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Section 3: Optimisation

ECO4112F 2011

We’re now going to turn our attention to optimisation problems. Optimisation problems
are central to economics because they allow us to model choice. After all, economics is
all about making choices in order to achieve certain goals, whether it be an individual
maximising their utility, or a firm maximising its profits.

When we formulate an optimisation problem, the first thing we need to do is specify an
objective function, where the dependent variable tells us what we are trying to maximise,
and the independent variables represent those variables over which we have a choice, and
whose values will ultimately affect the dependent variable. The whole point of optimisation
is to find a set of independent variables (or choice variables) that allow us to achieve the
desired value of our objective function.

We begin by introducing the concept of the second derivative.

1 The second derivative

If f is a differentiable function, then f ′ is a function. If f ′ is differentiable, we denote its
derivative by f ′′, and call it the second derivative of f . This generalises to higher order
derivatives:

f(x) : original function

f ′(x) =
dy

dx
: first derivative

f ′′(x) =
d

dx

(
dy

dx

)
=
d2y

dx2
: second derivative

fn(x) =
dny

dxn
: nth order derivative

Example 1

If y = f (x) = x3 + 2x2 + 3x− 1

then
dy

dx
= f ′(x) = 3x2 + 4x+ 3

and
d2y

dx2
= f ′′(x) = 6x+ 4

What do these derivatives measure?
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• f ′(x) measures the slope (rate of change) of f(x)

• f ′′(x) measures the rate of change of the slope of f(x)

Recall that

f ′(x) > 0
f ′(x) < 0

}
means that the value of the function, i.e. f(x), is

{
increasing
decreasing

Now

f ′′(x) > 0
f ′′(x) < 0

}
means that the slope of the curve, i.e. f ′(x), is

{
increasing
decreasing

Thus for positive first derivatives:

• f ′(x) > 0 and f ′′(x) > 0⇒ the slope of the curve is positive and increasing, so f(x)
is increasing at an increasing rate.

• f ′(x) > 0 and f ′′(x) < 0⇒ the slope of the curve is positive but decreasing, f(x) is
increasing at a decreasing rate.

The case of a negative first derivative can be interpreted analogously, but we must be
a little more careful:

• f ′(x) < 0 and f ′′(x) > 0⇒ the slope of the curve is negative and increasing, but this
means the slope is changing from (−11) to a larger number (−10). In other words,
the negative slope becomes less steep as x increases.

• f ′(x) < 0 and f ′′(x) < 0⇒ the slope of the curve is negative and decreasing, and so
the negative slope becomes steeper as x increases.

Definition 1 If we pick any pair of points M and N on the curve f(x), join them by a
straight line and the line segment MN lies entirely below the curve, then we say f(x) is a
strictly concave function.

If the line segment MN lies either below the curve, or along (coinciding with) the curve,
then f(x) is a concave function (but not strictly so).

Definition 2 If we pick any pair of points M and N on the curve f(x), join them by a
straight line and the line segment MN lies entirely above the curve, then we say f(x) is a
strictly convex function.

If the line segment MN lies either above the curve, or along (coinciding with) the curve,
then f(x) is a convex function (but not strictly so).
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Note that (nonstrictly) concave or convex functions may contain linear segments, but
strictly concave or convex functions can never contain a linear segment anywhere. Strictly
concave (convex) functions must be concave (convex) functions, but the converse is not
true.

The second derivative relates to the curvature of f(x) as follows:

• if f ′′(x) < 0 for all x, then f(x) must be a strictly concave function.

• if f ′′(x) > 0 for all x, then f(x) must be a strictly convex function.

2 Finding and classifying critical points

We begin with the simple case where y is a function of one variable.
Consider a function y = f(x). To find and classify its critical points, we:

1. Find f ′(x) and f ′′(x).

2. Find the critical points by setting f ′(x) = 0.

3. Classify the critical points using the second derivative test:

For each critical point (x∗, y∗), calculate f ′′(x∗). If

(a) f ′′(x∗) < 0, then (x∗, y∗) is a maximum.

(b) f ′′(x∗) > 0, then (x∗, y∗) is a minimum.

(c) f ′′(x∗) = 0, then (x∗, y∗) may be a maximum, minimum or point of inflexion.
We must then use the following test: Find the sign of f ′(x) when x is slightly
less than x∗ (which is written x = x∗−) and when x is slightly greater than x∗

(which is written x = x∗+). If

• f ′(x) changes from positive to negative when x changes from x∗− to x∗+,
then (x∗, y∗) is a maximum.

• f ′(x) changes from negative to positive when x changes from x∗− to x∗+,
then (x∗, y∗) is a minimum.

• f ′(x) does not change sign, then (x∗, y∗) is a critical point of inflexion.

Example 2 Find and classify the critical points of the function

y = 2x3 − 3x2 − 12x+ 9

Step 1:

dy

dx
= 6x2 − 6x− 12

d2y

dx2
= 6 (2x− 1)
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Step 2:

dy

dx
= 0

⇒ 6x2 − 6x− 12 = 0

x2 − x− 2 = 0

(x+ 1) (x− 2) = 0

⇒ x = −1; 2

The critical points are therefore (−1, 16) and (2,−11) .
Step 3:

x = −1 :
d2y

dx2
= −18 < 0⇒ this is a relative maximum

x = 2 :
d2y

dx2
= 18 > 0⇒ this is a relative minimum

Example 3 Find and classify the critical points of the function

y = x3 − 3x2 + 2

Step 1:

dy

dx
= 3x2 − 6x

d2y

dx2
= 6x− 6

Step 2:

dy

dx
= 0

⇒ 3x2 − 6x = 0

3x (x− 2) = 0

⇒ x = 0 or x = 2

The critical points are therefore (0, 2) and (2,−2) .
Step 3:

x = 0 :
d2y

dx2
= −6 < 0⇒ this is a local maximum

x = 2 :
d2y

dx2
= 6 > 0⇒ this is a local minimum
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Example 4 Find and classify the extremum of the function

y = 4x2 − x

Step 1:

dy

dx
= 8x− 1

d2y

dx2
= 8

Step 2:

dy

dx
= 0

⇒ 8x− 1 = 0

⇒ x =
1

8

The extremum is therefore

(
1

8
,− 1

16

)
.

Step 3:

x =
1

8
:
d2y

dx2
= 8 > 0⇒ this is a relative minimum

Example 5 The ambiguous case: We look at the case 3 (c).
Consider the following three cases:

(i) y = x4

(ii) y = −x4

(iii) y = x3

In each case, there is a critical point at the origin (0, 0), and
d2y

dx2
= 0 when x = 0.

However, ( you should verify this) the critical point is a minimum in case (i), a maxi-
mum in case (ii) and point of inflexion in case (iii).

2.1 Economic Application

Example 6 Find and classify the extremum of the average cost function

AC = f (Q) = Q2 − 5Q+ 8

Step 1:

f ′ (Q) = 2Q− 5

f ′′ (Q) = 2
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Step 2:

f ′ (Q) = 0

⇒ 2Q− 5 = 0

⇒ Q =
5

2

When Q =
5

2
, AC =

7

4
Step 3:

Q =
5

2
: f ′′ (Q) = 2 > 0⇒ this is a relative minimum

This accords with our economic intuition, since the average cost curve is U-shaped.

3 Optimisation

Optimisation is concerned with finding the maximum or minimum value of a function
usually, but not always, subject to some constraint(s) on the independent variable(s).
Whether the maximum or minimum is required depends on whether the function represents
a desirable quantity such as profit or an undesirable quantity such as cost.

