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Section 2: Comparative Statics

ECO4112F 2011

As we’ve said before, a key concept in economics is that of equilibrium. A large part
of the mathematical modelling we do in this regard is concerned with comparative statics,
that is, the comparison of different equilibrium states that are associated with different sets
of values of parameters and exogenous variables. To make such a comparison, we always
start by assuming an initial equilibrium state. We then allow some kind of disequilibrating
change in the model (through some change in a parameter or an exogenous variable). When
this occurs, the initial equilibrium will of course be upset, and so the endogenous variables
will have to adjust. The question we concern ourselves with in comparative statics is “How
will the new equilibrium position compare with the old?”

NB: When we study comparative statics, we simply compare the initial (pre-change)
equilibrium position to the post-change equilibrium position. We cannot say anything
about the process of adjustment.

Our comparative static analysis can be either quantitative or qualitative. If our analysis
is purely qualitative, this means that we will only be able to talk about the direction of
the change that occurs. If it is quantitative, we will actually be able to talk about the
magnitude of the change that has occurred. (Obviously, if we know the magnitude, we
will also know the direction of the change, so in effect, the quantitative analysis involves a
qualitative element as well).

The crux of all of this is that in doing comparative statics, we are looking for a rate
of change, namely the rate of change of the equilibrium value of an endogenous variable
with respect to a change in the particular parameter or exogenous variable. (How does
the endogenous variable change in response to a change in the exogenous variable, or a
change in the parameter) To get at this, we will make use of the concept of a derivative,
a concept that is concerned with rates of change.
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1 The Derivative

1.1 The Difference Quotient

When x changes from the value x0 to a new value x1, the change is given by the difference
x1 − x0. We use the symbol ∆ to denote the change, hence we can write ∆x = x1 − x0.

It is standard to use the notation f (xi) to represent the value of the function f (x) when
x = xi. For example, if f (x) = x2−3, then f (1) = (1)2−3 = −2 and f (2) = (2)2−3 = 1.

Consider the simple function y = f (x).
The initial value of x is x0, and so y = f (x0) .
When x changes to a new value (x0 +∆x), the value of y at this point is y = f (x0 +∆x) .
The difference quotient gives us the change in y per unit change in x:

∆y

∆x
=

f (x0 +∆x)− f (x0)

∆x

This gives us the average rate of change of y.

Example 1 Consider the linear function y = f (x) = 2x+ 1. Suppose x changes from x0
to (x0 +∆x), then the difference quotient is given by

∆y

∆x
=

f (x0 +∆x)− f (x0)

∆x

=
[2 (x0 +∆x) + 1]− [2x0 + 1]

∆x

=
2∆x

∆x
= 2

Example 2 Consider the quadratic function y = f (x) = 2x2−1. Suppose x changes from
x0 to (x0 +∆x), then the difference quotient is given by

∆y

∆x
=

f (x0 +∆x)− f (x0)

∆x

=

[
2 (x0 +∆x)2 − 1

]
−
[
2x20 − 1

]
∆x

=
2
(
x20 + 2x0∆x+ (∆x)2 − 1

)
− 2x20 + 1

∆x

=
4x0∆x+ (∆x)2

∆x
= 4x0 +∆x

2



1.2 The Derivative

We are usually interested in the rate of change of y when ∆x is very small. In this case,
it is possible to obtain an approximation of the difference quotient by dropping all the
terms involving ∆x. So for example, for our function y = f (x) = 2x2 − 1 above, we
could approximate the difference quotient by taking 4x0 (we’re effectively treating ∆x as
infinitesimally small). As ∆x approaches 0, (i.e. it gets closer and closer to zero but never
actually reaches it), the difference quotient 4x0 +∆x will approach 4x0.

We can express this idea formally as follows:

lim
∆x→0

∆y

∆x
= lim

∆x→0
(4x0 +∆x) = 4x0

and we read this as ”the limit of
∆y

∆x
as ∆x approaches zero is 4x0”.

If, as ∆x → 0, the limit of the difference quotient
∆y

∆x
indeed exists, that limit is called

the derivative of the function y = f (x). The process of obtaining the derivative is known
as differentiation.

Because the derivative is just the limit of the difference quotient (which measures a
rate of change), the derivative is also a measure of a rate of change. However, because the
change in x is so small (∆x → 0), the derivative actually measures the instantaneous rate
of change.

There are two common ways to denote a derivative. Given an original function y = f(x),

we can denote its derivative as follows: f ′ (x) (or simply f ′) or
dy

dx
. Using these notations

we may define the derivative of a function y = f (x) as follows:

dy

dx
≡ f ′ (x) ≡ lim

∆x→0

∆y

∆x

2 The Derivative and the Slope of a Curve

One of the most common uses of the concept of a derivative in economics is to tell us
something about the slope of a curve. For example, suppose we have a total cost function,
where C = f (Q). From economic theory, we know that the marginal cost (MC) is defined
as the change in total cost resulting from a one-unit change in output (or quantity). In

other words, MC =
∆C

∆Q
.

This should look familiar! We assume that ∆Q is very small, and thus, we can approx-

imate
∆C

∆Q
by taking its limit as ∆Q → 0, i.e.

dC

dQ
≡ f ′ (Q) ≡ lim

∆Q→0

∆C

∆Q

3



This is also measured by the slope of the total cost curve.
Note: the slope of a curve is the geometric equivalent of the concept of a derivative.

3 Limits and Continuity

The function f (x) is differentiable if the limit of the difference quotient as ∆x → 0 exists,

i.e. lim
∆x→0

∆y

∆x
exists. Not all functions are differentiable, and we now look at which functions

can and cannot be differentiated.
First, let’s look at the idea of limits more closely. The statement

f (x) tends to the limit ` as x approaches x0

means that we may make f (x) as close as we wish to ` for all x sufficiently close (but not
equal) to x0.

We write this as
f (x) → ` as x → x0

and
lim
x→x0

f (x) = `

Importantly
lim
x→x0

f (x) may or may not be equal to f (x0)

Example 3 Let f (x) = 2x+ 3. Then f (x) is close to 5 whenever x is close to 1. Hence

lim
x→1

f (x) = 5 = f (1) .

Example 4 Let

f (x) =

{
+1, when x 6= 4
−1, when x = 4

Since f (x) = 1 whenever x 6= 4, however close x is to 4, f (x) → 1 as x → 4. But
f (4) = −1. Therefore

lim
x→4

f (x) 6= f (4) .

Definition 1 We say that the function f (x) is continuous at x0 if

1. The point x0 is in the domain of f , i.e. f (x0) is defined.

2. The function has a limit as x → x0, i.e. lim
x→x0

f (x) exists.

3. The limit as x → x0 must be equal in value to f (x0) , i.e. lim
x→x0

f (x) = f (x0).
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So the function f (x) = 2x+ 3 is continuous at x = 1, but the function

f (x) =

{
+1, when x 6= 4
−1, when x = 4

is discontinuous (i.e. not continuous) at x = 4.

Definition 2 We say that f is a continuous function if it is continuous at x for every
x. Geometrically, a function is continuous if its graph may be drawn without lifting the
pencil from the paper.

4 Differentiability

We now return to the question of when differentiation is possible.

Definition 3 A function is said to differentiable at a particular point if the derivative of
the function can be found at that point.

Definition 4 A differentiable function is one that is differentiable at every point.

Every differentiable function is continuous. On the other hand, not all contin-
uous functions are differentiable. For example, the function f (x) = |x| is a continuous
function but is not differentiable at x = 0.

Continuity is a necessary but not sufficient condition for differentiability.

5 Rules of Differentiation

The good news is that we do not have to take the limit of the difference quotient each time
we want calculate a derivative. We can use the rules of differentiation to help us.

5.1 Constant Function Rule

If y = f (x) = c (where c is a constant)

then
dy

dx
= f ′ (x) = 0

Example 5 If y = f (x) = 7, then
dy

dx
= f ′ (x) = 0.

5.2 Constant Factor Rule

If y = cf (x)

then
dy

dx
= cf ′ (x)
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5.3 Power Function Rule

If y = f (x) = xn

then
dy

dx
= f ′ (x) = nxn−1

Example 6 If y = f (x) = x2, then
dy

dx
= f ′ (x) = 2x.

Example 7 If y = f (x) = 5x2, then
dy

dx
= f ′ (x) = 5 (2x) = 10x.

Example 8 If y = f (x) = 3x3, then
dy

dx
= f ′ (x) = 3

(
3x2
)
= 9x2.

5.4 Sum-Difference Rule

If y = f (x)± g (x)± h (x)

then
dy

dx
= f ′ (x)± g′ (x)± h′ (x)

Example 9 If y = f (x) = 3x2 + 4x− 1, then
dy

dx
= f ′ (x) = 6x+ 4.

Example 10 If y = f (x) = 6x3 + 2x2 + 3x+ 5, then
dy

dx
= f ′ (x) = 18x2 + 4x+ 3.

5.4.1 Economic Applications

In general, if our original function represents a total function (e.g. total cost, total revenue,
etc.), then its derivative is its marginal function (e.g. marginal cost, marginal revenue, etc.).

