., d

k
n

)
(1)

Definition 1 A square matrix A is diagonalisable if, for some invertible matrix S, S−1AS
is a diagonal matrix.
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We will use the phrase d-matrix to mean ”diagonalisable matrix”.
Every diagonal matrix is a d-matrix (let S = I), but there are many diagonalisable

matrices that are not diagonal matrices.
In the case where A is a d-matrix, we can find a neat formula relating Ak to A:
Remember A is diagonalisable if and only if S−1AS = D for some invertible matrix S

and some diagonal matrix D.
So

SDS−1 = SS−1ASS−1 = IAI = A.

It follows that

A2 =
(
SDS−1

) (
SDS−1

)
= S (DID) S−1 = SD2S−1,

A3 = A2A =
(
SD2S−1

) (
SDS−1

)
= S

(
D2ID

)
S−1 = SD3S−1

etc. Thus,

If A = SDS−1 then Ak = SDkS−1 for k = 1, 2, ... (2)

This applies only to d-matrices. Two questions now arise:

1. How can we tell if a given matrix is diagonalisable?

2. If it is, how do we find S and D?

To answer these questions we introduce the concepts of eigenvalues and eigenvectors.

1.1 The key definitions

Definition 2 Let A be a square matrix, λ a scalar. We say that λ is an eigenvalue of A
if there exists a vector x such that x 6= 0 and

Ax =λx

Such an x is called an eigenvector of A corresponding to the eigenvalue λ.

By definition, the scalar λ is an eigenvalue of the matrix A if and only if (λI−A) x = 0
for some non-zero vector x; in other words, λ is an eigenvalue of A if and only if (λI−A)
is a singular matrix. Thus the eigenvalues of A can in principle be found by solving the
equation

det (λI−A) = 0. (3)

If A is a 2× 2 matrix, then (3) is a quadratic equation in λ.
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Example 2 Find the eigenvalues and eigenvectors of the matrix

A =

[
3 −1
4 −2

]
We find the eigenvalues using (3):

det (λI−A) =

∣∣∣∣ λ− 3 1
−4 λ+ 2

∣∣∣∣ = (λ− 3) (λ+ 2) + 4.

Hence the eigenvalues of A are the roots of the quadratic equation

λ2 − λ− 2 = 0

The eigenvalues are therefore 2 and −1.
We now find the eigenvectors of A corresponding to the eigenvalue 2.
Ax =2x if and only if

3x1 − x2 = 2x1

4x1 − 2x2 = 2x2

Each of these equations simplifies to x1 = x2. (It should not come as a surprise to you
that the two equations collapse to one since we have just shown that (2I−A) is singular.)

Thus the eigenvectors corresponding to the eigenvalue 2 are the non-zero multiples of[
1
1

]
.

Similarly, Ax =− x if and only if x2 = 4x1; thus the eigenvectors of A corresponding

to the eigenvalue −1 are the non-zero multiples of

[
1
4

]
.

1.1.1 Terminology

There are many synonyms for eigenvalue, including proper value, characteristic root and
latent root. Similarly, there are many synonyms for eigenvector.

The ‘root’ arises because the eigenvalues are the solutions (‘roots’) of a polynomial
equation.

1.2 Three propositions

The following connect eigenvalues and eigenvectors with diagonalisability.

Proposition 1 An n× n matrix A is diagonalisable if and only if it has n linearly inde-
pendent eigenvectors.
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Proof. Suppose the n × n matrix A has n linearly independent eigenvectors x1, ...,xn

corresponding to eigenvalues λ1, ..., λn respectively. Then

Axj=λjx
j for j = 1, ..., n (4)

Define the two n× n matrices

S =
(

x1 . . . xn
)
, D = diag (λ1, ..., λn) (5)

Since x1, ...,xn are linearly independent, S is invertible. By (4),

AS = SD (6)

Premultiplying (6) by S−1 we have S−1AS = D so A is indeed a d-matrix.
Conversely, suppose that A is a d-matrix. Then we may choose an invertible matrix S

and a diagonal matrix D satisfying (6). Given the properties of S and D, we may define
vectors x1, ...,xn and scalars λ1, ..., λn satisfying (5); then (6) may be written in the form
(4). Since S is invertible the vectors x1, ...,xn are linearly independent: in particular none
of them is the zero-vector. Hence by (4), x1, ...,xn are n linearly independent eigenvectors
of A.