3.1 Maxima and minima: local and global

A maximum point is often called a local maximum to emphasize the fact that y has its
greatest value in a neighbourhood of the maximum point. Similarly a minimum point is
often called a local minimum.

3.1.1 Conditions for local optima

Consider the twice differentiable function f(x).

1. If f ′(x∗) = 0 and f ′′(x∗) < 0, the function f has a local maximum where x = x∗.

2. If f ′(x∗) = 0 and f ′′(x∗) > 0, the function f has a local minimum where x = x∗.

We refer to the condition f ′(x∗) = 0 as the first-order condition (FOC), and to the
conditions f ′′(x∗) < 0 and f ′′(x∗) > 0 as second-order conditions (SOCs).
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3.1.2 Local vs global

A global maximum point is a local maximum point (x∗, y∗) of the curve y = f(x) which
has the additional property that

y∗ ≥ f(x), ∀x ∈ R

Similarly, a global minimum point is a local minimum point (x∗, y∗) of the curve y =
f(x) which has the additional property that

y∗ ≤ f(x), ∀x ∈ R

Global maxima (minima) may be found as follows: Start by finding the local maxima
(minima). Provided a global maximum (minimum) exists, it (or they) may be found by
comparing the values of y at the local maxima (minima). In general, the only way to tell
whether a global maximum (minimum) exists is to sketch the curve, and in particular to
consider how y behaves as x→ ±∞.

3.2 Economic Application

Consider the problem of the profit maximising firm:

max
Q

Π(Q) = R(Q)− C(Q)

where Q denotes output, R revenue, C cost and Π profit.
FOC:

Π′(Q) = R′(Q)− C ′(Q) = 0

⇒ R′(Q) = C ′(Q)

MR = MC

SOC

Π′′(Q) = R′′(Q)− C ′′(Q)

If R′′(Q) < C ′′(Q), then Π′′(Q) < 0

This says that the slope of the marginal revenue curve must be less than the slope of
the marginal cost curve at the profit maximising level of output.

Example 7 Suppose a firm faces the following total revenue and total cost functions

R(Q) = 1200Q− 2Q2

C(Q) = Q3 − 61.25Q2 + 1528.5Q+ 2000
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Find the maximum profit that can be attained.

Π(Q) = R(Q)− C(Q)

= 1200Q− 2Q2 −
(
Q3 − 61.25Q2 + 1528.5Q+ 2000

)
= −Q3 + 59.25Q2 − 328.5Q− 2000

The problem is then to

max
Q

Π(Q) = −Q3 + 59.25Q2 − 328.5Q− 2000

Find the first and second derivatives

Π′(Q) = −3Q2 + 118.5Q− 328.5

Π′′(Q) = −6Q+ 118.5

FOC

Π′(Q) = −3Q2 + 118.5Q− 328.5 = 0

⇒ Q = 3 or Q = 36.5 (use the quadratic formula)

SOC

Π′′(3) = 100.5 > 0⇒ this a relative minimum

Π′′(36.5) = −100.5 < 0⇒ this a relative maximum

Therefore, to maximise profits the firm should produce 36.5 units of output. When
Q = 36.5,Π = 16318.44.

Example 8 Suppose a monopolist faces the demand function

x = 100− p

where x is output and p is price, and let the monopolist’s total cost be

C(x) =
1

3
x3 − 7x2 + 111x+ 50

Find the output and price that maximise profit, and the maximal profit.
We begin by solving the demand equation for price in terms of output, and multiplying

by output to obtain the revenue:

R(x) = px = (100− x)x = 100x− x2
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Profit is given by

Π(x) = R(x)− C(x)

= −1

3
x3 + 6x2 − 11x− 50

By differentiation:

Π′(x) = −x2 + 12x− 11

Π′′(x) = −2x+ 12

FOC:

Π′(x) = 0

⇒ −x2 + 12x− 11 = 0

(x− 1) (x− 11) = 0

x = 1; 11

SOCs:

Π′′(1) = 10 > 0⇒ this is a local minimum

Π′′(11) = −10 < 0⇒ this is a local maximum

Thus profit is maximised at output x = 11 and price p = 89, and the maximal profit is
111.33.

We now consider the case of the function z = f(x, y). We first consider the partial
derivatives of this function.

4 Partial derivatives

You will recall that we can define the following partial derivatives:

fx =
∂f

∂x

fy =
∂f

∂y

We can differentiate these again:

fxx =
∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
fyy =

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
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These are known as the second partial derivatives of the function f(x, y).
Similarly we may define the expressions

fxy =
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
fyx =

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
These are called the cross (or mixed) partial derivatives of f(x, y).
If the two cross partial derivatives are continuous, then according to Young’s theorem

they will be equal, i.e.
fxy = fyx

Example 9 Consider the function f(x, y) = x2y + y5.

fx = 2xy

fy = x2 + 5y4

fxx = 2y

fyy = 20y3

fxy = fyx = 2x

Example 10 If f (x, y) = x3 + 5xy − y2, then

fx = 3x2 + 5y

fy = 5x− 2y

fxx = 6x

fyy = −2

fxy = fyx = 5

Example 11 If f (x, y) = 4x2 − 3xy + 2y2, then

fx = 8x− 3y

fy = −3x+ 4y

fxx = 8

fyy = 4

fxy = fyx = −3
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Example 12 If f (x, y) = 10x3 + 15xy − 6y2, then

fx = 30x2 + 15y

fy = 15x− 12y

fxx = 60x

fyy = −12

fxy = fyx = 15

4.1 Gradient and Hessian

Given the smooth function f(x, y), we may define the gradient vector

Df(x, y) =

[
fx
fy

]
and the Hessian matrix

H = D2f(x, y) =

[
fxx fxy
fyx fyy

]
By Young’s theorem, fxy = fyx and so the Hessian matrix is symmetric.

5 Optimisation with several variables

Recall that for a function of one variable f(x), the conditions for a local maximum and
minimum were:

1. If f ′(x∗) = 0 and f ′′(x∗) < 0, the function f has a local maximum where x = x∗.

2. If f ′(x∗) = 0 and f ′′(x∗) > 0, the function f has a local minimum where x = x∗.

How can we extend these results to functions of two variables?
The two-variable analogue of the first derivative is the gradient vector, and so state-

ments about the first derivative being zero translate into statements about gradient vectors
being zero-vectors. The two-variable analogue of the second derivative is the Hessian,
which is a symmetric matrix, and so statements about second derivatives being negative
translate into statements about Hessians being negative definite, and statements about
second derivatives being positive translate into statements about Hessians being positive
definite.

Thus, given a function f(x, y),the conditions for a local maximum and minimum are:

1. If Df(x∗, y∗) = 0 and H = D2f(x∗, y∗) is a negative definite symmetric matrix, then
the function f(x, y) has a local maximum at (x∗, y∗).
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2. If Df(x∗, y∗) = 0 and H = D2f(x∗, y∗) is a positive definite symmetric matrix, then
the function f(x, y) has a local minimum at (x∗, y∗).

Example 13 Find and classify the extrema of the function

f(x, y) = x2 + xy + 2y2 + 3

We calculate the gradient and Hessian:

Df(x, y) =

[
fx
fy

]
=

[
2x+ y
x+ 4y

]

H = D2f(x, y) =

[
fxx fxy
fyx fyy

]
=

[
2 1
1 4

]
FOCs:

Df(x, y) = 0

⇒
[
2x+ y
x+ 4y

]
=

[
0
0

]
Solve these simultaneously to get x = 0, y = 0.
SOC:

|H1| = |2| = 2 > 0

|H2| = |H| = 7 > 0

Thus, H is positive definite and so x = 0, y = 0, f(x, y) = 3 is a local minimum.