Example 11 Marginal cost
Suppose a firm faces the following total cost function

C (Q) = Q3 + 4Q2 + 10Q+ 75

Then marginal cost is given by

MC =
dC

dQ
= 3Q2 + 8Q+ 10

In general form,

If C = C (Q)

then MC =
dC

dQ
= C ′ (Q)
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Example 12 Marginal revenue
In general marginal revenue is the derivative of the total revenue function

If R = R (Q)

then MR =
dR

dQ
= R′ (Q)

Suppose a monopolist faces the demand function

Q = 27− 3P

Then total revenue, expressed as a function of Q is

R (Q) = PQ =

(
1

3
(27−Q)

)
(Q)

= 9Q− 1

3
Q2

Marginal revenue is then

MR =
dR

dQ
= R′ (Q) = 9− 2

3
Q

Example 13 Marginal propensity to consume
Suppose we have the consumption function

C = 10 + 0.7Y − 0.002Y 2

The marginal propensity to consume is

dC

dY
= 0.7− 0.004Y

5.5 Product Rule

If y = f (x) g (x)

then
dy

dx
=

d

dx
[f (x) g (x)]

= f (x)
d

dx
[g (x)] + g (x)

d

dx
[f (x)]

= f (x) g′ (x) + g (x) f ′ (x)
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Example 14

d

dx

[(
4x3 + 5

) (
3x2 − 8

)]
=

(
4x3 + 5

) d

dx

[(
3x2 − 8

)]
+
(
3x2 − 8

) d

dx

[(
4x3 + 5

)]
=

(
4x3 + 5

)
(6x) +

(
3x2 − 8

) (
12x2

)
= 24x4 + 30x+ 36x4 − 96x2

= 60x4 − 96x2 + 30x

Example 15

d

dx

[
(5x+ 2)

(
2x2
)]

= (5x+ 2) (4x) +
(
2x2
)
(5)

= 30x2 + 8x

5.5.1 Economic Application

Example 16 Finding the marginal revenue function from the average revenue function
Suppose a firm faces an average revenue function AR = 20−Q.
(We know from economic theory, that the average revenue function is a function of

output (AR = f(Q). Recall that AR = P (AR ≡ TR

Q
≡ PQ

Q
≡ P ). So P = f (Q), i.e. the

average revenue curve is the inverse of the demand curve.)
So, to find the marginal revenue function, first calculate total revenue:

TR = P ×Q = AR×Q

= (20−Q)Q

= 20Q−Q2

Marginal revenue is given by the slope of the total revenue curve, so we simply find the
derivative of the total revenue function:

MR =
dTR

dQ
= 20− 2Q

Example 17 In general form

AR = f (Q)

TR = AR×Q = f (Q)×Q

MR =
dTR

dQ
= f ′ (Q)Q+ f (Q)
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Recall that f (Q) = AR, so

MR = f ′ (Q)Q+AR

⇒ MR−AR = Qf ′ (Q)

Thus, MR and AR will always differ by Qf ′ (Q).
Let us evaluate this result:
Q is quantity and so is always positive.
f ′ (Q) is the slope of the AR curve.

• Under perfect competition, the AR curve is a horizontal straight line (because all
firms are price takers). Therefore f ′ (Q) = 0, and

MR−AR = 0

⇒ MR = AR

Thus, under perfect competition the MR curve and AR curve coincide.

• Under imperfect competition, however, the AR curve is downward sloping. Therefore,
f ′ (Q) < 0, and

MR−AR < 0

⇒ MR < AR

Thus, under imperfect competition the MR curve lies below the AR curve.

5.6 Quotient Rule

If y =
f (x)

g (x)

then
dy

dx
=

f ′ (x) g (x)− f (x) g′ (x)

[g (x)]2

Example 18

d

dx

[
2x− 3

x+ 1

]
=

(2) (x+ 1)− (2x− 3) (1)

(x+ 1)2

=
5

(x+ 1)2
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Example 19

d

dx

[
5x+ 2

x2 − 2x+ 1

]
=

(5)
(
x2 − 2x+ 1

)
− (5x+ 2) (2x− 2)

(x2 − 2x+ 1)2

=
−5x2 − 4x+ 9

(x2 − 2x+ 1)2

=
− (5x+ 9) (x− 1)

(x− 1)4

=
− (5x+ 9)

(x− 1)3

Example 20

d

dx

[
ax2 + b

cx

]
=

(2ax) (cx)−
(
ax2 + b

)
(c)

(cx)2

=
2acx2 − acx2 − bc

c2x2

=
acx2 − bc

c2x2

=
c
(
ax2 − b

)
c2x2

=
ax2 − b

cx2

5.6.1 Economic Application

Example 21 The relationship between the marginal cost and average cost
Recall

Total cost: C = C (Q)

Average cost: AC =
C (Q)

Q

The slope of the AC curve can be found by finding its derivative

dAC

dQ
=

C ′ (Q)Q− C (Q) (1)

Q2

=
C ′ (Q)

Q
− C (Q)

Q2

=
1

Q

[
C ′ (Q)− C (Q)

Q

]
=

1

Q
[MC −AC]
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We can use this result to tell us where the MC curve intersects the AC curve. (Assume
that Q > 0)

dAC

dQ
> 0 if C ′ (Q) >

C (Q)

Q

dAC

dQ
= 0 if C ′ (Q) =

C (Q)

Q

dAC

dQ
< 0 if C ′ (Q) <

C (Q)

Q

In words, the slope of the AC curve is

• positive if MC lies above AC

• zero if MC intersects AC

• negative if MC lies below AC

This establishes the familiar result that the MC curve intersects the AC curve at its
minimum point.

5.7 Chain Rule

This is useful when we have a composite function.

If f (x) = p (q (x))

then f ′ (x) = p′ (q (x)) q′ (x)

A simpler way of writing this is as follows. Let u = q (x) and y = p (u), so that
y = p (q (x)) = f (x). Then

dy

dx
=

dy

du
× du

dx

Example 22

f (x) =
(
5x2 − 1

)9
Let u = 5x2 − 1, and y = u9. Then

f ′ (x) =
dy

dx
=

dy

du
× du

dx
=

(
9u8
)
× (10x)

= (10x)
(
9
(
5x2 − 1

)8)
= 90x

(
5x2 − 1

)8
11



Example 23
f (x) = 3 (2x+ 5)2

Let u = 2x+ 5, and y = 3u2. Then

f ′ (x) =
dy

dx
=

dy

du
× du

dx
= (6u)× (2)

= 12 (2x+ 5)

= 24x+ 60

Example 24

f (x) =
(
x2 + 3x− 2

)17
Let u = x2 + 3x− 2, and y = u17. Then

f ′ (x) =
dy

dx
=

dy

du
× du

dx
=

(
17u16

)
× (2x+ 3)

= 17
(
x2 + 3x− 2

)16
(2x+ 3)

5.7.1 Economic Application

Example 25 Given the total revenue function of a firm R = f (Q), where output Q is a

function of labour input L (Q = g (L)), find
dR

dL
.

R = f (Q) = f (g (L))

dR

dL
=

dR

dQ
.
dQ

dL
= f ′ (Q) g′ (L)

In economic terms
dR

dL
is the marginal revenue product of labour (MRPL), f ′ (Q) is

the marginal revenue function (MR), and g′ (L) is the marginal physical product of labour
(MPPL). Thus our result gives us the well-known economic relationship

MRPL = MR×MPPL.

5.8 Inverse Function Rule

Definition 5 If the function y = f (x) represents a one-to-one mapping, i.e. if the func-
tion is such that each value of y is associated with a unique value of x, the function f
will have an inverse function x = f−1 (y). Note this is not the reciprocal of f (x) (i.e.

f−1 (y) 6= 1

f (x)
).
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When an inverse function exists, this means that every x value will yield a unique y
value, and every y value will yield a unique x value, i.e. there is a one-to-one mapping.

Example 26 The mapping from the set of all husbands to the set of all wives is one-to-
one: each husband has a unique wife and each wife has a unique husband (in a monogamous
society).

The mapping from the set of all fathers to the set of all sons is not one-to-one: each
father may have more than one son, although each son has a unique father.

When x and y refer specifically to numbers, the property of one-to-one mapping is
unique to strictly monotonic functions.

Definition 6 Given a function f (x), if

x1 > x2 ⇒ f (x1) > f (x2)

then f is said to be a strictly increasing function. If

x1 > x2 ⇒ f (x1) < f (x2)

then f is said to be a strictly decreasing function.
In either of these cases, f is said to be a strictly monotonic function, and an inverse

function f−1 exists.

A practical way of determining whether a function f (x) is strictly monotonic is to
check whether the derivative f ′ (x) is either always positive or always negative (not zero)
for all values of x. So

If f ′ (x) > 0 ∀x, then f (x) is strictly increasing (upward sloping).

If f ′ (x) < 0 ∀x, then f (x) is strictly decreasing (downward sloping).

