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Section 4: Integration 
ECO4112F 2011 

 

Reading:  Chiang Chapter 14 

 

Note: These notes do not fully cover the material in Chiang, but are meant to 

supplement your reading in Chiang.  

 

Thus far the optimisation you have covered has been static in nature, that is optimising the value of a 

function without any reference to time. In static optimisation and comparative static analysis we make the 

assumption that the process of economic adjustment leads to an equilibrium, and we then examine the 

effect of changes of the exogenous variables on the equilibrium values of the endogenous variables. With 

dynamic analysis, time is explicitly considered in the analysis. While we are not covering dynamic analysis 

at this point, certain mathematic tools are required for dynamic analysis, such as integration and differential 

equations. Without these tools, it becomes impossible to consider problems which are not static in nature. 

We will be covering both of these topics in a mainly mathematical way, leaving economic problems for a 

later date.  

 

Integration is the reverse process of differentiation. If a function )(xF has first derivative )(xf then the 

integral of )(xf  will yield )(xF . The notation to denote integration is as follows:  

 dxxf )( , where the integral sign is an elongated S.  )(xf  is referred to as the integrand, and the dx  

sign reminds us that we are integrating with respect to the variable x. We go through the following 

explanation to determine where this notation comes from.  

 

Suppose we are given an arbitrary function )(xf and asked to find the area of the curve between 2 points, 

for example the area under the curve f(x) between 5 and 10. 
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Figure 1.1 

With a linear function, this equates to finding the area of a triangle and a rectangle as follows: 

 

Figure 1.2 
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However with a non-linear function the problem becomes slightly more complex. What we can do, 

however, is attempt to find the area under the curve using a number of approximating rectangles as follows: 

 

 

Figure 1.3 

We let each of the rectangles have equal width and we call this width Δx. Each rectangle has a height equal 

to the function value, for example the height of the last rectangle where x=10 is equal to f(10)=20. Thus the 

area of the last rectangle is equal to 20(Δx), as area of a rectangle equals length times breadth, and here 

breadth is Δx and length is f(10)=20. The area of any of the rectangles is equal to length times breadth, 

which equals f(x) times Δx, as all rectangles have equal breadth equal to Δx. To find the area under the 

curve we add up the area of each of the rectangles. This gives us the expression: 

 

xxfA
n

i

i 
1

)(  

Where 

n  = number of rectangles  

xi = the value of x at each point 

∑ = the sum of all the areas, starting from the first one (i = 1) and ending at the nth one (i = 1). 

 

Obviously this sum will not be a very accurate representation of the area. But perhaps if we make our Δx 

smaller, then this expression will become a more accurate representation of the area under the curve, as 

there will be less overshooting by each rectangle. If initially we had ten rectangles, the area given by the 

sum of these rectangles’ areas would obviously be more of an over-estimate (or maybe underestimate) than 

if we doubled the number of rectangles, and then summed their area. The more rectangles we use in this 

approximating process the better our estimate for the area under the curve.  

 

For example, imagine we wish to find the area under the curve f(x) = x
2
 between 0 and 1.  
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Figure 1.4 
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We could take four rectangles, each with a breadth Δx equal to 0.25, and take the heights from the right 

hand side of each rectangle. Hence the height for each rectangle will be: 

(0.25)
2
 

(0.5)
 2
 

(0.75)
 2
 

1
2 

Therefore the entire area equals to  

0.25(0.25)
 2
 + 0.25(0.5)

 2
+0.25(0.75)

 2
+0.25(1)

 2
 = 15/32=0.46875 

 

If we double the amount of rectangles from four to eight, we will use a Δx of 0.125, and the following right 

hand heights (remember the height of the rectangle is given by the function value f(x)).  

 

(0.125)
 2  

(0.25)
2
 

(0.375)
 2  

(0.5)
 2 

(0.625)
 2  

(0.75)
 2 

(0.875)
 2  

1
2 

 

The corresponding total area is given by the sum of each of the areas which is Δx multiplied by each 

function value: The final value we get is 0.3984375 

 

As can be seen in figure 1.3, using right end points for the rectangles for an increasing function will give an 

over-estimate, while using right end points for a decreasing function will yield an over-estimate. Thus 

doubling the number of rectangles while trying to estimate the area under the graph f(x)=x
2
 will begin to 

bring our estimate down to its true value. It appears that as the number of rectangles increases, our 

estimations become better and better approximations of the area. If we let the number of rectangles tend to 

infinity, we will obtain a perfectly accurate estimate for the area under our graph.  