Example 14 Find and classify the critical points of the function

f(x, y) = −5x2 − y2 + 2xy + 6x+ 2y + 7

We calculate the gradient and Hessian:

Df(x, y) =

[
fx
fy

]
=

[
−10x+ 2y + 6
−2y + 2x+ 2

]
12



H = D2f(x, y) =

[
fxx fxy
fyx fyy

]
=

[
−10 2

2 −2

]
FOCs:

Df(x, y) = 0

⇒
[
−10x+ 2y + 6
−2y + 2x+ 2

]
=

[
0
0

]
Solve these simultaneously to get x = 1, y = 2.
SOC:

|H1| = |−10| = −10 < 0

|H2| = |H| = 20− 4 = 16 > 0

Thus, H is negative definite and so f(1, 2) = 12 is a local maximum.

Example 15 Find and classify the extrema of the function

f(x, y) = ax2 + by2 + c

We calculate the gradient and Hessian:

Df(x, y) =

[
fx
fy

]
=

[
2ax
2by

]

H = D2f(x, y) =

[
fxx fxy
fyx fyy

]
=

[
2a 0
0 2b

]
FOCs:

Df(x, y) = 0

⇒
[
2ax
2by

]
=

[
0
0

]
13



Solve these to get x = 0, y = 0.
SOC:

|H1| = |2a| = 2a

|H2| = |H| = 4ab

The definiteness of H depends on the values of a and b, so let’s look at the different
possibilities:

1. a > 0, b > 0 : |H1| > 0, |H2| > 0 ⇒ H is positive definite and so f(0, 0) is a relative
minimum.

2. a < 0, b < 0 : |H1| < 0, |H2| > 0⇒ H is negative definite and so f(0, 0) is a relative
maximum.

3. a > 0, b < 0 : |H1| > 0, |H2| < 0⇒ H is indefinite.

4. a < 0, b > 0 : |H1| < 0, |H2| < 0⇒ H is indefinite.

5.1 Higher dimensions

We can generalise these results to functions of n variables. The gradient vector will be an
n-vector and the Hessian matrix will be an n× n matrix.

Thus, given a function f(x),the conditions for a local maximum and minimum are:

1. If Df(x∗) = 0 and H = D2f(x∗) is a negative definite symmetric matrix, then the
function f(x) has a local maximum at x = x∗.

2. If Df(x∗) = 0 and H = D2f(x∗) is a positive definite symmetric matrix, then the
function f(x) has a local minimum at x = x∗.

5.2 Global optima

Given a function f(x),the conditions for a unique global maximum and minimum are:

1. If Df(x∗) = 0 and H = D2f(x) is everywhere negative definite, then the function
f(x) is strictly concave and has a unique global maximum at x = x∗.

2. If Df(x∗) = 0 and H = D2f(x) is everywhere positive definite, then the function
f(x) is strictly convex and has a unique global minimum at x = x∗.
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Given a function f(x),the conditions for a global maximum and minimum are:

1. IfDf(x∗) = 0 and H = D2f(x) is everywhere negative semidefinite, then the function
f(x) is concave and has a global maximum at x = x∗.

2. If Df(x∗) = 0 and H = D2f(x) is everywhere positive semidefinite, then the function
f(x) is convex and has a global minimum at x = x∗.

Example 16 In the last three examples, the Hessian matrices were everywhere negative or
positive definite and thus the extrema found are in fact unique global maxima or minima.

Example 17 Find and classify the extrema of the function

f(x, y) = 8x3 + 2xy − 3x2 + y2 + 1

We calculate the gradient and Hessian:

Df(x, y) =

[
fx
fy

]
=

[
24x2 + 2y − 6x

2x+ 2y

]

H = D2f(x, y) =

[
fxx fxy
fyx fyy

]
=

[
48x− 6 2

2 2

]
FOCs:

Df(x, y) = 0

⇒
[
24x2 + 2y − 6x

2x+ 2y

]
=

[
0
0

]
Solve these simultaneously:

24x2 + 2y − 6x = 0 = 2x+ 2y

⇒ 24x2 + 2y − 6x = 2x+ 2y

24x2 − 8x = 0

x (24x− 8) = 0

∴ x = 0 or x =
8

24
=

1

3
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SOC:

|H1| = |48x− 6| = 48x− 6 < 0 when x <
6

48

> 0 when x >
6

48

Thus, the Hessian cannot be everywhere positive or negative definite.
We evaluate the Hessian at each critical point.
When x = 0 :

|H1| = |−6| = −10 < 0

|H2| = |H| = −16 < 0

Thus, H is neither negative nor positive definite and so x = 0 is neither a local maxi-
mum nor a local minimum.

When x =
1

3
:

|H1| = |10| = 10 > 0

|H2| = |H| = 16 > 0

Thus, H is positive definite and so x =
1

3
is a local minimum.

When x =
1

3
, y = −x = −1

3
and f(x, y) = −23

27
.

Example 18 Find and classify the extrema of the function

f(x, y) = x3 + y2 − 4xy − 3x

Gradient and Hessian:

Df(x, y) =

[
3x2 − 4y − 3

2y − 4x

]

H = D2f(x, y)

=

[
6x −4
−4 2

]
FOCs:

Df(x, y) = 0

⇒
[
3x2 − 4y − 3

2y − 4x

]
=

[
0
0

]
Solve these simultaneously to get the critical points:
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(a) x = 3, y = 6, f(3, 6) = −18

(b) x = −1

3
, y = −2

3
, f

(
−1

3
,−2

3

)
=

14

27

SOC:

|H1| = |6x| = 6x < 0 when x < 0

> 0 when x > 0

Thus, the Hessian cannot be everywhere positive or negative definite.
We evaluate the Hessian at each critical point. Consider x = 3, y = 6 :

H = D2f(3, 6)

=

[
18 −4
−4 2

]

|H1| = |18| = 18 > 0

|H2| = |H| = 20 > 0

Thus, H is positive definite at x = 3, y = 6 and so f(3, 6) is a local minimum.

Consider x = −1

3
, y = −2

3
:

H = D2f

(
−1

3
,−2

3

)
=

[
−2 −4
−4 2

]

|H1| = |−2| = −2 < 0

|H2| = |H| = −20 < 0

Thus, H is neither positive nor negative definite at x = −1

3
, y = −2

3
and so f

(
−1

3
,−2

3

)
is neither a local minimum nor maximum..

5.3 Economic Application

Example 19 A firm produces two products, with price P1 and P2 respectively. The firm’s
total revenue function is given by

TR = P1Q1 + P2Q2

17



The firm’s total cost function is given by

TC = 2Q2
1 +Q1Q2 + 2Q2

2

Find the profit maximising output of each good for this firm under perfect competition.
First, we need to specify the objective function. The firm wants to maximise profits:

max
Q1,Q2

Π = TR− TC = P1Q1 + P2Q2 − 2Q2
1 −Q1Q2 − 2Q2

2

Note that under perfect competition firms are price takers, so the choice variables for
the firm must be the quantities of each good that it produces.