Example 27

y = 5x+ 25

dy

dx
= 5

Since
dy

dx
is positive regardless of the value of x, this function is strictly increasing. It

follows that it is monotonic and an inverse function exists. In this case, we can easily find
the inverse function by solving the equation y = 5x+ 25 for x

x =
1

5
y − 5
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Example 28 Show that the total cost function TC = Q3 − 53Q2 +940Q+1500 is strictly
monotonic.

Find the first derivative:

TC ′ (Q) =
dTC

dQ
= 3Q2 − 106Q+ 940

Show that this is strictly positive:
1) The coefficient on Q2 is positive, so the parabola will be convex. Thus, if the parabola

has no x-intercepts we know it will lie strictly above the x-axis, i.e. TC ′ (Q) > 0, ∀Q.

b2 − 4ac = (−106)2 − 4 (3) (940)

= −44

< 0 ⇒ no x-intercepts.

2) OR, by completing the square (see Section 0, p11-12):

TC ′ (Q) =
dTC

dQ
= 3Q2 − 106Q+ 940

= 3

(
Q2 − 106

3
Q+

940

3

)
= 3

(
Q2 − 106

3
Q+

2809

9
− 2809

9
+

940

3

)
= 3

[(
Q− 53

3

)2

+
11

9

]
> 0 for all Q

3) OR, by graphing it:

For inverse functions, the rule of differentiation is

dx

dy
=

1

dy/dx
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Example 29 Given y = x5 + x, find
dx

dy
.

First, we need to determine whether an inverse function exists.

dy

dx
= 5x4 + 1

Since
dy

dx
is positive regardless of the value of x, this function is strictly increasing. It

follows that it is monotonic and an inverse function exists. In this case, it is not so easy to
solve the given equation for x, but we can easily find the derivative of the inverse function
using the inverse function rule:

dx

dy
=

1

dy/dx
=

1

5x4 + 1

5.9 Log Function Rule

If y = f (x) = logb x

then
dy

dx
= f ′ (x) =

1

x ln b

For natural logarithms (base e), the rule becomes

If y = f (x) = lnx

then
dy

dx
= f ′ (x) =

1

x ln e
=

1

x

Example 30 If y = f (x) = 5 lnx, then
dy

dx
= f ′ (x) =

5

x
.

Example 31 If y = f (x) =
lnx

x2
, then

dy

dx
= f ′ (x) =

(1/x)
(
x2
)
− (lnx) (2x)

(x2)2

=
1− 2 lnx

x3

In some cases, our logarithmic function may be a little more complex. For example,
the x in our function lnx, may be replaced by some function of x, g(x). In this case, we
use the chain rule (let u = g (x), then y = lnu)

If y = ln g (x)

then
dy

dx
=

g′ (x)

g (x)

15



Example 32 If y = ln
(
x2 + 1

)
, then

dy

dx
=

g′ (x)

g (x)
=

2x

x2 + 1

Example 33 If y = ln
(
x5 + 2

)
, then

dy

dx
=

g′ (x)

g (x)
=

5x4

x5 + 2

Example 34 If y = ln
(
2x2 + 3x

)
, then

dy

dx
=

g′ (x)

g (x)
=

4x+ 3

2x2 + 3x

Example 35 If y = x2 ln (4x+ 2), then

dy

dx
=

(
x2
)( 4

4x+ 2

)
+ (2x) (ln (4x+ 2))

=
2x2

2x+ 1
+ 2x ln (4x+ 2)

5.10 Exponent Function Rule

If y = f (x) = ex

then
dy

dx
= f ′ (x) = ex

In those cases where the x is replaced by some function of x, g (x), we use the chain
rule (let u = g (x), then y = eu):

If y = f (x) = eg(x)

then
dy

dx
= f ′ (x) = g′ (x) eg(x)

Example 36 If y = e−1/2x2
, then

dy

dx
= −xe−1/2x2

.

Example 37 If y = ert, then
dy

dt
= rert.

Example 38 If y = e−t, then
dy

dt
= −e−t.
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6 Logarithmic Differentiation

Often, the functional forms one is presented with are incredibly complex. One way of
simplifying the task of differentiation is to re-write the function in natural logarithms before
finding the derivative. In general, to differentiate any function y = f(x) (but especially
complicated ones that entail using the product, quotient and power rules all at once), the
following method might be useful:

1. Take the natural log of both sides, thus obtaining ln y = ln[f(x)]

2. Simplify ln[f(x)] by using properties of logs.

3. Differentiate both sides with respect to x.

4. Solve for
dy

dx
.

5. Re-write in terms of x only.

Example 39 If y =
(2x− 5)2

x2 4
√
x2 + 1

, then to find
dy

dx
:

Step 1: Take the natural log of both sides

ln y = ln

[
(2x− 5)2

x2 4
√
x2 + 1

]

Step 2: Simplify the RHS by using properties of logs

ln y = ln (2x− 5)2 − ln
(
x2

4
√

x2 + 1
)

ln y = 2 ln (2x− 5)−
(
lnx2 + ln

(
x2 + 1

)1/4)
ln y = 2 ln (2x− 5)− 2 lnx− 1

4
ln
(
x2 + 1

)
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Step 3: Differentiate BOTH sides with respect to x.
On the LHS, we use the chain rule. Let z = ln y, where y = f(x). Then

dz

dx
=

dz

dy
.
dy

dx
=

1

y

dy

dx

On the RHS

d

dx

[
2 ln (2x− 5)− 2 lnx− 1

4
ln
(
x2 + 1

)]
=

4

2x− 5
− 2

x
− x

2 (x2 + 1)

Now LHS=RHS
1

y

dy

dx
=

4

2x− 5
− 2

x
− x

2 (x2 + 1)

Step 4: Solve for
dy

dx
.

dy

dx
= y

[
4

2x− 5
− 2

x
− x

2 (x2 + 1)

]
Step 5: Re-write in terms of x only

dy

dx
=

(2x− 5)2

x2 4
√
x2 + 1

[
4

2x− 5
− 2

x
− x

2 (x2 + 1)

]

7 Partial Differentiation

So far we have only looked at situations in which there was only one independent variable
(we call such functions “bivariate” functions). However, most interesting applications in
science (be it in the social, physical, behavioural or biological sciences) require an analysis
of how one variable changes with infinitesimal changes in another, when there is more
than one independent variable. Such functions are called multivariate functions. A simple
example is f(x, y) = x2 + y2. Another would be Q = Q(L,K). The first is a numerical
function as it specifies an analytical expression in the two variables, whereas the second is
a general function - it does not tell you the explicit functional relation of L and K with
respect to Q, just that these are the two variables that explain the dependant variable Q.

So if y = f (x1, x2, . . . , xn), when we partially differentiate y with respect to xiwe allow
xi to vary and hold the other independent variables constant. We denote the partial
derivative of y with respect to xi by

∂y

∂xi
= fxi

18



This is the ceteris paribus assumption you have encountered before: what is the effect of
xi on y, holding other things constant?

Since we already know how to handle constants when dealing with just one independent
variable, you in effect already know how to partially differentiate a function.

Example 40 If y = f (x1, x2) = 3x21 + x1x2 + 4x22, then

∂y

∂x1
= fx1 = 6x1 + x2 We treat x2 as constant, and allow x1 to vary.

∂y

∂x2
= fx2 = x1 + 8x2 We treat x1 as constant, and allow x2 to vary.

Example 41 If y = f (u, v) = (u+ 4) (3u+ 2v), then

∂f

∂u
= fu = (u+ 4) (3) + (1) (3u+ 2v) = 6u+ 2v + 12 = 2 (3u+ v + 6)

∂f

∂v
= fv = (u+ 4) (2) + (0) (3u+ 2v) = 2 (u+ 4)

Example 42 If y = f (u, v) =
3u− 2v

u2 + 3v
, then

∂f

∂u
= fu =

(3)
(
u2 + 3v

)
− (3u− 2v) (2u)

(u2 + 3v)2
=

−3u2 + 4uv + 9v

(u2 + 3v)2

∂f

∂v
= fv =

(−2)
(
u2 + 3v

)
− (3u− 2v) (3)

(u2 + 3v)2
=

−u (2u+ 9)

(u2 + 3v)2

Example 43 Suppose we have a production function given by Q = f (K,L). Then we can
find the partial derivatives with respect to K and L, which have particular meanings:

∂Q

∂K
= QK = fK = marginal product of capital

This tells us how output will vary in response to a one-unit change in capital input,
holding the labour input constant. Similarly,

∂Q

∂L
= QL = fL = marginal product of labour

This tells us how output will vary in response to a one-unit change in labour input,
holding the capital input constant.
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7.1 Applications to Comparative Static Analysis

We analyse the comparative statics of the equilibrium of economic models that we’ve
already solved.

Example 44 Market Model
This model is the familiar supply and demand framework in a market producing 1 good.

We will now use calculus to look at how changes in the intercept and slopes of demand and
supply functions affect equilibrium price and quantity The emphasis on the word equilib-
rium is important here as it indicates that what we interested in is how the solution to the
demand and supply functions changes when you change one of the parameters of the model.
(i.e. comparative static analysis).