Proposition 2 If x1, ...,xk are eigenvectors corresponding to k different eigenvalues of the
n× n matrix A, then x1, ...,xk are linearly independent.

Proposition 3 An n× n matrix A is diagonalisable if it has n different eigenvalues.

1.2.1 Applying the propositions

Given the eigenvalues of a square matrix A,

• Proposition 3 provides a sufficient condition for A to be a d-matrix.

If this condition is met

• Proposition 2 and the proof of Proposition 1 show how to find S and D.

We can then use

• (1) and (2) to find Ak for any positive integer k.

Example 3 As in Example 2 let

A =

[
3 −1
4 −2

]
4



We show that A is a d-matrix, and find Ak for any positive integer k.
From Example 2, we know that the eigenvalues are 2 and −1. Thus A is a 2×2 matrix

with two different eigenvalues; by Proposition 3 A is a d-matrix.
Now let x and y be eigenvectors of A corresponding to the eigenvalues 2 and −1 re-

spectively. By Proposition 2, x and y are linearly independent. Hence, by the proof of
Proposition 1 we may write S−1AS = D where D =diag(2,−1) and S =

(
x y

)
. Now x

and y can be any eigenvectors corresponding to the eigenvalues 2 and −1 respectively: so

by the results of Example 2 we may let x =

[
1
1

]
and y =

[
1
4

]
.

Summarising,

S =

[
1 1
1 4

]
, D =

[
2 0
0 −1

]
To find Ak using (1) and (2), we must first calculate S−1.

S−1 =
1

3

[
4 −1
−1 1

]
Hence, by (1) and (2),

Ak =

[
1 1
1 4

] [
2k/3 0

0 (−1)k /3

] [
4 −1
−1 1

]
for k = 1, 2, ...

You could multiply this expression out if you want.

1.2.2 Some remarks

Remark 1 When we write a d-matrix in the form SDS−1, we have some choice about how
we write S and D. For example, in Example 3 we could have chosen the second column

of S to be

[
1
2
2

]
. The one rule that must be strictly followed is: the first column in S

must be the eigenvector corresponding to the eigenvalue that is the first diagonal entry of
D, and similarly for the other columns.

Remark 2 Proposition 1 gives a necessary and sufficient condition for a matrix to be
diagonalisable. Proposition 3 gives a sufficient but not necessary condition for a matrix
to be diagonalisable. In other words, any n × n matrix with n different eigenvalues is a
d-matrix, but there are n× n d-matrices which do not have n different eigenvalues.

1.3 Diagonalisable matrices with non-distinct eigenvalues

The n eigenvalues of an n×n matrix are not necessarily all different. There are two ways
of describing the eigenvalues when they are not all different. Consider a 3 × 3 matrix A
where

det (λI−A) = (λ− 6)2 (λ− 3) = 0
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we say either

• the eigenvalues of A are 6, 6, 3; or

• A has eigenvalues 6 (with multiplicity 2) and 3 (with multiplicity 1).

Proposition 4 If the n × n matrix A does not have n distinct eigenvalues but can be
written in the form SDS−1, where D is a diagonal matrix, the number of times each
eigenvalue occurs on the diagonal of D is equal to its multiplicity.

