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Section 1: Linear Algebra

ECO4112F 2011

Linear (matrix) algebra is a very useful tool in mathematical modelling as it allows us
to deal with (among other things) large systems of equations, with relative ease. As the
name implies however, linear algebra applies only to linear equations - i.e., equations with
only a first order polynomial.

An understanding of matrix algebra is important for most facets of economic theory.
Solving mathematical models that are based on a large number of simultaneous equations
(such as the national income model, or market models) requires the use of matrix algebra.
Once we get past two linear equations with more than two endogenous variables, it becomes
tedious and time consuming to solve by simple substitution. Matrix algebra provides an
easy method to solve these systems of equations. Similarly, matrices are important for
econometrics. Any data set we use can and should be thought of as a large matrix of
numerical elements. The core essence of econometrics is to solve for the coefficient values
attached to each numerical element in the data set.

1 Vectors

Definition 1 A vector is a list of numbers.

There are row vectors, e.g. r =
[
1 2 3

]
and column vectors, e.g. c =

45
6

.
The number in the ith position of the vector a is denoted by ai and is referred to as the

ith component of a. So r2 = 2 and c3 = 6.
A vector with n components is called an n-vector.
The order of the components of a vector matters. Thus, if x and y are both n-vectors,

x = y ⇔ xi = yi for i = 1, 2, . . . , n

1.1 Vector arithmetic

Addition of two vectors a and b can only be performed if they have the same number of
components and is performed component by component:
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Example 1 32
1

+

 4
−5
6

 =

 7
−3
7


Multiplication by a scalar is also performed component by component:

Example 2

(−2)

 3
−1
2

 =

−6
2
−4


1.1.1 Laws

(a) a+ b = b+ a (Commutative law of vector addition)

(b) (a+ b) + c = a+ (b+ c) (Associative law of vector addition)

(c) λ (a+ b) = λa+λb

(d) (λ+ µ)a =λa+µa

(e) λ (µa) = µ (λa) = (λµ)a

1.2 Linear Dependence

A linear combination of two vectors a and b is a vector of the form

αa+βb

where α and β are scalars.
Suppose we have a set of k n-vectors, b1,b2, . . . ,bk.

Definition 2 The vectors b1,b2, . . . ,bk are linearly dependent if it is possible to express
one of them as a linear combination of the others.

The vectors b1,b2, . . . ,bk are linearly independent if none of the vectors can be ex-
pressed as a linear combination of the others.

Criterion 1 A simple criterion for linear dependence is:
b1,b2, . . . ,bk are linearly dependent if and only if there exist scalars α1, α2, . . . , αk, not

all zero, such that
α1b

1 + α2b
2 + . . .+ αkb

k = 0 (1)

Thus, to test whether a given set of vectors are linearly dependent or independent,
start with (1). If you can show that the only scalars α1, α2, . . . , αk which satisfy this are all
zero, then the vectors are linearly independent; if you can find α1, α2, . . . , αk that satisfy
(1) and are not all zero, then the vectors are linearly dependent.
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Example 3 Consider the vectors

a =

[
2
1

]
,b =

[
1
2

]
, c =

[
1
1

]
Are a and b linearly independent?
Are a, b and c linearly independent?
a and b are linearly independent, since the only scalars α and β for which

2α+ β = 0

α+ 2β = 0

are given by α = β = 0.
a, b and c linearly dependent, since

a+ b− 3c = 0

2 Matrices

Definition 3 A matrix is a rectangular array of numbers, e.g. A =

[
9 5 7
4 8 6

]
.

The number of rows and number of columns in a matrix together define the dimension
of the matrix. A matrix with m rows and n columns is called an m× n matrix.

The number in the ith row and jth column of a matrix A is called the (i, j) entry of A:
denoted aij .

So using our matrix A above, a23 = 6.

Two matrices A and B are equal only if they are exactly the same, with the same
number of rows, the same number of columns and the same entries in the same order.

Note that we can think of vectors as special cases of matrices: a row vector is simply a
1× n matrix, and a column vector is simply an n× 1 matrix.

3 Matrix Operations

3.1 Addition and Subtraction of Matrices

This is analogous to the vector case. Two matricesA andB can be added if and only if they
have the same number of rows and the same number of columns (i.e. the same dimension).
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When this dimension requirement is met, the matrices are said to be conformable for
addition. In that case, addition of A and B is performed entry by entry:

A+B = C where cij = aij + bij

The sum matrix C must have the same dimension as the component matrices A and
B.