Qd = Qs

Qd = a− bP (a, b > 0)

Qs = −c+ dP (c, d > 0)

We’ve solved for the equilibrium price and quantity in Section 1:

P ∗ =
a+ c

b+ d

Q∗ =
ad− bc

b+ d

We are now interested in analysing the comparative statics of the model.

∂P ∗

∂a
=

1

b+ d
> 0

This tells us P ∗ will increase (decrease) if a increases (decreases).

∂P ∗

∂b
=

0 (b+ d)− 1 (a+ c)

(b+ d)2
=

− (a+ c)

(b+ d)2
< 0

This tells us P ∗ will decrease (increase) if b increases (decreases).

∂P ∗

∂c
=

1

b+ d
> 0

This tells us P ∗ will increase (decrease) if c increases (decreases).

∂P ∗

∂d
=

0 (b+ d)− 1 (a+ c)

(b+ d)2
=

− (a+ c)

(b+ d)2
< 0

This tells us P ∗ will decrease (increase) if d increases (decreases).
Find the partial derivatives of Q∗ and check your results using graphs.
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Example 45 National Income Model
Let the national income model be:

Y = C + I +G

C = a+ b(Y − T ) a > 0, 0 < b < 1

T = d+ tY d > 0, 0 < t < 1

where Y is national income, C is (planned) consumption expenditure, I is investment
expenditure, G is government expenditure and T is taxes.

We’ve solved for the equilibrium in Section 2:

Y ∗ =
a− bd+ I +G

1− b (1− t)

C∗ =
a− bd+ b (1− t) (I +G)

1− b (1− t)

T ∗ =
d (1− b) + t (a+ I +G)

1− b (1− t)

Government multiplier:
∂Y ∗

∂G
=

1

1− b (1− t)
> 0

An increase (decrease) in government expenditure will increase (decrease) equilibrium
national income.

The effect of a change in non-income tax on equilibrium national income:

∂Y ∗

∂d
=

−b

1− b (1− t)
< 0

An increase (decrease) in non-income tax will decrease (increase) equilibrium national
income.

The effect of a change in income tax on equilibrium national income:

∂Y ∗

∂t
=

0 (1− b (1− t))− (a− bd+ I +G) (b)

(1− b (1− t))2
=

−bY ∗

1− b (1− t)
< 0

An increase (decrease) in income tax will decrease (increase) equilibrium national in-
come.

You should always check that your results coincide with your economic intuition.
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Example 46 Market Model
The system of equations below describes the market for widgets:

Qd = α− βP + γG

Qs = −δ + θP − λN

Qd = Qs α, β, γ, δ, θ, λ > 0

where G is the price of substitutes for widgets and N is the price of inputs used in
producing widgets.

We’ve solved for the equilibrium in Section 2:

Q∗ =
θ (α+ γG)− β (δ + λN)

(β + θ)

P ∗ =
δ + λN + α+ γG

(β + θ)

Show how an increase in the price of substitute goods, G, affects equilibrium quantity
and price.

∂Q∗

∂G
=

θγ

(β + θ)
> 0

An increase in the price of substitutes will increase equilibrium quantity.

∂P ∗

∂G
=

γ

(β + θ)
> 0

An increase in the price of substitutes will increase equilibrium price.
Show how an increase in the price of inputs, N , affects equilibrium quantity and price.

∂Q∗

∂N
=

−βλ

(β + θ)
< 0

An increase in the price of inputs will reduce equilibrium quantity.

∂P ∗

∂N
=

λ

(β + θ)
> 0

An increase in the price of inputs will increase equilibrium price.
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7.2 Jacobian Determinants

Partial derivatives give us a way to test whether functional dependence (linear or non-
linear) exists among a set of n functions in n variables.

Consider the case of two functions in two variables:

y1 = f (x1, x2)

y2 = g (x1, x2)

We can take all four partial derivatives for these functions, and arrange them in a
square matrix in a specific order. This matrix, denoted by a J , is called a Jacobian matrix.

J =

[
∂y1/∂x1 ∂y1/∂x2
∂y2/∂x1 ∂y2/∂x2

]
If the determinant of this Jacobian matrix is zero, this indicates that there is functional

dependence among our functions.

|J | =

(
∂y1
∂x1

)(
∂y2
∂x2

)
−
(
∂y1
∂x2

)(
∂y2
∂x1

)
= 0 ⇒ functional dependence

6= 0 ⇒ functional independence

Why use a Jacobian? The advantage of using a Jacobian determinant is that it allows
us to detect linear and non-linear dependence in functions. Up until now, in our matrix
algebra, we have only been able to detect linear dependence in a system of linear functions.

Example 47

y1 = 2x1 + 3x2

y2 = 4x21 + 12x1x2 + 9x22

The Jacobian matrix is

J =

[
∂y1/∂x1 ∂y1/∂x2
∂y2/∂x1 ∂y2/∂x2

]
=

[
2 3

8x1 + 12x2 12x1 + 18x2

]
and the Jacobian determinant is

|J | = 2 (12x1 + 18x2)− 3 (8x1 + 12x2)

= 0

This means that there is functional dependence among our functions (in particular
y2 = (y1)

2).
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8 General-Function Models

In all the models we’ve dealt with so far, we’ve been able to solve for the reduced form
equations. This has allowed us to use partial differentiation to figure out the comparative
statics of our model. But to be able to use partial differentiation in the first place, a
requirement is that there must be functional independence among independent variables.
For example, if we have:

y = f (x1, x2) = 3x1 + 4x2

then, to use partial differentiation, a key requirement is that x1 when changes, x2
remains constant. In other words, there is no functional relationship between x1 and x2
that would cause x2 to change when x1 changes. This means that the parameters or
exogenous variables that appear in the reduced form equation are mutually independent.

Suppose instead that we have a function y = f (x1, x2) but x2 changes when x1 changes
and vice versa (i.e. there is interdependence). In this case we can no longer use partial
differentiation.

Often we have models that contain general functions, which mean that we cannot
actually explicitly solve for the reduced form. For example, consider the simple national
income model

Y = C + I0 +G0

C = C (Y, T0)

which can be written as a single equation (an equilibrium condition)

Y = C (Y, T0) + I0 +G0

to be solved for Y ∗. Because the C function is given in general form, we cannot find an
explicit solution for Y ∗. So, we will have to find the comparative static derivatives directly
from this function.

Let us suppose that Y ∗ exists. Then the following identity will hold:

Y ∗ ≡ C (Y ∗, T0) + I0 +G0

It may seem that simple partial differentiation of this identity will give us any desired

comparative static derivative, say
∂Y ∗

∂T0
. Unfortunately this is not the case. Since Y ∗ is a

function of T0, the two arguments of the consumption function are no longer independent.
T0 can affect consumption directly, but also indirectly through its effect on Y ∗.

The minute this type of interdependence arises, we can no longer use partial differen-
tiation. Instead, we use total differentiation.
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9 Differentials and Derivatives

So far, we know that a derivative for a function y = f(x) can be represented as
dy

dx
. We

now re-interpret this as a ratio of two quantities dy and dx. Think of dy as the infinitesimal
change in y, and dx as the infinitesimal change in x.

dy

dx
≡ dy

dx

∴ dy =

(
dy

dx

)
dx = f ′ (x) dx

The derivative f ′ (x) can then be reinterpreted as the factor of proportionality between
the two finite changes dy and dx. Accordingly given a specific value of dx, we can multiply
it by f ′ (x) to get dy. The quantities dy and dx are called the differentials of x and y,
respectively.

Example 48

If y = 3x2 + 7x− 5

then dy = f ′ (x) dx

= (6x+ 7) dx

Example 49

If y = 10x3 + 2x2 − 5x+ 1

then dy = f ′ (x) dx

=
(
30x2 + 4x− 5

)
dx
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9.1 Differentials and Point Elasticity

Given a demand function Q = f (P ), its elasticity is defined as

∆Q/Q

∆P/P
=

∆Q/∆P

Q/P

If the change in P is infinitesimal, then the expressions ∆Q and ∆P reduce to the
differentials dP and dQ. We can re-write our expression as the point elasticity of demand:

εd ≡ dQ/dP

Q/P

Now look at the numerator of this expression: dQ/dP is the derivative, or the marginal
function (slope), of the demand function Q = f (P ).

Now look at the denominator: Q/P which is the average function of the demand
function. In other words, the point elasticity of demand εd is the ratio of the marginal
function to the average function of the demand function.

This is valid for any other function too. For any given total function y = f (x) we can
write the point elasticity of y with respect to x as

εyx =
dy/dx

y/x
=

marginal function

average function

By convention, the absolute value of the elasticity measure is used in deciding whether
the function is elastic at a particular point. For instance, for demand functions we say

Demand is


elastic

of unit elasticity
inelastic

 at a point when |εd| T 1.