Gradient and Hessian:

DΠ(x, y) =

[
ΠQ1

ΠQ2

]
=

[
P1 − 4Q1 −Q2

P2 −Q1 − 4Q2

]

H = D2Π(x, y)

=

[
ΠQ1Q1 ΠQ1Q2

ΠQ2Q1 ΠQ2Q2

]
=

[
−4 −1
−1 −4

]
FOCs:

DΠ(x, y) = 0

⇒
[
P1 − 4Q1 −Q2

P2 −Q1 − 4Q2

]
=

[
0
0

]

Solve these simultaneously to get Q∗1 =
4P1 − P2

15
, Q∗2 =

4P2 − P1

15
.

SOC:

|H1| = |−4| = −4 < 0

|H2| = |H| = 15 > 0

Thus, H is everywhere negative definite and so the point is a unique global maximum.

The firm will be maximising its profits when it produces Q∗1 =
4P1 − P2

15
, Q∗2 =

4P2 − P1

15
.
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Example 20 Consider a monopolist producing two goods X and Y . Let the quantities
produced of the two goods be x and y, and let the prices charged be pX and pY . The inverse
demand functions for the goods are:

pX =
1

10
(54− 3x− y)

pY =
1

5
(48− x− 2y)

and the firm’s total cost is

C(x, y) = 8 + 1.5x+ 1.8y

Hence revenue is

R(x, y) = pXx+ pY y

=
1

10

(
54x+ 96y − 3x2 − 3xy − 4y2

)
and profit is

Π(x, y) = R(x, y)− C(x, y)

=
1

10

(
−80 + 39x+ 78y − 3x2 − 3xy − 4y2

)
Gradient and Hessian:

DΠ(x, y) =

[
Πx

Πy

]
=

[
1
10 (39− 6x− 3y)
1
10 (78− 3x− 8y)

]

H = D2Π(x, y)

=

[
Πxx Πxy

Πyx Πyy

]
=

[
−0.6 −0.3
−0.3 −0.8

]
FOCs:

DΠ(x, y) = 0

⇒
[

1
10 (39− 6x− 3y)
1
10 (78− 3x− 8y)

]
=

[
0
0

]
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Solve these simultaneously to get x = 2, y = 9. Then pX = 3.9, pY = 5.6 and Π = 31.
SOC:

|H1| = |−0.6| = −0.6 < 0

|H2| = |H| = 0.39 > 0

Thus, H is everywhere negative definite and so Π(2, 9) = 31 is a unique global maxi-
mum.

Example 21 As financial advisor to The Journal of Important Stuff, you need to deter-
mine how many pages should be allocated to important stuff about economics (E) and how
much should be allocated to other unimportant issues (U) in order to maximise your sales.
Determine how many pages you should allocate to economics if your sales function is given
by

S(U,E) = 100U + 310E − 1

2
U2 − 2E2 − UE

Our problem is to

max
U,E

S = 100U + 310E − 1

2
U2 − 2E2 − UE

Gradient and Hessian:

DΠ(x, y) =

[
∂S/∂U
∂S/∂E

]
=

[
100− U − E
310− 4E − U

]

H = D2Π(x, y)

=

[
SUU SUE
SEU SEE

]
=

[
−1 −1
−1 −4

]
FOCs:

DΠ(x, y) = 0

⇒
[
100− U − E
100− U − E

]
=

[
0
0

]
Solve these simultaneously to get U = 30, E = 70.
SOC:

|H1| = |−1| = −1 < 0

|H2| = |H| = 3 > 0

Thus, H is everywhere negative definite and so S(30, 70) is a unique global maximum.
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6 Constrained Optimisation

In the optimisation problems we have studied up until now, we have assumed that the firm
or individual is able to make their choice freely, without facing any constraints. In reality,
however, our choices are often constrained by our budgets, our time availability, and so
on. In order to incorporate this element of decision-making into our analysis, we undertake
constrained optimisation. Here, we still aim to maximize some objective function, but in
so doing, have to take some constraint into account as well.

To do this, we use the Lagrangian multiplier method.

6.1 The Lagrangian

Let f = (x, y) and g = (x, y) be functions of two variables. Our problem is to

max
x,y

f(x, y) subject to the constraint g(x, y) = c

To solve this problem, we employ the Lagrangian

L(x, y, λ) = f(x, y) + λ (c− g(x, y))

Here, the symbol λ represents the Lagrangian multiplier. (Note that we always write
the Lagrangian function in terms of the constant minus the choice variables) Effectively,
we are incorporating the constraint into the function, and treating λ as an additional
variable in the function.

The first-order conditions are:

∂L

∂x
= 0

∂L

∂y
= 0

∂L

∂λ
= 0

We solve these three equations simultaneously to find the optimal x∗, y∗, λ∗.

Example 22 The problem is to

max
x,y

4xy − 2x2 + y2 subject to 3x+ y = 5

Set up the Lagrangian

L(x, y, λ) = 4xy − 2x2 + y2 + λ (5− 3x− y)
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FOCs:

∂L

∂x
= 4y − 4x− 3λ = 0

∂L

∂y
= 4x+ 2y − λ = 0

∂L

∂λ
= 5− 3x− y = 0

Solve simultaneously to give x∗ = −1, y∗ = 8, λ∗ = 12.

In order to confirm that this represents a constrained maximum, we need to consider
the consider the second order conditions.

6.2 Second-order conditions

We first define the bordered Hessian. The bordered Hessian consists of the Hessian[
Lxx Lxy
Lyx Lyy

]
bordered on top and to the left by the derivatives of the constraint, gx and gy,

plus a zero in the principal diagonal. The bordered Hessian is symmetric, and is denoted
by H , where the bar on top symbolises the border.

H =

 0 gx gy
gx Lxx Lxy
gy Lyx Lyy


The first value in the top left-hand corner of the bordered Hessian will always be zero.
The remaining values in the border are simply given by the derivative of the constraint.

We will evaluate the leading principal minors of the bordered Hessian to check whether
our solution constitutes a minimum or maximum point. However, the conditions here are
somewhat different, so be careful.

The first important point is that when we identify the leading principal minors of a
bordered Hessian, we ignore the border to figure out what rows and columns to include
in the leading principal minors, but then, before we evaluate the leading principal minors,
add the border back in. If this sounds confusing, an example might make it clearer.

Consider the bordered Hessian:

H =

 0 gx gy
gx Lxx Lxy
gy Lyx Lyy


To find the second leading principal minor

∣∣H2

∣∣, we ignore the border of the Hessian,
and pretend that the matrix we’re looking at is given by

H =

[
Lxx Lxy
Lyx Lyy

]
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In this case, we already have only two rows and two columns, so this determinant would
be our second leading principal minor. . . . HOWEVER, we must now add the border back
in before we evaluate the determinant. In effect, the second principal minor of our bordered
Hessian is given by: ∣∣H2

∣∣ =
∣∣H∣∣ =

∣∣∣∣∣∣
0 gx gy
gx Lxx Lxy
gy Lyx Lyy

∣∣∣∣∣∣
Note that the first leading principal minor

∣∣H1

∣∣ is always negative and so we ignore it:

∣∣H1

∣∣ =

∣∣∣∣ 0 gx
gx Lxx

∣∣∣∣
= 0− g2x
= −g2x < 0

The conditions for local constrained extremum are:

1. If Lλ = Lx = Ly = 0 and
∣∣H2

∣∣ is positive, then the function f (x, y) has a local
constrained maximum at (x∗, y∗).

2. If Lλ = Lx = Ly = 0 and
∣∣H2

∣∣ is negative, then the function f (x, y) has a local
constrained minimum at (x∗, y∗).