We can define subtraction similarly for two conformable matrices A and B :

A−B = D where dij = aij − bij

Alternatively, we can define subtraction by letting

−A =(−1)A, A−B = A+(−B)

3.1.1 Laws of matrix addition

1. Matrix addition satisfies the commutative law:

A+B = B+A

2. Matrix addition satisfies the associative law:

(A+B)+C = A+ (B+C)

Example 4 Given

A =

4 3 1
2 6 5
1 0 2

 and B =

1 0 2
3 2 1
4 1 2



A+B =

5 3 3
5 8 6
5 1 4


A−B =

 3 3 −1
−1 4 4
−3 −1 0


3.2 Scalar Multiplication

This is again analogous to the vector case. To multiply a matrix by a scalar, multiply
every element in that matrix by the scalar.
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Example 5

A =

[
8 0 9
1 −4 1

]

2A =

[
16 0 18
2 −8 2

]
3.3 Matrix Multiplication

Suppose we have two matrices A and B and we want to find the product AB. The
conformability condition for multiplication is that the column dimension of A must be
equal to the row dimension of B. When the product AB is defined, it has the same
number of rows as A and the same number of columns as B :

A
m×n

B
n×s

= C
m×s

Denote the rows of A by a1,a2, . . . ,am and the columns of B by b1,b2, . . . ,bs. Then
AB is the m× s matrix whose (i, k) entry is the row-column product aib

k for all relevant
i and k. For instance to find the (1, 1) entry of AB we should take the first row in A and
the first column in B and then pair the elements together sequentially, multiply out each
pair, and take the sum of the resulting products, to get

c11 = a11b11 + a12b21 + . . .+ a1nbs1

Example 6 Given

A =
[
5 7

]
and B =

[
5 2 0
6 9 1

]
Find AB.
First, we must check that the matrices are conformable: the column dimension of A is

2 and the row dimension of B is 2, so the product AB = C is defined. C will be a 1 × 3
matrix.

Now AB = C =
[
c11 c12 c13

]
.

To find c11, we use row 1 of A and column 1 of B :

c11 = (5× 5) + (7× 6)

= 67

To find c12, we use row 1 of A and column 2 of B :

c11 = (5× 2) + (7× 9)

= 73
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To find c13, we use row 1 of A and column 3 of B :

c11 = (5× 0) + (7× 1)

= 7

Thus,
AB = C =

[
67 73 7

]
Example 7 Given

A =

1 5
2 −3
4 −8

 and B =

[
2 −7 3 0
1 0 4 −5

]
Find AB and BA.

AB =

(1× 2 + 5× 1) (−1× 7 + 5× 0) (1× 3 + 5× 4) (1× 0− 5× 5)
(2× 2− 3× 1) (−2× 7− 3× 0) (2× 3− 3× 4) (2× 0 + 3× 5)
(4× 2− 8× 1) (−4× 7− 8× 0) (4× 3− 8× 4) (4× 0 + 8× 5)


=

7 −7 23 −25
1 −14 −6 15
0 −28 −20 40


BA is not defined because the matrices are not conformable for multiplication.

3.3.1 Rules of matrix multiplication

1. The associative law of matrix multiplication:

(AB)C = A (BC)

2. The distributive laws of matrix multiplication:

(A+B)C = AC+BC

A (B+C) = AB+AC

3. Scalars:
(λA)B =λ (AB) = A (λB)

Note that matrix multiplication is not commutative. In general,

AB 6= BA

Because matrix multiplication is not commutative, the instruction ”multiply A by B”
is ambiguous and should be avoided Instead, use the terms premultiply or postmultiply:
premultiplication of A by B means forming the product BA, postmultiplication of A by
B means forming the product AB.

6



3.4 Summary of matrix arithmetic

Matrix arithmetic is just like ordinary arithmetic, except for the following:

1. Addition and multiplication are subject to dimension restrictions: A+B is defined
only when A and B have the same number of rows and the same number of columns;
AB is defined only when the number of columns of A is equal to the number of rows
of B.

2. Matrix multiplication is not commutative.

3. There is no such thing as matrix division.

4 Systems of linear equations

We can express any system of linear equations in the form Ax = b, where A is referred
to as the coefficient matrix, and x as the vector of unknowns.

Example 8 Rewrite the following system of linear equations using matrix algebra:

6x1 + 3x2 + x3 = 22

x1 + 4x2 − 2x3 = 12

4x1 − x2 + 5x3 = 10

We can write this system as Ax = b where

A =

6 3 1
1 4 −2
4 −1 5


x =

x1x2
x3


b =

2212
10


We refer to A as the coefficient matrix, and x as the vector of unknowns.