Example 50 Find εd if the demand function is Q = 200− 4P .

dQ

dP
= −4 and

Q

P
=

200− 4P

P

∴ εd =
dQ/dP

Q/P
=

−4

(200− 4P ) /P

= −4× P

200− 4P

=
−4P

200− 4P

=
−P

50− P

26



This solution as it stands is written as a function of P . However, should you be given a
value of P (e.g. P = 25), you could then explicitly solve for the elasticity at that price. In
this case, if P = 25 the elasticity of demand would be −1, in other words, demand elasticity
is unitary at that point (|εd| = 1).

10 Total Differentials

We now extend the idea of a differential to a function that has more than one independent
variable. For example, if

y = f (x1, x2)

then the easiest way to proceed might be to find the two separate partial derivatives fx1

and fx2 , and then substitute these into the equation:

dy =
∂y

∂x1
dx1 +

∂y

∂x2
dx2

= fx1dx1︸ ︷︷ ︸
change in y

due to change in x1

+ fx2dx2︸ ︷︷ ︸
change in y

due to change in x2

dy is called the total differential of the y function. It is the sum of the change that
occurs from a change in x1 and x2. The process of finding total differentials is called total
differentiation.

Example 51

If z = 3x2 + xy − 2y3

then dz =
∂z

∂x
dx+

∂z

∂y
dy

= (6x+ y) dx+
(
x− 6y2

)
dy

Example 52

If U = 2x1 + 9x1x2 + x22

then dU =
∂U

∂x1
dx1 +

∂U

∂x2
dx2

= (2 + 9x2) dx1 + (9x1 + 2x2) dx2
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Example 53

If z =
x

x+ y

then dz =
∂z

∂x
dx+

∂z

∂y
dy

=

(
1 (x+ y)− x (1)

(x+ y)2

)
dx+

(
0 (x+ y)− x (1)

(x+ y)2

)
dy

=

(
y

(x+ y)2

)
dx+

(
−x

(x+ y)2

)
dy

=

(
y

(x+ y)2

)
dx−

(
x

(x+ y)2

)
dy

Example 54

If y =
2xz

x+ z

then dy =
∂y

∂x
dx+

∂y

∂z
dz

=

(
2z (x+ z)− 2xz (1)

(x+ z)2

)
dx+

(
2x (x+ z)− 2xz (1)

(x+ z)2

)
dz

=

(
2z2

(x+ z)2

)
dx+

(
2x2

(x+ z)2

)
dz

10.1 Economic Applications

Example 55 Consider a saving function

S = S (Y, i)

where S is savings, Y is national income and i is the interest rate.
The total change in S is given by the differential

dS =
∂S

∂Y
dY +

∂S

∂i
di

= SY dY + Sidi

The first term SY dY gives the change in S resulting from the change in Y , and the
second term Sidi gives the change in S resulting from a change in i.

We can also find the elasticity of savings with respect to Y and i :

εSY =
∂S/∂Y

S/Y
= SY

Y

S

εSi =
∂S/∂i

S/i
= Si

i

S
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Example 56 Consider the utility function

U = U (x1, x2)

The total differential of this function is

dU =
∂U

∂x1
dx1 +

∂U

∂x2
dx2

= Ux1dx1 + Ux2dx2

Economically, the term Ux1dx1 means the marginal utility of x1 (Ux1) times the change
in the quantity of x1 consumed (dx1). Similarly for Ux2dx2.

Again, we can find elasticity measures with respect to each argument in our function:

εUx1 =
∂U/∂x1
U/x1

= Ux1

x1
U

εUx2 =
∂U/∂x2
U/x2

= Ux2

x2
U

Example 57 Using total differentials to find MRS
Consider a utility function U = U (x1, x2) . We know that U will be constant along a

given indifference curve.
The total differential is given by

dU =
∂U

∂x1
dx1 +

∂U

∂x2
dx2

= Ux1dx1 + Ux2dx2

Because U is constant, dU = 0. Thus

dU =
∂U

∂x1
dx1 +

∂U

∂x2
dx2 = 0

⇒ ∂U

∂x2
dx2 = − ∂U

∂x1
dx1

dx2
dx1

= −∂U/∂x1
∂U/∂x2

= MRSx1x2
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11 Rules of Differentials

A straightforward way of finding the total differential dy, given

y = f (x1, x2)

is to find the two separate partial derivatives fx1 and fx2 , and then substitute these into
the equation:

dy =
∂y

∂x1
dx1 +

∂y

∂x2
dx2

= fx1dx1 + fx2dx2

But at other times, various rules of differentials may be useful. These rules are very
similar to the rules of differentiation.

Let k be a constant and u and v be two functions of the variables x1 and x2. Then we
have the following rules:

1. dk = 0 (cf. constant function rule)

2. d (cun) = cnun−1du (cf. power function rule)

3. d (u± v) = du± dv (cf. sum-difference rule)

4. d (uv) = vdu+ udv (cf. product rule)

5. d
(u
v

)
=

1

v2
(vdu− udv) (cf. quotient rule)

Example 58 Find the total differential of the function

y = 5x21 + 3x2

We can use the straightforward method

dy =
∂y

∂x1
dx1 +

∂y

∂x2
dx2

= 10x1dx1 + 3dx2

Or we can let u = 5x21 and v = 3x2 and use the rules

dy = d
(
5x21
)
+ d (3x2) (rule 3)

= 10x1dx1 + 3dx2 (rule 2)
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Example 59 Find the total differential of the function

y = 3x21 + x1x
2
2

We can use the straightforward method

dy =
∂y

∂x1
dx1 +

∂y

∂x2
dx2

=
(
6x1 + x22

)
dx1 + (2x1x2) dx2

Or we can let u = 3x21 and v = x1x
2
2 and use the rules

dy = d
(
3x21
)
+ d

(
x1x

2
2

)
(rule 3)

= 6x1dx1 + x22dx1 + x1d
(
x22
)

(rules 2 and 4)

=
(
6x1 + x22

)
dx1 + (2x1x2) dx2 (rule 2)

Example 60 Find the total differential of the function

y =
x1 + x2
2x21

We can use the straightforward method

dy =
∂y

∂x1
dx1 +

∂y

∂x2
dx2

=

(
1
(
2x21
)
− (x1 + x2) (4x1)

4x41

)
dx1 +

(
1
(
2x21
)
− (x1 + x2) (0)

4x41

)
dx2

=

(
−2x21 − 4x1x2

4x41

)
dx1 +

(
2x21
4x41

)
dx2

=

(
− (x1 + 2x2)

2x31

)
dx1 +

(
1

2x21

)
dx2

Or we can let u = x1 + x2 and v = 2x21 and use the rules

dy =
1(

2x21
)2 [2x21d (x1 + x2)− (x1 + x2) d

(
2x21
)]

(rule 5)

=
1

4x41

[
2x21 (dx1 + dx2)− (x1 + x2) 4x1dx1

]
(rules 2 and 3)

=
1

4x41

[
−2x1 (x1 + 2x2) dx1 + 2x21dx2

]
=

(
− (x1 + 2x2)

2x31

)
dx1 +

(
1

2x21

)
dx2
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12 Total Derivatives

Now that we know how to find total differentials, we are closer to being able to figure out
how to differentiate a function when the arguments of the function are not independent.
Returning to our earlier example, we are a step closer to being able to find the derivative
of the function C (Y ∗, T0) with respect to T0, when Y ∗ and T0 are interrelated. To do this,
we need to make use the total derivative. A total derivative does not require that Y ∗

remain constant as T0 varies. In other words, a total derivative allows us to figure out the
rate of change of a function written in general form, when the arguments in that function
are related.

So how do we find the total derivative?
The total derivative is just a ratio of two differentials.
Step 1 : Find the total differential
Step 2 : Divide by the relevant differential
Suppose we have

y = f(x,w) where x = g(w)

We can write this as
y = f(g(w), w)

The three variables y, x and w are related to each other as shown in the figure below
(referred to as a channel map).

It should be clear that w can now affect y through two channels – through its direct
impact on y, and indirectly through its effect on x. So, we’re really interested in knowing
how a change in w will affect y, once we account for the direct and indirect effects. Because
w has both a direct and indirect effect, it is the ultimate source of change in this model.

Note: A partial derivative (obtained using partial differentiation) is adequate for ex-
plaining the direct effect. However, when we have both direct and indirect effects, we need
a total derivative.

Step 1 : To find the total derivative, first find the total differential:

dy =
∂y

∂x
dx+

∂y

∂w
dw

= fxdx+ fwdw

Step 2 : Divide by the relevant differential. Because w is the driving force of change in
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this model, we want to find
dy

dw
. To do this, simply divide the total differential by dw :

dy

dw
=

∂y

∂x

dx

dw
+

∂y

∂w

dw

dw
dy

dw
=

∂y

∂x

dx

dw︸ ︷︷ ︸
indirect effect of w

+
∂y

∂w︸︷︷︸
direct effect of w

Be careful not to get your partial derivatives

(
∂y

∂w

)
mixed up with total

derivatives

(
dy

dw

)
!

Example 61 Find
dy

dw
given y = f(x,w) = 3x− w2 where x = g(w) = 2w2 + w + 4.