This of course generalises to the n-variable case. Given f (x1, x2, . . . , xn) subject to
g (x1, x2, . . . , xn) = c; with L = f (x1, x2, . . . , xn) + λ (c− g (x1, x2, . . . , xn)) :

First we note that:

• H is negative definite iff
∣∣H2

∣∣ > 0,
∣∣H3

∣∣ < 0,
∣∣H4

∣∣ > 0, etc. (i.e. the leading principal
minors alternate in sign beginning with a positive)

• H is positive definite iff.
∣∣H2

∣∣ < 0,
∣∣H3

∣∣ < 0,
∣∣H4

∣∣ < 0, etc. (i.e. the leading principal
minors are all negative).

Now

1. If Lλ = L1 = L2 = . . . = Ln = 0 and H is negative definite, then the function
f (x1, x2, . . . , xn) has a local constrained maximum at (x∗1, x

∗
2, . . . , x

∗
n) .

2. If Lλ = L1 = L2 = . . . = Ln = 0 and H is positive definite, then the function
f (x1, x2, . . . , xn) has a local constrained minimum at (x∗1, x

∗
2, . . . , x

∗
n) .
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Example 23 Consider the previous example

max
x,y

4xy − 2x2 + y2 subject to 3x+ y = 5

The Lagrangian

L(x, y, λ) = 4xy − 2x2 + y2 + λ (5− 3x− y)

We form the bordered Hessian:

H =

 0 gx gy
gx Lxx Lxy
gy Lyx Lyy


=

0 3 1
3 −4 4
1 4 2


Check the SOC: ∣∣H2

∣∣ =
∣∣H∣∣ = 10 > 0

Thus the bordered Hessian is negative definite and our optimum represents a constrained
maximum.

24



Example 24 The problem is to

max
x1,x2

U = x1x2 + 2x1 subject to 4x1 + 2x2 = 60

Set up the Lagrangian

L(x1, x2, λ) = x1x2 + 2x1 + λ (60− 4x1 − 2x2)

FOCs:

∂L

∂x1
= x2 + 2− 4λ = 0 (1)

∂L

∂x2
= x1 − 2λ = 0 (2)

∂L

∂λ
= 60− 4x1 − 2x2 = 0 (3)

Solve simultaneously:

From (1) : x2 = 4λ− 2

From (2) : x1 = 2λ

Substitute these into (12):

60− 4x1 − 2x2 = 0

⇒ 60− 4 (2λ)− 2 (4λ− 2) = 0

16λ = 64

∴ λ∗ = 4

If λ∗ = 4, x∗1 = 8, x∗2 = 14, U∗ = 128.
SOC:

H =

 0 gx gy
gx Lxx Lxy
gy Lyx Lyy


=

 0 −4 −2
−4 0 1
−2 1 0


∣∣H2

∣∣ =
∣∣H∣∣ = 16 > 0

Thus the bordered Hessian is negative definite and U∗ = 128 represents a constrained
maximum.
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Example 25 Find the extremum of z = xy subject to x+ y = 6.
Set up the Lagrangian

L = xy + λ (6− x− y)

FOCs:

∂L

∂x
= y − λ = 0 (4)

∂L

∂y
= x− λ = 0 (5)

∂L

∂λ
= 6− x− y = 0 (6)

Solve simultaneously. From (4) and (5):

λ = x = y

Substitute y = x into (6):

6− 2x = 0

⇒ x∗ = 3

Thus our constrained optimum is given by x∗ = 3, y∗ = 3, λ∗ = 3 and z∗ = 9.
SOC:

H =

 0 gx gy
gx Lxx Lxy
gy Lyx Lyy


=

 0 −1 −1
−1 0 1
−1 1 0


∣∣H2

∣∣ =
∣∣H∣∣ = 2 > 0

Thus the bordered Hessian is negative definite and z∗ = 9 represents a constrained
maximum.

Example 26 Find the extremum of z = x2 + y2 subject to x+ 4y = 2.
Set up the Lagrangian

L = x2 + y2 + λ (2− x− 4y)

FOCs:

∂L

∂x
= 2x− λ = 0 (7)

∂L

∂y
= 2y − 4λ = 0 (8)

∂L

∂λ
= 2− x− 4y = 0 (9)
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Solve simultaneously.

From (7): x =
1

2
λ

From (8): y = 2λ

Substitute these into (9):

2− 1

2
λ− 4 (2λ) = 0

⇒ 4− 17λ = 0

∴ λ∗ =
4

17

If λ∗ =
4

17
, x∗ =

2

17
, y∗ =

8

17
, and z∗ =

4

17
.

SOC:

H =

 0 gx gy
gx Lxx Lxy
gy Lyx Lyy


=

 0 −1 −4
−1 2 0
−4 0 2


∣∣H2

∣∣ =
∣∣H∣∣ = −34 < 0

Thus the bordered Hessian is positive definite and z∗ =
4

17
represents a constrained

minimum.

6.3 An interpretation of the Lagrangian multiplier

The Lagrangian multiplier λ∗ gives a measure of the effect of a change in the constraint on
the optimal value of the objective function.

6.4 Economic Applications

6.4.1 The utility maximising consumer

The consumer’s problem is to maximise utility subject to a budget constraint:

max
x,y

U = U(x1, x2) subject to x1p1 + x2p2 = m

The Lagrangian is:

L(x1, x2, λ) = U(x1, x2) + λ (m− x1p1 − x2p2)
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FOCs:

∂L

∂x
= U1 − λp1 = 0 (10)

∂L

∂y
= U2 − λp2 = 0 (11)

∂L

∂λ
= m− x1p1 − x2p2 = 0 (12)

(10)÷ (11) :

U1

U2
=

p1
p2

⇒ −U1

U2︸ ︷︷ ︸ = −p1
p2︸︷︷︸

slope of slope of

indifference curve budget constraint

Recall that λ∗ measures the comparative static effect of the constraint constant on the
optimal value of the objective function.

Hence, here

λ∗ =
∂U∗

∂m

Thus, λ∗ gives the marginal utility of money (budget money) when the consumer’s
utility is maximised.

SOC:

H =

 0 p1 p2
p1 U11 U12

p2 U21 U22


For a constrained maximum∣∣H2

∣∣ =
∣∣H∣∣ = 2p1p2U12 − p22U11 − p21U22 > 0

6.4.2 Least cost combination of inputs

The firm has some choice of what technique to use when producing a given output level -
e.g. a choice between a capital-intensive technique and a labour-intensive technique. The
firm’s cost function is then defined as the minimal cost of producing Q units of output
when input prices are w and r.
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Let the firm have the production function F (K,L). The firm wants to choose an input
combination (K,L) so as to produce a given output Q at minimal cost. Its problem is
therefore to

min
K,L

rK + wL subject to Q = F (K,L)

The Lagrangian is:

L(K,L, λ) = rK + wL+ λ (Q− F (K,L))

FOCs:

∂L

∂K
= r − λFK = 0 (13)

∂L

∂L
= w − λFL = 0 (14)

∂L

∂λ
= Q− F (K,L) = 0 (15)

(13)÷ (14) :

r

w
=

FK
FL

⇒ − r
w︸︷︷︸ = −FK

FL︸ ︷︷ ︸
slope of slope of

isocost isoquant (MRTS)

Here λ∗ gives the marginal cost of production in the optimal state.