 

Our expression for the area under the curve now becomes: 

xxfA
n

i

i
n

 



1

)(lim  

This gives us the expression for the definite integral, which gives us a way of finding the area under the 

continuous function f(x) between x=a and x=b: 

xxfdxxf
n

i

i
n

b

a

 



1

)(lim)(  

 

An explanation of the terminology: 

 

  The integration sign is an elongated S, and was so chosen because an integral is a limit of sums.  

ba,   are the limits of integration,  

a  is the lower limit of integration 

b  is the upper limit of integration. 

)(xf  is known as the integrand. 

dx  has no meaning by itself, but merely reminds us that we are integrating with respect to the variable 

x.  

 

Fortunately when we want to find the area under a curve, we do not have to go into the long process of 

finding an expression for the sum of the area of n rectangles: a number of theorems make the process 

easier.  
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Before we set out the properties of the definite integral, some rules of integration are as follows: (see page 

439 and onwards in Chiang for examples). 

 

1. The Power Rule 

 

11
   ( 1)

1

n nx dx x c n
n

   
  

2. The Exponential Rule 

 
x xe dx e c   

3. The Logarithmic Rule 

 

1
ln    ( 0)dx x c x

x
    

Properties of the definite integral: 

 

 

b

a

abccdx )(.1     

  

b

a

b

a

b

a

dxxgdxxfdxxgxf )()()]()([.2  

 

 

b

a

b

a

dxxfcdxxcf )()(.3    

  

b

a

b

a

b

a

dxxgdxxfdxxgxf )()()]()([.4  

 

5. ( ) ( ) ( )

c b c

a a b

f x dx f x dx f x dx     

 

Property 1 states that the integral of a constant function y=c is the constant times the length of the interval, 

as seen in figure 1.5 

 

Figure 1.5 

Property 2 says that the integral of a sum is the sum of the integrals. The area under f+g is the area under f 

plus the area under g. This property follows from the property of limits and sums.  
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Property 3 tells us that a constant (but only a constant) can be taken in front of an integral sign. This also 

follows from the properties of limits and sums.  

Property 4 follows from property 2 and 3, using c=-1. 

Property 5 tells us we can find the area under the graph between a and c, by splitting it up into two areas, 

between a and b, and between b and c.  

 

We now find our rule for evaluating the definite integral: 

 

b

a

aFbFdxxf )()()(  

 

where the derivative of F(x) is f(x), i.e. F is any anti-derivative of f.  

 

For example, if we differentiate 
3

)(
3x

xF  we obtain 
2)( xxf  , so F(x) is an anti-derivative of f(x). 

Thus .
3

1
0

3

1

3
)0()1(

1

0

31

0

2 
x

FFdxx  

Therefore the area under the curve f(x) = x
2
 between 0 and 1, is equal to a third, or 0.33 recurring. 

Incidentally this answers our previous question which we attempted using the sum of the areas of n 

rectangles.  

 

The fundamental theorem of calculus motivates this use of the evaluation theorem. In short, it states that 

differentiation and integration are opposite processes. Thus, if we start with a function F(x), and 

differentiate it to obtain f(x), [ i.e. )()( xfxF  ], if we then integrate the function f(x), the result will be 

the initial function F(x). Similarly if we integrate f(x) to obtain F(x), [ i.e. CxFdxxf  )()(  where C 

is an arbitrary constant
1
]. Thus to find the integral of a function f(x), we must find the function which when 

differentiated yields f(x).  This theorem is very useful to us, as otherwise whenever we wish to find the 

value of the area that lies underneath a curve, we have to go through the entire process of finding the limit 

of the sum of the areas of n approximating rectangles, which is a time consuming process! Prior to the 

discovery of the fundamental theorem, finding areas, volumes and other similar types of problems were 

nigh on impossible. 

 

For completeness, the fundamental theorem is presented below: 

 

The fundamental theorem of calculus: 

 

Suppose f(x) is a continuous function on the closed interval [a,b] 

 

1.  If 
x

a

dttfxg )()( then )()( xfxg   i.e. )()()( xfdttf
dx

d
xg

x

a









   

2.  

b

a

aFbFdxxf )()()(  

 

where the derivative of F(x) is f(x), i.e. F is any anti-derivative of f. What it says, roughly speaking, is that 

if you integrate a function and then differentiate the result, you retrieve the original function.  

 

                                                 
1
 More about the arbitrary constant a little later 
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We now need to discuss two different types of integrals – definite and indefinite. A definite integral 

involves finding the integral of a function between two number limits i.e. 
b

a

dxxf )( . The answer to a 

definite integral is a number, as we know according to the evaluation rule the answer to this is just the anti-

derivative F(x) evaluated between a and b, i.e. F(b)-F(a).  An indefinite integral yields a function of x as its 

answer (if we are integrating with respect to x). An indefinite integral is an integral of the form 

 dxxf )( (i.e without upper and lower limits) and the solution is  

CxFdxxf  )()(  

where C is an arbitrary constant which can take on any value. 