First find the total differential:

dy =
∂y

∂x
dx+

∂y

∂w
dw

Then find total derivative: (Because w is the ultimate source of change, we are interested

in finding
dy

dw
)

dy

dw
=

∂y

∂x

dx

dw
+

∂y

∂w

dw

dw

=
∂y

∂x

dx

dw
+

∂y

∂w

Now simply fill in the pieces:

dy

dw
=

∂y

∂x

dx

dw
+

∂y

∂w
= (3) (4w + 1) + (−2w)

= 10w + 3
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Example 62 Find
dy

dw
given y = f(x,w) = 4x2 − 2w where x = g(w) = w2 + w − 3.

First find the total differential:

dy =
∂y

∂x
dx+

∂y

∂w
dw

Then find total derivative: (Because w is the ultimate source of change, we are interested

in finding
dy

dw
)

dy

dw
=

∂y

∂x

dx

dw
+

∂y

∂w

dw

dw

=
∂y

∂x

dx

dw
+

∂y

∂w
= (8x) (2w + 1) + (−2)

= 16wx+ 8x− 2

= 16w
(
w2 + w − 3

)
+ 8

(
w2 + w − 3

)
− 2

= 16w3 + 24w2 − 40w − 26

12.1 Economic Applications

Example 63 Consider the utility function

U = U (c, s)

where c is coffee and s is sugar. If s = s (c), we can re-write our utility function as

U = U (c, s (c))

Because c is the driving force of change, we want to find the total derivative
dU

dc
.

First find the total differential:

dU =
∂U

∂c
dc+

∂U

∂s
ds

Then find total derivative: (Because c is the ultimate source of change, we are interested

in finding
dU

dc
)

dU

dc
=

∂U

∂c

dc

dc
+

∂U

∂s

ds

dc

=
∂U

∂c
+

∂U

∂s

ds

dc

=
∂U

∂c
+

∂U

∂s
s′ (c)
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Example 64 Let the production function be

Q = Q (K,L, t) where K = K (t) and L = L (t)

The inclusion of t, to denote time, reflects that the production function can change over
time in response to technological change. In other words, we are dealing with a dynamic
production function as opposed to a static production function.

We can re-write this production function as

Q = Q (K (t) , L (t) , t)

The rate of change of output with respect to time is given by the total derivative
dQ

dt
.

First find the total differential:

dQ =
∂Q

∂K
dK +

∂Q

∂L
dL+

∂Q

∂t
dt

Then find total derivative (with respect to time, which is the driving force of change):

dQ

dt
=

∂Q

∂K

dK

dt
+

∂Q

∂L

dL

dt
+

∂Q

∂t

dt

dt
= QKK ′ (t) +QLL

′ (t) +Qt

13 Derivatives of Implicit Functions

The concept of total differentials enables us to find the derivatives of implicit functions.

13.1 Implicit Functions

A function given in the form of y = f (x), for example

y = f (x) = 2x2 (1)

is called an explicit function, because the variable y is explicitly expressed as a function of
x.

However, if the function is written in the equivalent form

y − 2x2 = 0 (2)

then we no longer have an explicit function. Rather, the function (1) is implicitly
defined by the equation (2). When we are given an equation in the form of (2), therefore,
the function y = f (x) which it implies, and whose specific form may not even be known
to us, is referred to as an implicit function.
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In general, an equation of the form

F (y, x1, . . . , xn) = 0

MAY also define an implicit function

y = f (x1, . . . , xn)

The word MAY is important here. While it is always possible to transform an explicit
function y = f (x) into an equation F (y, x) = 0, the converse need not hold true. In other
words, it is not necessarily the case that an equation of the form F (y, x) = 0 implicitly
defines a function y = f (x).

Example 65 Consider the equation

F (y, x) = x2 + y2 − 9 = 0

implies not a function, but a relation, because this equation describes a circle so that
no unique value of y corresponds to each value of x.

Note, however, that if we restrict to nonnegative values (i.e. y ≥ 0) then we will have
the upper half of the circle only and that constitutes a function

y = +
√

9− x2

Similarly the lower half of the circle, where y ≤ 0, constitutes another function

y = −
√

9− x2

But neither the left half nor the right half of the circle can qualify as a function.

The implicit function theorem provides us with the general conditions under which we
can be sure that a given equation of the form

F (y, x1, . . . , xn) = 0

does indeed define an implicit function

y = f (x1, . . . , xn)

Theorem 1 Given an equation of the form

F (y, x1, . . . , xn) = 0 (3)

if
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1. F has continuous partial derivatives Fy, F1, . . . , Fn, and if

2. at a point (y0, x10, . . . , xn0) satisfying equation (3),Fy 6= 0

then there exists an n-dimensional neighbourhood of (y0, x10, . . . , xn0) in which y is an
implicitly defined function of the variables x1, . . . , xn in the form of y = f (x1, . . . , xn) .

This implicit function f

(a) gives (3) the status of an identity in the neighbourhood of (y0, x10, . . . , xn0), i.e.
F (y, x1, . . . , xn) ≡ 0.

(b) is continuous.

(c) has continuous partial derivatives f1, . . . , fn.

It is important to note that the conditions for the implicit function theorem are suffi-
cient, but not necessary, conditions. Therefore it could be possible to find a point at which
Fy = 0 but an implicit function may still exist around this point.

Example 66 Suppose we have the equation

F (y, x) = x2 + y2 − 9 = 0

We want to know whether it defines an implicit function.

1. Does F have continuous partial derivatives?

Here the answer is yes.

Fy = 2y

Fx = 2x

2. For the points that satisfy the equation F (y, x) = x2 + y2 − 9 = 0, is Fy 6= 0?

Since there are a whole range of possible (x, y) combinations that could satisfy the
equation F (y, x) = x2 + y2 − 9 = 0, it might take some time to figure out whether Fy 6= 0
for each possible combination. So, take the opposite approach and see if you can calculate
the values for which Fy 6= 0. Once you know the combinations of (x, y) for which Fy 6= 0,
then you just need to check whether this falls in the range of possible (x, y) combinations
which satisfy F (y, x) = x2 + y2 − 9 = 0.

So, Fy = 2y. Clearly, this will equal zero when y is zero.
When y = 0, x values of −3 or 3 will satisfy F (y, x) = x2 + y2 − 9 = 0.
So, for the points (−3, 0) and (3, 0), Fy = 0.
But for all other combinations of (x, y), Fy 6= 0.
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So for all possible combinations of (x, y) that satisfy F (y, x) = x2+y2−9 = 0 except the
two points (−3, 0) and (3, 0), Fy 6= 0 and therefore we will be able to find a neighbourhood
of points for which the implicit function y = f(x) is defined. Furthermore, given that the
implicit function will be defined in this neighbourhood, we know that this function will be
continuous, and will have continuous partial derivatives.

Graphically, this means that it is possible to draw, say, a rectangle around any point on
the circle - except (−3, 0) and (3, 0) - such that the portion of the circle enclosed therein
will constitute the graph of a function, with a unique y value for each value of x in that
rectangle.

13.2 Derivatives of Implicit Functions

If you are given an equation of the form F (y, x1, . . . , xn) = 0 and it is possible for you to
re-write it as y = f (x1, . . . , xn), then you should go ahead and do this. Then, you can find
the derivative as you have before.

Example 67 The equation F (y, x) = x2 + y2 − 9 = 0 can easily be solved to give two
separate functions:

y+ = +
√

9− x2 (upper half of circle)

y− = −
√

9− x2 (lower half of circle)

You can find the derivatives using the rules:

dy+

dx
=

1

2

(
9− x2

)−1/2
(−2x) =

−x

y+
(
y+ 6= 0

)
dy−

dx
= −1

2

(
9− x2

)−1/2
(−2x) =

x

y−
(
y− 6= 0

)
But what about cases where it’s not so easy to re-write the equation

F (y, x1, . . . , xn) = 0 in terms of y? In this case, we make use of the implicit function rule:
If F (y, x1, . . . , xn) = 0 defines an implicit function, then from the implicit function

theorem, it follows that: (Refer back to the theorem for reassurance if you’re feeling doubt-
ful. . . )

F (y, x1, . . . , xn) ≡ 0

This says that the LHS is identically equal to the RHS. If two expressions are identically
equal, then their respective differentials must also be equal. (Consider this example: a ≡ a
if , then da ≡ da)

Thus,

dF (y, x1, . . . , xn) ≡ d0 (we’ve just taken the differential of both sides)
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Now, write out the expression for the total differentials, dF , and d0.

Fydy + F1dx1 + F2dx2 + . . .+ Fndxn = 0 (4)

Now, the implicit function y = f (x1, . . . , xn) has the total differential

dy = f1dx1 + f2dx2 + . . .+ fndxn

We can substitute this dy expression into (4) to get

(Fyf1 + F1) dx1 + (Fyf2 + F2) dx2 + . . .+ (Fyfn + Fn) dxn = 0

Since all the dxi can vary independently from one another, for this equation to hold,
each each bracket must individually vanish, i.e.