SOC:

H =

 0 FK FL
FK −λFKK −λFKL
FL −λFLK −λFLL


For a constrained minimum∣∣H2

∣∣ =
∣∣H∣∣ = λ

(
FKKF

2
L − 2FKLFKFL + FLLF

2
K

)
< 0
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7 Inequality Constraints

The optimisation problems we have considered thus far all contain constraints that hold
with equality.

However, often optimisation problems have constraints that take the form of inequalities
rather than equalities. For example, the constraint may require that the consumption of a
good is non-negative, i.e. c ≥ 0.

We therefore need a new approach to solving these problems. A modification of the
Lagrange multiplier model presents a technique for solving optimisation problems in which
the constraints take the form of inequalities.

7.1 Non-negativity constraints

To begin with, consider a problem with nonnegativity restrictions on the choice variables,
but with no other constraints. Taking the single-variable case, in particular, we have

Maximise y = f(x) (16)

subject to x ≥ 0

where f is assumed to be differentiable.
Three situations may arise, as seen in Chiang Figure 13.1, page 403, 4th Edition.:

(a) A local maximum of y occurs in the interior of the shaded feasible area, such
as point A in Figure 13.1, then we have an interior solution. The FOC in this

case is
dy

dx
= f ′(x) = 0, same as usual.

(b) A local maximum can also occur on the vertical axis, shown in point B, where

x = 0. Even here, where we have a boundary solution, the FOC
dy

dx
= f ′(x) = 0

is still valid.

(c) A local maximum may take the position of points C or D, because to qualify
as a local maximum the point simply has to be higher than the neighbouring
points within the feasible region. Note that here f ′(x) < 0. We can rule out
f ′(x) > 0 because if the curve is upward sloping, we can never have a maximum,
even if that point is on the vertical axis, such as point E.

We can summarise these possibilities. In order for a value of x to give a local maximum
of f in problem (16), it must satisfy one of the following three conditions:

f ′(x) = 0 and x > 0 [point A] (17)

f ′(x) = 0 and x = 0 [point B] (18)

f ′(x) < 0 and x = 0 [points C and D] (19)
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We can, in fact, consolidate these three conditions into a single statement:

f ′(x) ≤ 0 x ≥ 0 and xf ′(x) = 0 (20)

The first inequality summarises the information about f ′(x) contained in (17) to (19)
and so does the second inequality (it in fact merely restates the nonnegativity constraint).
The third equation also summarises an important feature common to (17) to (19) and
states that at least one of x and f ′(x) must be zero, so that the product of the two must
be zero. This is referred to as the complementary slackness between x and f ′(x).

We can generalise this point to a problem containing n choice variables:

Maximise y = f(x1, x2,...,xn)

subject to xj ≥ 0

The classical FOC f1 = f2 = . . . = fn must be similarly modified. The required FOC
is now:

fj ≤ 0 xj ≥ 0 and xjfj = 0 (j = 1, 2, . . . , n)

where fj is the partial derivative
∂y

dxj
.
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7.2 General inequality constraints

Let f(x, y) and g(x, y) be functions of two variables. We wish to

Maximise y = f(x, y) (21)

subject to g(x, y) ≤ 0

Note that g(x, y) ≤ 0 may be regarded as the general form for a weak inequality
involving the variables x, y. For example, the inequality

F (x, y) +G(x) ≥ H(y) + 7

can be rewritten in that form by

g(x, y) = 7− F (x, y)−G(x) +H(y) ≤ 0

Suppose that the constrained maximum for problem (21) is obtained when x = x∗ and
y = y∗. Then we have two cases to consider:

1. Case I g(x∗, y∗) < 0

In this case the constraint is said to be slack, or inactive, at (x∗, y∗). Assuming as
usual that g is continuous, g(x, y) < 0 for all points (x, y) sufficiently close to (x∗, y∗) :
but then f(x, y) ≤ f(x∗, y∗) for all such (x, y). Hence f has a local unconstrained
maximum and therefore a critical point at (x∗, y∗).

2. Case II g(x∗, y∗) = 0

In this case the constraint is said to be tight, or active, at (x∗, y∗). In particular,
(x∗, y∗) is the point which maximises f(x, y) subject to g(x, y) = 0 : hence there
exists a multiplier λ such that the Lagrangian f − λg has a critical point at (x∗, y∗).

Now recall that (x∗, y∗) maximises f(x, y) subject to the inequality constraint g(x, y) ≤
0, so that the feasible set is much larger than it would be if we had imposed the con-
straint g(x, y) = 0 at the outset. This provides us with an additional piece of
information:

if we let v(b) denote the maximal value of f(x, y) subject to g(x, y) = b,

then f(x∗, y∗) ≥ v(b) whenever b < 0.

But f(x∗, y∗) = v(0), so v(0) ≥ v(b) whenever b < 0;

it follows that v′(0) ≥ 0.

Now we know that v′(0) is the Lagrange multiplier λ,

so λ ≥ 0.

So, in case II the Lagrange method holds, with the additional information that the
multiplier is non-negative.
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We can summarise what happens at the constrained maximum (x∗, y∗) as follows:

• In case II, g(x∗, y∗) = 0, and there exists a Lagrange multiplier λ such that

∂f

∂x
− λ∂g

∂x
= 0,

∂f

∂y
− λ∂g

∂y
= 0

and λ ≥ 0

• In case I, g(x∗, y∗) < 0, and f has an unconstrained local maximum at (x∗, y∗).
Therefore, at that point,

∂f

∂x
− λ∂g

∂x
= 0,

∂f

∂y
− λ∂g

∂y
= 0

where λ = 0

These results can be combined as follows:

Proposition 1 Let the Lagrangian for problem (21) be defined as

L(x, y, λ) = f(x, y)− λg(x, y)

and let x = x∗, y = y∗ be a solution of the problem. Then there exists a number λ∗

with the following properties:

1.
∂

∂x
=

∂

∂y
= 0 at (x∗, y∗, λ∗) ;

2. λ∗ ≥ 0, g (x∗, y∗) ≤ 0 and at least one of these two quantities is zero.

Note that condition (2) states, among other things, that at least one of the two numbers
λ∗ and g (x∗, y∗) is zero: in short,

λ∗g (x∗, y∗) = 0

This property is known as complementary slackness.
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7.3 The Kuhn-Tucker theorem

The necessary conditions (1) and (2) for a constrained maximum may be generalised to
the case of many variables and constraints.

Suppose that f, g1, . . . , gm are functions of n variables: our problem is to

Maximise f(x)

subject to gi(x) ≤ 0 (i = 1, . . . ,m)

We define the Lagrangian for this problem to be

(x1, . . . , xn, λ1, . . . , λm) = f(x)− λ1g1(x)− . . .− λmgm(x)

Suppose the maximum value of f(x) subject to the constraints is obtained when x = x∗.
There exists multipliers λ∗1, . . . , λ

∗
m with the following properties:

1. At (x∗1, . . . , x
∗
n, λ
∗
1, . . . , λ

∗
m),

∂

∂xj
= 0 for j = 1, . . . , n

2. For i = 1, . . . ,m, λ∗i ≥ 0, gi(x
∗) ≤ 0 and λ∗i gi(x

∗) = 0.

These results are known as the Kuhn-Tucker theorem. Conditions (1) and (2) are
known as the Kuhn-Tucker conditions for the constrained maximisation problem.

7.3.1 Points about the Kuhn-Tucker theorem

1. Mixed constraints:

The theorem can be extended to the case where equations as well as inequalities
appear among the constraints. The necessary conditions for a constrained maximum
then emerge as mixture of those we have already discussed.