 

The reason we include the arbitrary constant is illustrated in the following example. 

 

Given the problem: 

 dxx23  a potential solution is 
3x  as this is an antiderivative of the cubic function (If we differentiate 

3x we obtain 
23x . However 43 x is also a solution to this problem, as is 1003 x . This is because 

when differentiating these expressions, the constant differentiated moves to zero. So it would appear that 

the most general form to give the answer to this problem would be as follows: 

 

  Cxdxx 323 ,  

where C is an arbitrary constant.  

 

Just a small note on arbitrary constants – when we add two together, we obtain a third one which has 

aggregated the first two, when multiplying, dividing adding or subtracting a number by/to/from an arbitrary 

constant, the result is just the arbitrary constant. However the arbitrary constant when multiplied by a 

function of x, will stay as just that:  

 

  CxGxFCxGCxFdxxgxf )()()()()()( 21  

where C1 and C2 are two arbitrary constants, and F(x) and G(x) are two anti-derivates of f(x) and g(x) 

respectively.  

 

  CxFCxFCxFdxxf )(33)(3])([3)(3  

 

However: 

  CxxxFCxFxdxxfx )(])([)(  

 

We now turn to some rules of integration (definite and indefinite) and then some examples.  

 

1.   dxxfcdxxcf )()(     

2. ( ( ) ( )) ( ) ( )f x g x dx f x dx g x dx      

3. C
n

x
dxx

n
n 






1

1

 (n cannot equal –1)  

4. Cxdx
x

 ln
1
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5. Cedxe xx       

6. C
a

a
dxa

x
x  ln

 

7. Cxxdx  cossin     

8. Cxxdx  sincos  

 

Remember – to check the answer to any integration sum just differentiate it and you should arrive back at 

the original function.  

 

Some examples: 

 

1.   Cxdx 33      

2.   Cxdx  

3.    Cxdxxdxx 2

5

2

3

3

5

2
   

4. 

22 2 3
4

4

1 1 1

1 1 1 7
( )

3 24 3 24

x
dx x dx

x


      

   

5. CxxCx
x

dxxx  cos2cos
5

10
]sin10[ 5

5
4

 

 

6. 75.600)9(3
4

81
3

42
6

4
)6(

3

0

2
4

3

0

243

0

3  x
xxx

dxxx  

7. 

 

603.174

1ln
5

2
19ln)243(

5

2
81

ln
5

2
)2()2(

12
9

1

2

5

2

9

1

12

39

1

1

9

1

22









 tttdttttdtttttdt

t

ttt

 

8. 
2

9
6

23
)6(

4

1

234

1

2  t
tt

dttt  

9. 

   
      (Note the trick here) 

 

 

 

 

 

 

 

 

 

  cxx

cxx

x
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x

x

x

x

x
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2

1
52ln8
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8
1

52

8

52

52

52

3552

52

32



 8 

A few more useful properties: 

 









a

a

a

b

b

a

dxxf

dxxfdxxf

0)(.2

)()(.1

 

 

We are going to be looking at two very useful techniques used in integration: use of substitution, and 

integration by parts. There are a whole host of other techniques which can be useful, however it is these 

two which are most useful to us in economics.  

 

Integration using Substitution 

 

We use substitution, when the integrand contains a function and its own derivative. i.e: 

 

  dxxfxf )()(  

 

For example: 

  dxxxxx )103)(105( 223
 

 

If this is the case, we can make use of the following substitution: We let u equal to the function whose 

derivative we can spot (or create, using a constant: more about this later).  

 

Let u = 105 23  xx  

Then we know that  

dxxxdu )103( 2   

When we then substitute the values of u and du into the integral, we obtain the following integral: 

udu  

which has the answer 

C
u

udu  2

2

 

but: u = 105 23  xx  

 

Therefore our final answer is 

C
xx

dxxxxx 


 2

)105(
)103)(105(

223
223

 

 

Thus the general rule solution for the problem is as follows: 

C
xf

dxxfxf  2

)]([
)()(

2

 or more simply  C
f

dxff  2
).(

2

 

 

However the substitution rule can be used for more complicated examples, when our function f(x) whose 

derivative we can spot occurs inside another function: 
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For example: 

 

  dxfgf )(  or    dxxxx )23183()186( 2
 

 

In these cases the procedure does not change at all – we still make the substitution as follows: 

Let u = f(x) 

Therefore du=f`(x)dx 

And proceed as usual: 

 

Some examples: 

1.   dxxxx )23183()186( 2
 

Let )23183( 2  xxu  

Therefore dxxdu )186(   

 

Therefore our transformed integral is as follows: 

 

C
xx

C
u

duuduu 


 3

)23183(2

3

2 2

3

22

3

2

1

 

 

2. Sometimes we can find a function whose derivative we can create as follows: However only if we 

introduce a constant function. 