Fyfi + Fi = 0 (for all i)

We divide through by Fy and solve for fi:

fi ≡
∂y

∂xi
= −Fi

Fy
(i = 1, 2, . . . , n)

In the simple case where F (y, x) = 0, the rule gives:

dy

dx
= −Fx

Fy

To recap, the implicit function rule tells us that given an equation of the form
F (y, x1, . . . , xn) = 0, if an implicit function is defined, then its partial derivatives can
be found using the formula:

fi ≡
∂y

∂xi
= −Fi

Fy
(i = 1, 2, . . . , n)

This is a nice result because it means that even if you don’t know what the implicit
function looks like, you can still find its derivatives.

Example 68 Suppose the equation F (y, x) = y − 3x4 = 0 implicitly defines a function
y = f (x), then

dy

dx
= −Fx

Fy
= −

(
−12x3

)
1

= 12x3
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Example 69 Consider the equation of the circle F (y, x) = x2 + y2 − 9 = 0. Using the
implicit function rule gives

dy

dx
= −Fx

Fy
= −2x

2y
= −x

y

Note that if y = 0, then this expression is undefined BUT recall, that for this equation,
when y = 0 the implicit function is not defined – see earlier example to re-check.

You should also check that if you substitute in the functions y+ and y−, you get the
derivatives we found earlier using the rules.

Example 70 Suppose the equation F (y, x, w) = y4−3x4y2+2wx−1 = 0 implicitly defines
a function y = f (x,w), then

∂y

∂x
= −Fx

Fy
= −

(
−12x3y2 + 2w

)
(4y3 − 6x4y)

∂y

∂w
= −Fw

Fy
= − (2x)

(4y3 − 6x4y)

Example 71 Suppose the equation F (y, x, w) = xy2 − 2xwy + 10wx + 5 = 0 implicitly
defines a function y = f (x,w), then

∂y

∂x
= −Fx

Fy
= −y2 − 2wy + 10w

2xy − 2xw

∂y

∂w
= −Fw

Fy
= −−2xy + 10x

2xy − 2xw

Example 72 Find
∂y

∂x
and

∂y

∂w
for any implicit function(s) that may be defined by the

equation F (y, x, w) = y3x2 + w3 + yxw − 3 = 0.
First, we need to use the implicit function theorem to figure out whether an implicit

function y = f (x,w) is defined or not.

1. Does F have continuous partial derivatives?

Fy = 3y2x2 + xw

Fx = 2y3x+ yw

Fw = 3w2 + yx

Yes it does.

2. Is Fy 6= 0 for the set of points that satisfy F (y, x, w) = y3x2 + w3 + yxw − 3 = 0?

Well, one possible set of points (y, x, w) that satisfies F (y, x, w) = 0 is (1, 1, 1). At
this point, Fy = 4. So, the second condition is met. This means that an implicit
function is defined, at least in and around the neighbourhood of the point (1, 1, 1).
(We could show other points too, but one is enough)
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So, since an implicit function is defined (at least for some neighbourhood of points), we
can use the implicit function rule:

∂y

∂x
= −Fx

Fy
= − 2y3x+ yw

3y2x2 + xw

∂y

∂w
= −Fw

Fy
= − 3w2 + yx

3y2x2 + xw

Example 73 Find
∂y

∂x
and

∂y

∂w
for any implicit function(s) that may be defined by the

equation F (y, x, w) = 3y2x+ x2yw + yxw2 − 16 = 0.
First, we need to use the implicit function theorem to figure out whether an implicit

function y = f (x,w) is defined or not.

1. Does F have continuous partial derivatives?

Fy = 6yx+ x2w + xw2

Fx = 3y2 + 2xyw + yw2

Fw = x2y + 2yxw

Yes it does.

2. Is Fy 6= 0 for the set of points that satisfy F (y, x, w) = 3y2x+x2yw+yxw2−16 = 0?

Well, one possible set of points (y, x, w) that satisfies F (y, x, w) = 0 is (2, 1, 1). At
this point, Fy = 14. So, the second condition is met. This means that an implicit
function is defined, at least in and around the neighbourhood of the point (2, 1, 1).
(We could show other points too, but one is enough)

Now, we can use the implicit function rule:

∂y

∂x
= −Fx

Fy
= −3y2 + 2xyw + yw2

6yx+ x2w + xw2

∂y

∂w
= −Fw

Fy
= − x2y + 2yxw

6yx+ x2w + xw2

Example 74 Assume that the equation F (Q,K,L) = 0 implicitly defines a production
function Q = f (K,L), then we can use the implicit function rule to find

∂Q

∂K
= −FK

FQ
This is the marginal physical product of capital

∂Q

∂L
= −FL

FQ
This is the marginal physical product of labour
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BUT there’s one more derivative we can find too:

∂K

∂L
= − FL

FK

What is the meaning of
∂K

∂L
? The partial sign implies that the other variable Q is

being held constant, and so it simply gives us a description of the way in which capital
inputs will change in response to a change in labour inputs in such a way as to keep output
constant. Recall from production theory, that production is constant along an isoquant.

(In the same way that utility is constant along an indifference curve). In other words,
∂K

∂L
tells us something about moving along an isoquant (you must move along the isoquant if
both K and L are changing). More precisely, it provides information about the slope of an

isoquant. (which is usually negative). The absolute value of
∂K

∂L
tells us the marginal rate

of technical substitution between the two inputs, capital and labour.

13.3 Application to the Simultaneous Equation Case

A generalised version of the implicit function theorem deals with the conditions under
which a set of simultaneous equations

F 1 (y1, . . . , ym;x1, . . . , xn) = 0

F 2 (y1, . . . , ym;x1, . . . , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . (5)

Fm (y1, . . . , ym;x1, . . . , xn) = 0

will assuredly define a set of implicit functions

y1 = f1 (x1, . . . , xn)

y2 = f2 (x1, . . . , xn)

. . . . . . . . . . . . . . . . . . (6)

ym = fm (x1, . . . , xn)

The generalised version of the theorem states that:

Theorem 2 Given the equation system (5), if

(a) the functions F 1, . . . , Fm all have continuous partial derivatives with respect to
all the y and x variables, and if
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(b) at a point (y10, . . . , ym0;x10, . . . , xn0) satisfying (5), the following Jacobian de-
terminant is non-zero:

|J | ≡

∣∣∣∣∣∂
(
F 1, . . . , Fm

)
∂ (y1, . . . , ym)

∣∣∣∣∣ ≡
∣∣∣∣∣∣∣∣∣
∂F 1

∂y1
∂F 1

∂y2
. . . ∂F 1

∂ym
∂F 2

∂y1
∂F 2

∂y2
. . . ∂F 2

∂ym

. . . . . . . . . . . .
∂Fm

∂y1
∂Fm

∂y2
. . . ∂Fm

∂ym

∣∣∣∣∣∣∣∣∣
then there exists an n-dimensional neighbourhood of (x10, . . . , xn0) in which the variables

y1, . . . , ym are functions of the variables x1, . . . , xn in the form of (6) and

1. The implicit functions give (5) the status of identities in the neighbourhood around
(y10, . . . , ym0;x10, . . . , xn0) .

2. The implicit functions f1, . . . , fm are continuous and have continuous partial deriva-
tives with respect to all the x variables.

As in the single equation case, it is possible to find the partial derivatives of the implicit
functions directly from the m equations in (eqrefe7, without having to solve them for the
y variables.

Since the equations in (5) have the status of identities in the neighbourhood around
(y10, . . . , ym0;x10, . . . , xn0), we can take the total differential of each of these

dF j ≡ d0 (j = 1, 2, . . . ,m)

We can write out the expressions for dF j and d0 and take the dxi terms to the RHS to get

∂F 1

∂y1
dy1 +

∂F 1

∂y2
dy2 + . . .+

∂F 1

∂ym
dym = −

(
∂F 1

∂x1
dx1 +

∂F 1

∂x2
dx2 + . . .+

∂F 1

∂xn
dxn

)
∂F 2

∂y1
dy1 +

∂F 2

∂y2
dy2 + . . .+

∂F 2

∂ym
dym = −

(
∂F 2

∂x1
dx1 +

∂F 2

∂x2
dx2 + . . .+

∂F 2

∂xn
dxn

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

∂Fm

∂y1
dy1 +

∂Fm

∂y2
dy2 + . . .+

∂Fm

∂ym
dym = −

(
∂Fm

∂x1
dx1 +

∂Fm

∂x2
dx2 + . . .+

∂Fm

∂xn
dxn

)
Moreover, from (6), we can write the differentials of the yj variables as

dy1 =
∂y1
∂x1

dx1 +
∂y1
∂x2

dx2 + . . .+
∂y1
∂xn

dxn

dy2 =
∂y2
∂x1

dx1 +
∂y2
∂x2

dx2 + . . .+
∂y2
∂xn

dxn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

dym =
∂ym
∂x1

dx1 +
∂ym
∂x2

dx2 + . . .+
∂ym
∂xn

dxn
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and these can be used to eliminate the dyj expressions in (7). But this would be very
messy, so let’s simplify matters by considering only what would happen when x1 alone
changes while all the other variables x2, . . . , xn remain constant.