Suppose, for example, that we wish to maximise f(x) subject to the constraints
g(x) = 0 and h(x) ≤ 0. Then there exist multipliers λ and µ such that at the
optimal x :

(a)
∂

∂xj
[f(x)− λg(x)− µh(x)] = 0 for j = 1, . . . , n;

(b) g(x) = 0

(c) µ ≥ 0, h(x) ≤ 0 and at least one of them is zero.

Notice that the condition (c) refers only to µ, the multiplier associated with the
inequality constraint; the other multiplier λ may be positive, negative or zero.
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2. Non-negativity constraints:

The Kuhn-Tucker theorem can also be extended to the case where some or all of
the components of x are required to be non-negative. The extension consists of a
modification of the first Kuhn-Tucker condition similar to that in (20).

For example, if x1 is required to be non-negative, then the condition
∂

∂x1
= 0 is

replaced by
∂

∂x1
≤ 0, with equality if x1 > 0.

Or you can just proceed as normal, using x1 ≥ 0⇒ − x1 ≤ 0

3. Minimisation:

Since minimising f(x) is equivalent to maximising −f(x), we write the Lagrangian
as above, replacing f with −f.

4. So what?

The theorem is not in itself a great help in actually finding constrained maxima.
However, under appropriate assumptions about convexity, the Kuhn-Tucker condi-
tions are sufficient as well as necessary for a maximum; and if these assumptions are
satisfied, the conditions may be used to find the maximum. We end with a brief
discussion of this point.

7.4 Sufficient conditions

The main theorem on sufficient conditions for a maximum with inequality constraints is as
follows:

Theorem 1 Suppose we wish to maximise the function f(x) subject to the constraints
gi(x) ≤ 0 for i = 1, . . . ,m. Suppose the Kuhn-Tucker conditions are satisfied at the point
x∗. Then the constrained maximum is attained at x∗ if the following conditions are also
satisfied:

1. f is a quasi-concave function, and either f is a monotonic transformation of a con-
cave function or Df(x∗) 6= 0, or both.

2. the functions −g1, . . . ,−gm are all quasi-concave (or equivalently, that the functions
g1, . . . , gm are all quasi-convex).

We note that linear functions are quasi-concave, and concave functions satisfy condition
(1). Thus, the Kuhn-Tucker conditions are sufficient for an optimum when a concave
function is maximised subject to linear constraints.
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Example 27 Maximise
− (x1 − 4)2 − (x2 − 4)2

subject to
x1 + x2 ≤ 4, x1 + 3x2 ≤ 9

Rewrite the constraints so they are in the form gi(x) ≤ 0 :

x1 + x2 − 4 ≤ 0, x1 + 3x2 − 9 ≤ 0

Set up the Lagrangian

L = − (x1 − 4)2 − (x2 − 4)2 − λ1 (x1 + x2 − 4)− λ2 (x1 + 3x2 − 9)

The Kuhn-Tucker conditions are:

∂L

∂x1
= −2 (x1 − 4)− λ1 − λ2 = 0 (22)

∂L

∂x2
= −2 (x2 − 4)− λ1 − 3λ2 = 0 (23)

λ1 ≥ 0, x1 + x2 ≤ 4 and λ1 (x1 + x2 − 4) = 0

λ2 ≥ 0, x1 + 3x2 ≤ 9 and λ2 (x1 + 3x2 − 9) = 0

What are the solutions to these conditions?
Start by looking at the two conditions λ1 (x1 + x2 − 4) = 0 and λ2 (x1 + 3x2 − 9) = 0.

These two conditions yield the following four cases:
Case 1: λ1 > 0, λ2 > 0
Then x1 + x2 − 4 = 0 and x1 + 3x2 − 9 = 0,

which gives x1 =
3

2
, x2 =

5

2
.

Then equations (22) and (23) are:

5− λ1 − λ2 = 0

3− λ1 − 3λ2 = 0

which implies that λ1 = 6 and λ2 = −1, which violates the condition that λ2 > 0.
Case 2: λ1 > 0, λ2 = 0
Then x1 + x2 − 4 = 0.
Substituting λ2 = 0 into equations (22) and (23) gives:

−2 (x1 − 4)− λ1 = 0

−2 (x2 − 4)− λ1 = 0

which together with x1 + x2 − 4 = 0 gives x1 = x2 = 2 and λ1 = 4. All the conditions are
satisfied so x1 = x2 = 2 with λ1 = 4, λ2 = 0 is a possible solution.
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Case 3: λ1 = 0, λ2 > 0
Then x1 + 3x2 − 9 = 0
Substituting λ1 = 0 into equations (22) and (23) gives:

−2 (x1 − 4)− λ2 = 0

−2 (x2 − 4)− 3λ2 = 0

which together with x1 + 3x2 − 9 = 0 gives x1 =
33

10
, x2 =

19

10
, which violates x1 + x2 ≤ 4.

Case 4: λ1 = 0, λ2 = 0
Substituting λ1 = 0, λ2 = 0 into equations (22) and (23) gives:

−2 (x1 − 4) = 0

−2 (x2 − 4) = 0

which is satisfied if and only if x1 = x2 = 4, which violates x1 + x2 ≤ 4.

So x1 = x2 = 2 is the single solution of the problem and the value of the objective
function at this point is −8.

Example 28 Maximise
−x21 − x1x2 − x22

subject to
x1 − 2x2 ≤ −1, 2x1 + x2 ≤ 2

Rewrite the constraints so they are in the form gi(x) ≤ 0 :

x1 − 2x2 + 1 ≤ 0, 2x1 + x2 − 2 ≤ 0

Set up the Lagrangian

L = −x21 − x1x2 − x22 − λ1 (x1 − 2x2 + 1)− λ2 (2x1 + x2 − 2)

The Kuhn-Tucker conditions are:

∂L

∂x1
= −2x1 − x2 − λ1 − 2λ2 = 0 (24)

∂L

∂x2
= −x1 − 2x2 + 2λ1 − λ2 = 0 (25)

λ1 ≥ 0, x1 − 2x2 ≤ −1 and λ1 (x1 − 2x2 + 1) = 0

λ2 ≥ 0, 2x1 + x2 ≤ 2 and λ2 (2x1 + x2 − 2) = 0
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Consider the possible cases in turn:
Case 1: λ1 > 0, λ2 > 0
Then x1 − 2x2 + 1 = 0 and 2x1 + x2 − 2 = 0,

which gives x1 =
3

5
, x2 =

4

5
.

Then equations (24) and (25) are:

−2− λ1 − 2λ2 = 0

−11

5
+ 2λ1 − λ2 = 0

which implies that λ1 =
12

25
and λ2 = −31

25
, which violates the condition that λ2 > 0.

Case 2: λ1 > 0, λ2 = 0
Then x1 − 2x2 + 1 = 0.
Substituting λ2 = 0 into equations (24) and (25) gives:

−2x1 − x2 − λ1 = 0

−x1 − 2x2 + 2λ1 = 0

which together with x1 − 2x2 + 1 = 0 gives x1 = − 4

14
, x2 =

5

14
and λ1 =

3

14
. All the

conditions are satisfied so x1 = − 4

14
, x2 =

5

14
with λ1 =

3

14
, λ2 = 0 is a possible solution.

Case 3: λ1 = 0, λ2 > 0
Then 2x1 + x2 − 2 = 0.
Substituting λ1 = 0 into equations (24) and (25) gives:

−2x1 − x2 − 2λ2 = 0

−x1 − 2x2 − λ2 = 0

which together with 2x1 + x2 − 2 = 0 gives x1 = 1, x2 = 0 and λ2 = −1. Since λ2 < 0 this
case does not satisfy the Kuhn-Tucker constraints.