Example 9 Rewrite the following national income model in matrix form:

Y = C + I +G

C = a+ b(Y − T ) a > 0, 0 < b < 1

T = tY 0 < t < 1
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where Y is national income, C is (planned) consumption expenditure, I is investment
expenditure, G is government expenditure and T is taxes.

We first need to re-arrange the equations so that the endogenous variables are on the
LHS and the exogenous variables are on the RHS:

Y − C = I +G

C − bY + bT = a

T − tY = 0

We can now rewrite this system in matrix form: 1 −1 0
−b 1 b
−t 0 1

YC
T

 =

I +G
a
0


5 Square matrices

Definition 4 An n× n matrix is called a square matrix of order n.

Example 10

A =

5 6 2
4 2 1
8 9 2

 , B =

 4 −5 5 0
7 0 6 0
1 9 5 8


A is a square matrix of order 3.
B is not a square matrix.

5.1 Triangular and diagonal matrices

Given a 3× 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


we call a11, a22 and a33 the diagonal entries of A, the other six entries are off-diagonal.
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A square matrix is said to be:

• upper triangular if all entries below the diagonal are zero,

• lower triangular if all entries above the diagonal are zero.

An upper triangular matrix with no zeros on the diagonal is called a regular upper
triangular matrix (RUT for short).

Definition 5 A triangular matrix is a matrix which is either upper or lower triangular.

Definition 6 A diagonal matrix is one that is both upper and lower triangular.

Example 11

A =

 7 10 9
0 1 18
0 0 2

 , B =

 1 0 0
12 3 0
4 2 5

 , C =

 3 0 0
0 6 0
0 0 9


• A is upper triangular

• B is lower triangular

• C is a diagonal matrix.

5.2 Trace

Definition 7 The trace of a square matrix is the sum of its diagonal entries. For an n×n
matrix A,

tr(A) =
n∑

i=1

aii

Example 12

A =

4 −3 4
6 −1 −3
0 3 −4

 , B =

−5 2 −2
0 3 −3
0 0 2



tr(A) = 4− 1− 4 = −1

tr(B) = −5 + 3 + 2 = 0
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6 Identity and Null Matrices

6.1 Identity Matrices

Definition 8 An identity matrix is a square matrix with 1s on its diagonal and 0s every-
where else. It is denoted by the symbol I, or In where the subscript n serves to indicate
its row (as well as column) dimension.

Thus,

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The identity matrix plays the same role in matrix multiplication that the number 1

plays in ordinary arithmetic: for any matrix A,

IA = A = AI

6.2 Null Matrices

Definition 9 A null matrix - or zero matrix - is simply a matrix whose elements are all
zero. It is denoted by 0.

Unlike I, the null matrix is not restricted to being square.

The zero matrix plays the same role for matrices that the number 0 does in ordinary
arithmetic:

A+ 0 = A = 0+A

A0= 0

0A= 0
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7 Echelon matrices

Definition 10 An echelon matrix is a matrix, not necessarily square, with the following
two properties:

1. There is at least one non-zero entry; rows consisting entirely of zeros, if any, lie below
rows with at least one non-zero entry.

2. In each non-zero row after the first, the left-most non-zero entry lies to the right of
the left-most non-zero entry in the preceding row.

These properties give us a ’staircase’ pattern, where each F denotes a non-zero number,
and the entries marked • may be zero or non-zero:

F • • • • •
0 F • • • •
0 0 0 0 F •
0 0 0 0 0 0


In each of the non-zero rows of an echelon matrix:

• the left-most non-zero entry is called the pivot,

• the columns containing the pivots are said to be basic columns.

For any echelon matrix

number of pivots = number of non-zero rows = number of basic columns.

Definition 11 A row echelon matrix in which each pivot is a 1 and in which each column
containing a pivot contains no other non-zero entries is said to be in reduced row echelon
form.

For instance, 
1 0 • • 0 •
0 1 • • 0 •
0 0 0 0 1 •
0 0 0 0 0 0
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7.1 Echelon systems

We now explain how to solve a system of equations of the form Ax = b, where A is an
echelon matrix.

Our first example is the case where A is a RUT. The system is solved by back-
substitution, giving a unique solution.

Example 13 Let

A =

2 7 1
0 3 −2
0 0 4

 ,b =

27
4


Then the system of linear equations Ax = b may be written

2x1 + 7x2 + x3 = 2

3x2 − 2x3 = 7

4x3 = 4

Solve by back substitution to get the unique solution x1 = −10, x2 = 3, x3 = 1.

Our second example considers the case where the basic columns of A form a RUT, and
there are also one or more non-basic columns. To solve the system, we assign arbitrary
values to non-basic unknowns, and then solve for the basic unknowns by back-substitution.