Letting dx1 6= 0, but setting dx2 = . . . = dxn = 0 in (7) and (8), then substituting (8)
into (7) and dividing through by dx1 6= 0, we obtain the equation system

∂F 1

∂y1

(
∂y1
∂x1

)
+

∂F 1

∂y2

(
∂y2
∂x1

)
+ . . .+

∂F 1

∂ym

(
∂ym
∂x1

)
= −∂F 1

∂x1

∂F 2

∂y1

(
∂y1
∂x1

)
+

∂F 2

∂y2

(
∂y2
∂x1

)
+ . . .+

∂F 2

∂ym

(
∂ym
∂x1

)
= −∂F 2

∂x1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9)

∂Fm

∂y1

(
∂y1
∂x1

)
+

∂Fm

∂y2

(
∂y2
∂x1

)
+ . . .+

∂Fm

∂ym

(
∂ym
∂x1

)
= −∂Fm

∂x1

This may look complicated, but notice that the expressions in brackets constitute the
partial derivatives of the implicit functions with respect to x1 that we want to find. They
should therefore be regarded as the ”variables” to be solved for in (9). The other derivatives
are the partial derivatives of the F j functions given in (5) and would all take specific
values when evaluated at the point (y10, . . . , ym0;x10, . . . , xn0) - the point around which
the implicit functions are defined - and so they can be treated as given constants.

These facts make (9) a linear equation system, and it can be written in matrix form as


∂F 1

∂y1
∂F 1

∂y2
. . . ∂F 1

∂ym
∂F 2

∂y1
∂F 2

∂y2
. . . ∂F 2

∂ym

. . . . . . . . . . . .
∂Fm

∂y1
∂Fm

∂y2
. . . ∂Fm

∂ym




(
∂y1
∂x1

)(
∂y2
∂x1

)
...(

∂ym
∂x1

)

 =


−∂F 1

∂x1

−∂F 2

∂x1
...

−∂Fm

∂x1

 (10)
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Note that the coefficient matrix is just the Jacobian matrix J and the Jacobian deter-
minant |J | is known to be non-zero under the conditions of the implicit function theorem,
there should be a unique solution to (10). By Cramer’s rule, this solution can be expressed
as (

∂yj
∂x1

)
=

|Jj |
|J |

(j = 1, 2, . . .m)

By suitable adaptation of this procedure, the partial derivatives of the implicit functions
with respect to the other variables x2, . . . , xn can also be found.

Example 75 The following three equations

F 1 (x, y, w; z) = xy − w = 0

F 2 (x, y, w; z) = y − w3 − 3z = 0

F 3 (x, y, w; z) = w3 + z3 − 2zw = 0

are satisfied at the point P : (x, y, w; z) =
(
1
4 , 4, 1, 1

)
.

The F j functions obviously possess continuous partial derivatives. Thus, if the Jacobian

determinant |J | 6= 0 at point P , we can use the implicit function theorem to find
∂x

∂z
.

First, we take the total differential of the system

ydx+ xdy − dw = 0

dy − 3w2dw − 3dz = 0(
3w2 − 2z

)
dw +

(
3z2 − 2w

)
dz = 0

Moving the exogenous differential dz to the RHS and writing in matrix form we gety x −1
0 1 −3w2

0 0 3w2 − 2z

dxdy
dw

 =

 0
3

2w − 3z2

 dz

where the coefficient matrix of the LHS is the Jacobian

|J | =

∣∣∣∣∣∣
F 1
x F 1

y F 1
w

F 2
x F 2

y F 2
w

F 3
x F 3

y F 3
w

∣∣∣∣∣∣ =
∣∣∣∣∣∣
y x −1
0 1 −3w2

0 0 3w2 − 2z

∣∣∣∣∣∣ = y
(
3w2 − 2z

)
At the point P , |J | = 4 6= 0. Therefore the implicit function rule applies andy x −1

0 1 −3w2

0 0 3w2 − 2z



(
∂x
∂z

)(
∂y
∂z

)(
∂w
∂z

)
 =

 0
3

2w − 3z2
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Use Cramer’s rule to find an expression for
∂x

∂z
:

(
∂x

∂z

)
=

∣∣∣∣∣∣
0 x −1
3 1 −3w2

2w − 3z2 0 3w2 − 2z

∣∣∣∣∣∣
|J |

=

∣∣∣∣∣∣
0 1

4 −1
3 1 −3
−1 0 1

∣∣∣∣∣∣
4

= −1

4

13.4 Application to Market Model

Example 76 The market for Marc Jacobs handbags is described by the following set of
equations

Qd = Qs

Qd = D(P,G)

Qs = S(P,N)

where G is the price of substitutes and N is the price of inputs, and G and N are exoge-
nously given. The following assumptions are imposed

∂D

∂P
< 0,

∂D

∂G
> 0

∂S

∂P
> 0,

∂S

∂N
< 0

Use the implicit-function rule to find and sign the derivatives
∂P ∗

∂G
,
∂Q∗

∂G
,
∂P ∗

∂N
and

∂Q∗

∂N
.

First, express the market model as a two-equation system by letting Q = Qd = Qs:

Q = D(P,G)

Q = S(P,N)

or equivalently:

F 1 (P,Q;G,N) = D(P,G)−Q = 0

F 2 (P,Q;G,N) = S(P,N)−Q = 0

Next, check the conditions for the implicit function theorem:

46



1.

F 1
P =

∂D

∂P
F 1
Q = −1

F 1
G =

∂D

∂G
F 1
N = 0

F 2
P =

∂S

∂P
F 2
Q = −1

F 2
G = 0

F 2
N =

∂S

∂N

Therefore, continuous partial derivatives with respect to all endogenous and exogenous
variables exist.

2.

|J | =

∣∣∣∣F 1
P F 1

Q

F 2
P F 2

Q

∣∣∣∣
=

∣∣∣∣∂D∂P −1
∂S
∂P −1

∣∣∣∣
= −∂D

∂P
+

∂S

∂P

=
∂S

∂P
− ∂D

∂P
> 0

Therefore, |J | 6= 0

Conditions for implicit function satisfied, and so system implicitly defines the functions
P ∗ (G,N) and Q∗ (G,N) .

Now, we can use the implicit function rule:
First, take the total differential of each equation:

dF 1 = F 1
Pdp+ F 1

QdQ+ F 1
GdG+ F 1

NdN = 0

⇒ ∂D

∂P
dp− 1dQ+

∂D

∂G
dG+ 0 = 0

∂D

∂P
dp− 1dQ = −∂D

∂G
dG (11)
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dF 2 = F 2
Pdp+ F 2

QdQ+ F 2
GdG+ F 2

NdN = 0

⇒ ∂S

∂P
dp− 1dQ+ 0 +

∂S

∂N
dN = 0

∂S

∂P
dP − 1dQ = − ∂S

∂N
dN (12)

Putting equations (11) and (12) in matrix form[
∂D
∂P −1
∂S
∂P −1

] [
dP
dQ

]
=

[
−∂D

∂G
0

]
dG+

[
0

− ∂S
∂N

]
dN (13)

Note that the coefficient matrix is the Jacobian matrix J .

To find
∂P ∗

∂G
and

∂Q∗

∂G
we partially differentiate with respect with G, holding N constant

which implies that dN = 0. Setting dN = 0 and dividing through by dG in (13) gives:

[
∂D
∂P −1
∂S
∂P −1

]∂P
∗

∂G
∂Q∗

∂G

 =

[
−∂D

∂G
0

]

(Note the partial derivative signs - we are differentiating with respect to G, holding N
constant).

Use Cramer’s rule to solve for
∂P ∗

∂G
and

∂Q∗

∂G
:

∂P ∗

∂G
=

∣∣∣∣−∂D
∂G −1
0 −1

∣∣∣∣
|J |

=
∂D
∂G

∂S
∂P − ∂D

∂P

> 0

∂Q∗

∂G
=

∣∣∣∣∂D∂P −∂D
∂G

∂S
∂P 0

∣∣∣∣
|J |

=
∂D
∂G

∂S
∂P

∂S
∂P − ∂D

∂P

> 0
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To find
∂P ∗

∂N
and

∂Q∗

∂N
we partially differentiate with respect with N , holding G constant

which implies that dG = 0. Setting dG = 0 and dividing through by dN in (13) gives:

[
∂D
∂P −1
∂S
∂P −1

]∂P
∗

∂N
∂Q∗

∂N

 =

[
0

− ∂S
∂N

]

(Note the partial derivative signs - we are differentiating with respect to N , holding G
constant).

Use Cramer’s rule to solve for
∂P ∗

∂N
and

∂Q∗

∂N
:

∂P ∗

∂N
=

∣∣∣∣ 0 −1

− ∂S
∂N −1

∣∣∣∣
|J |

=
− ∂S

∂N
∂S
∂P − ∂D

∂P

> 0

∂Q∗

∂N
=

∣∣∣∣∂D∂P 0
∂S
∂P − ∂S

∂N

∣∣∣∣
|J |

=
−∂D

∂P
∂S
∂N

∂S
∂P − ∂D

∂P

< 0
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