Case 4: λ1 = 0, λ2 = 0
Substituting λ1 = 0, λ2 = 0 into equations (24) and (25) gives:

−2x1 − x2 = 0

−x1 − 2x2 = 0

which is satisfied if and only if x1 = x2 = 0, which violates x1 − 2x2 ≤ −1.

The unique solution to the problem is therefore x1 = − 4

14
, x2 =

5

14
with λ1 =

3

14
,

λ2 = 0.
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Example 29 Maximise the objective function

f (x, y) = x− x2

2
+ y2

subject to the constraints
x2

2
+ y2 ≤ 9

8
, − y ≤ 0

Notice that the constraint that y is nonnegative (i.e. y ≥ 0) has been written in a way
to make it conformable with the set-up of the problem given above.

We can rewrite the other constraint in the form gi(x) ≤ 0

x2

2
+ y2 − 9

8
≤ 0, − y ≤ 0

Set up the Lagrangian

L = x− x2

2
+ y2 − λ

(
x2

2
+ y2 − 9

8

)
− µ (−y)

The Kuhn-Tucker conditions are:

∂L

∂x
= 1− x− λx = 0 (26)

∂L

∂y
= 2y − 2λy + µ = 0 (27)

λ ≥ 0,
x2

2
+ y2 ≤ 9

8
and λ

(
x2

2
+ y2 − 9

8

)
= 0

µ ≥ 0,−y ≤ 0 and µ (−y) = 0

We proceed by considering the solutions that arise in the four cases corresponding to
the four possible ways in which the complementary slackness conditions may be met. These
are:

Case 1: λ > 0, µ > 0
Case 2: λ > 0, µ = 0
Case 3: λ = 0, µ > 0
Case 4: λ = 0, µ = 0
We will then compare the value of the objective function for each solution to find the

optimal choice of x and y.
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Case 1: λ > 0, µ > 0

Then
x2

2
+ y2 − 9

8
= 0 and −y = 0.

If y = 0, then equation (27) becomes

2y − 2λy + µ = 0

⇒ µ = 0

which violates our condition that µ > 0 and there is no solution for which λ > 0, µ > 0.
Case 2: λ > 0, µ = 0

Then
x2

2
+ y2 − 9

8
= 0.

Substituting µ = 0 into equation (27) gives:

2y − 2λy = 0

⇒ 2y (1− λ) = 0

⇒ λ = 1 or y = 0

We have two subcases so we consider them one at a time:

• If λ = 1, then equation (26) gives

1− x− λx = 0

⇒ 1− x− x = 0

⇒ x =
1

2

If λ = 1 and x = 1
2 , complementary slackness requires

x2

2
+ y2 − 9

8
= 0

1

((
1
2

)2
2

+ y2 − 9

8

)
= 0

⇒ y2 − 1 = 0

⇒ y = ±1

But − y < 0⇒ y = 1 not − 1

All the conditions are satisfied and x =
1

2
, y = 1 is a possible solution and the value

of the objective function is f

(
1

2
, 1

)
=

11

8
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• If y = 0, then

x2

2
+ y2 − 9

8
= 0

⇒ x2

2
=

9

8

⇒ x = ±
√

9

4

x = ±3

2

– If x =
3

2
, then equation (26) gives

1− 3

2
− λ3

2
= 0

⇒ λ = −1

3

which violates λ > 0.

– If x = −3

2
, then equation (26) gives

1 +
3

2
+ λ

3

2
= 0

⇒ λ = −5

3

which violates λ > 0.

There is no solution here where y = 0.

Case 3: λ = 0, µ > 0
Then −y = 0.
Substituting y = 0 into equation (27) gives:

2y − 2λy + µ = 0

⇒ µ = 0

But this violates the condition that µ > 0.
Case 4: λ = 0, µ = 0
Substituting λ = 0, µ = 0 into equations (26) and (27) gives:

1− x = 0

y = 0
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which is satisfied if and only if x = 1, y = 0.

When x = 1, y = 0, both the constraints
x2

2
+ y2 ≤ 9

8
and −y ≤ 0 are satisfied.

The value of the objective function is f (1, 0) =
1

2

The last step is to rank the solutions by the value of the objective function. We have
two possible solutions:

Case 2: x =
1

2
, y = 1 and f

(
1

2
, 1

)
=

11

8
.

Case 4: x = 1, y = 0 and f (1, 0) =
1

2

So the optimum is x =
1

2
, y = 1 since f

(
1

2
, 1

)
> f (1, 0). At the optimal solution

x2

2
+ y2 =

9

8
and this constraint is binding, whereas −y < 0 and this constraint is not

binding.

Example 30
2
√
x+ 2

√
y

subject to
2x+ y ≤ 3, x+ 2y ≤ 3

Rewrite the constraints so they are in the form gi(x) ≤ 0 :

2x+ y − 3 ≤ 0, x+ 2y − 3 ≤ 0

Set up the Lagrangian

L = 2
√
x+ 2

√
y − λ (2x+ y − 3)− µ (x+ 2y − 3)

The Kuhn-Tucker conditions are:

∂L

∂x
= x−1/2 − 2λ− µ = 0 (28)

∂L

∂y
= y−1/2 − λ− 2µ = 0 (29)

λ ≥ 0, 2x+ y ≤ 3 and λ (2x+ y − 3) = 0

µ ≥ 0, x+ 2y ≤ 3 and µ (x+ 2y − 3) = 0

What are the solutions to these conditions?
Start by looking at the two conditions λ (2x+ y − 3) = 0 and µ (x+ 2y − 3) = 0. These

two conditions yield the following four cases:
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Case 1: λ > 0, µ > 0
Then 2x+ y − 3 = 0 and x+ 2y − 3 = 0,
which gives x = y = 1.
Then equations (28) and (29) are:

1− 2λ− µ = 0

1− λ− 2µ = 0

which happens if and only if λ = µ =
1

3
. But then λ and µ are positive numbers, so all

conditions are met.
Case 2: λ > 0, µ = 0
Then 2x+ y − 3 = 0.
Substituting µ = 0 into equations (28) and (29) gives:

x−1/2 − 2λ = 0

y−1/2 − λ = 0

which together with 2x+ y − 3 = 0 gives x =
1

2
, y = 2.

But then x+ 2y − 3 =
3

2
which violates the condition x+ 2y ≤ 3.

Case 3: λ = 0, µ > 0
Then x+ 2y − 3 = 0.
Substituting λ = 0 into equations (28) and (29) gives:

x−1/2 − µ = 0

y−1/2 − 2µ = 0

which together with x+ 2y − 3 = 0 gives x = 2, y =
1

2
.

But then 2x+ y =
9

2
which violates the condition 2x+ y ≤ 3.

Case 4: λ = 0, µ = 0
Substituting λ = 0, µ = 0 into equations (28) and (29) gives:

x−1/2 = 0

y−1/2 = 0

which is satisfied if and only if x = y = 0.
The conditions 2x+ y ≤ 3 and x+ 2y ≤ 3 are satisfied if x = y = 0.

So possible solutions are found under Cases 1 and 4.
Case 1: x = y = 1 and 2

√
x+ 2

√
y = 4.

Case 4: x = y = 0 and 2
√
x+ 2

√
y = 0.

The optimal solution is the one that yields the highest value of the objective function,
i.e. x = y = 1. At this solution, both constraints are binding.
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