Example 4 We show that the matrix

A =

 1 0 2
0 2 0
−1 0 4


is diagonalisable.
Expanding det (λI−A) by its second row, we see that

det (λI−A) = (λ− 2)
(
λ2 − 5λ+ 6

)
= (λ− 2)2 (λ− 3)

Setting det (λI−A) = 0, we see that the eigenvalues are 2, 2, 3. If A is to be a
d-matrix, then the eigenvalue 2 must occur twice on the diagonal of D, and the corre-
sponding columns of S must be two linearly independent eigenvectors corresponding to this
eigenvalue. Now the eigenvectors of A corresponding to the eigenvalue 2 are those non-zero
vectors x such that x1 = 2x3. Two linearly independent vectors of this type are:

s1 =

 2
0
1

 , s2 =

 0
1
0


Hence A is a d-matrix, and D =diag(2, 2, 3) and the first two columns of S are s1 and

s2. The third column of S is an eigenvector corresponding to the eigenvalue 3, such as 1
0
1

 .
Summarising, S−1AS = D where

S =

 2 0 1
0 1 0
1 0 1

 , D =

 2 0 0
0 2 0
0 0 3


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2 Complex linear algebra

Example 5 Find the eigenvalues and eigenvectors of the matrix

A =

[
0 1
−1 0

]
We find the eigenvalues by solving the characteristic equation

det (λI−A) = λ2 + 1 = 0

⇒ λ = ±i

We now find the eigenvectors of A corresponding to the eigenvalue i.
Ax =ix if and only if

x2 = ix1

Thus the eigenvectors corresponding to the eigenvalue i are the non-zero multiples of[
1
i

]
.

Similarly, Ax =− ix if and only if x1 = ix2; thus the eigenvectors of A corresponding

to the eigenvalue −i are the non-zero multiples of

[
i
1

]
.

3 Trace and determinant

It can be shown that

tr A = λ1 + λ2 + ...+ λn (7)

det A = λ1λ2...λn

i.e. the trace is the sum of the eigenvalues and the determinant is the product of the
eigenvalues.

These statements are true whether or not the matrix is diagonalisable.

Example 6 Consider the matrix from Example 4:

A =

 1 0 2
0 2 0
−1 0 4


We showed that the eigenvalues of A are 2, 2, 3.
The trace is the sum of the diagonal entries

tr A = 1 + 2 + 4 = 7
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which is equal to the sum of the eigenvalues

tr A = 2 + 2 + 3 = 7.

The determinant is (expanding by the second row)

det A = 2(4 + 2) = 12

which is equal to the product of the eigenvalues

det A = (2)(2)(3) = 12.

4 Non-diagonalisable matrices

Not all square matrices are diagonalisable.

Example 7 Let

A =

[
0 1
0 0

]
The characteristic polynomial is

det (λI−A) = λ2

Setting this equal to zero, we find that the eigenvalues are 0, 0. The associated eigen-

vectors are the non-zero multiples of

[
1
0

]
.

But then A is a 2× 2 matrix which does not have 2 linearly independent eigenvectors;
so by Proposition 1 of Section 1.2, A is not diagonalisable.

However, almost all square matrices are diagonalisable. In most practical contexts the
assumption that the relevant square matrices are diagonalisable does not involve much loss
of generality.

5 Eigenvalues of symmetric matrices

Definition 3 A symmetric matrix is a square matrix whose transpose is itself. So the
n× n matrix A is symmetric if and only if

A = A′

Theorem 1 If A is a symmetric matrix, A is diagonalisable - there exist a diagonal matrix
D and an invertible matrix S such that S−1AS = D;
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5.1 Definiteness

We now describe positive definite, positive semidefinite, negative definite, negative semidef-
inite matrices in terms of their eigenvalues.

Theorem 2 A symmetric matrix A is

• positive definite if and only if all its eigenvalues are positive;

• positive semidefinite if and only if all its eigenvalues are non-negative;

• negative definite if and only if all its eigenvalues are negative;

• negative semidefinite if and only if all its eigenvalues are non-positive.

Example 8 Let A be the symmetric matrix

A =

[
4 1
1 4

]
The characteristic polynomial is:

det (λI−A) = λ2 − 8λ+ 15

Setting this equal to zero, we see that the eigenvalues are 5 and 3
Since these are positive numbers, A is positive definite.
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