 

For example: 

dxe x


 )54(

 

 

If we let u = (4x+5), we know du = 4dx. However while we have the dx, we do not have a 4. This is easily 

solved however through the following manipulation: 

dxe x


 )54(4

4

1
 

This integral now contains a function and its derivative, thus substitution can be used: 

Therefore let u = (4x+5), and du = 4dx. The integral becomes: 

 

CeCedue xuu  


)54(

4

1

4

1

4

1
 

 

Remember, the substitution of u into this function is a device that we employ. Therefore our final answer 

ought not to contain u, as the original problem does not contain it. Always remember to substitute back for 

u. 

 

Note:  Unlike differentiation, there exists no general formula giving the integral of a product of two 

function i.t.o. the separate integrals of those functions. There is also no general formula giving the integral 

of a quotient of 2 functions in terms of their separate integrals. As a result, integration is trickier than 

differentiation, on the whole. 
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Integration by Parts 

 

We use this technique when we have to integrate a product: 

 

Eg.  dxxgxf )(')(  

 

When we are given this type of example, we make use of the following formula: 

 

  dxxgxfxgxfdxxgxf )()(')()()(')(  

 

 

 

 

For example: 

 dxxe x
 

We pick f as the function which is easy to differentiate, and 'g  as the function which is easy to integrate. 

Often picking a squared or cubic term for your f is a good idea, as 'f  will have a power that is then one 

lower, and hence simpler. It is a very good idea to make yourself a mini table with fgf ,',' and g , to 

keep things straight.  Also, note that when finding g , we do not bother with the arbitrary constant.  

 

 dxxe x
 

 

Therefore: 

 

x

x

egf

egxf





1'

'
 

 

Cexe

dxexedxxe

xx

xxx



  )1(
 

 

 

Thus we have managed to use the formula to integrate our original question.  

 

[Can also use the alternative notation used in Chiang: where vdu uv udv   ] 
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Another example: 

 

 xdxxsin  

 

Therefore: 

 

xgf

xgxf

cos1'

sin'




 

 

Cxxx

xdxxxxdxx



 
sincos

coscossin
 

 

 

An example with a trick: 

 

 xdxln  

 

Obviously we do not know the integral of lnx, that is why we are using this method. So we make lnx equal 

to f, and we can then find its derivative. But then what will our 'g  be? Simple, make it 1. 

 

xg
x

f

gxf





1
'

1'ln

 

 

Cxxx

dx
x

xxxxdx











 

ln

1
lnln

 

 

 

This is a handy trick which can also be used to find the integrals of some of the trigonometric functions.  

 

Some more examples: 

 

 dxxe x2
 

 

Therefore: 

 

2
1'

'

2

2

x

x

e
gf

egxf
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Cx
e

Cx
exe

dx
exe

dxxe

x

xx

xx
x













 

2

1

2

42

22

2

22

22
2

 

 

 

 

 

Another example: 

 

 xdxx ln  

 

 

2

1
'

'ln

2x
g

x
f

xgxf





 

 

 

 

C
x

x
x

dx
x

x
x

dx
x

x
x

x
xdxx



























4
ln

2

2
ln

2

2

1
ln

2
ln

22

2

22

 

 

 

 

 

Another example: 

 

  dxx
2

ln  

 

 

 

 

 

 

 

 

 

 

  xg
x

xf

gxf





1
ln2'

1'ln
2
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    Cxxxxx

xdxxx

dx
x

xxxxdxx



























ln2ln

ln2ln

1
ln2lnln

2

2

22

 

 

The last line uses a result that we proved a few examples ago. 

 

 

Now let’s try a definite integral using integration by parts: 

dtte t




1

0

 

 

t

t

egf

egtf









1'

'
 

 

 

We first calculate the indefinite integral, then go back and substitute in the limits.  

Cete

dtetedtte

tt

ttt









  

 

Therefore: 

 

   

e

e

eee

etedtte ttt

2
1

21

01

1

011

1

0

1

0

















 

 

You should now make sure you can do the integration practice questions.  

 

 

 

An example of an economic application of integrals: 

 

One simple application is to find a ‘total’ quantity from a ‘marginal’ quantity. Suppose a firm has a 

marginal cost 3'( ) 1 2
x

C x e   where x denotes output. Then total cost is: 

 

3 3( ) (1 2 ) 6
x x

C x e dx x e B     , where B is the constant of integration. 

 