Example 14 Solve the system Ax = b, where

A =

[
2 −4 1 −8
0 0 5 10

]
,b =

[
−4
20

]
The first and third columns are basic. We therefore assign arbitrary values λ and µ to

x2 and x4, giving the system

2x1 + x3 = 4λ+ 8µ− 4

5x3 = −10µ+ 20

We now find x1 and x3 by back-substitution:

x3 = 4− 2µ

x1 =
1

2
(4λ+ 8µ− 4 + 2µ− 4) = 2λ+ 5µ− 4

The complete solution, in vector form is:

x =


−4
0
4
0

+ λ


2
1
0
0

+ µ


5
0
−2
1
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Our final example considers an echelon matrix which has a row consisting entirely of
zeros.

Example 15 Solve the system Ax = b, where

A =

2 −4 1 −8
0 0 5 10
0 0 0 0

 ,b =

−4
20
0


The last equation says that 0 = 0, so we only have to solve the upper block. This is

exactly the system solved in the previous example, and the solution is stated there.
Note that if the third component of b had been a non-zero number, then there would be

no solution.

8 Gaussian elimination

We now turn to the general system Ax = b where A is an m× n matrix. There are two
trivial cases:

• A = 0 and b 6= 0: there is no solution

• A = 0 and b = 0: every n-vector is a solution.

For the rest of the section, we ignore these trivial cases and assume that A has at least
one non-zero entry.

To solve the system we apply Gaussian elimination on the rows of the augmented matrix[
A b

]
. We apply elementary row operations on the augmented matrix until we obtain a

matrix
[
E c

]
where E is an echelon matrix.

There are three types of elementary row operations:

1. Interchange of any two rows in the matrix.

2. Multiplication (or division) of a row by any scalar k 6= 0.

3. Addition of ”k times any row” to another row.

Example 16 Solve the system Ax = b, where

A =

 2 −4 1 −8
4 −8 7 −6
−1 2 1 7

 ,b =

−4
12
8
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Start with the augmented matrix
[
A b

]
: 2 −4 1 −8

4 −8 7 −6
−1 2 1 7

∣∣∣∣∣∣
−4
12
8


1. (a) Subtract 2 times the first row from the second row: 2 −4 1 −8

0 0 5 10
−1 2 1 7

∣∣∣∣∣∣
−4
20
8


(b) Add 1/2 times the first row to the third: 2 −4 1 −8

0 0 5 10
0 0 3/2 3

∣∣∣∣∣∣
−4
20
6


2. (a) Subtract 3/10 times the second row from the third: 2 −4 1 −8

0 0 5 10
0 0 0 0

∣∣∣∣∣∣
−4
20
0


We have reduced our system of equations to one in which the coefficient is a row echelon

matrix. This row echelon matrix is the same one as in the previous example and the full
solution is presented there.

Example 17 Solve the following system of equations by Gaussian elimination:

x− 3y = −20

2x+ y − z = −1

4x+ 6z = 10

In matrix form:

A =

1 −3 0
2 1 −1
4 0 6

 ,x =

xy
z

 ,b =

−20
−1
10
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The augmented matrix 1 −3 0
2 1 −1
4 0 6

∣∣∣∣∣∣
−20
−1
10


→

 1 −3 0
0 7 −1
0 12 6

∣∣∣∣∣∣
−20
39
90

 (2)− 2× (1)
(3)− 4× (1)

→

 1 −3 0
0 1 −1/7
0 12 6

∣∣∣∣∣∣
−20
39/7
90


(2)× 1/7

→

 1 −3 0
0 1 −1/7
0 0 54/7

∣∣∣∣∣∣
−20
39/7
162/7


(3)− 12× (2)

→

 1 −3 0
0 1 −1/7
0 0 1

∣∣∣∣∣∣
−20
39/7
3


(3)× 7/54

→

 1 −3 0
0 1 0
0 0 1

∣∣∣∣∣∣
−20
6
3


(2) + 1/7× (3)

→

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
−2
6
3

 (1) + 3× (2)

This is in reduced row echelon form. The solution is

xy
z

 =

−2
6
3


8.1 Number of equations, number of unknowns

Given a system of m linear equations in n unknowns, there are three possibilities:

1. there is a unique solution

2. there is no solution

3. there are infinitely many solutions

If

• m ≥ n then any one of these cases can occur

• m < n then only the last two cases can occur.
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9 Inverting a matrix

Definition 12 A square matrix A is said to be invertible if there is a square matrix A−1

that satisfies the condition
AA−1 = A−1A = I

The matrix A−1 is called the inverse matrix of A.

9.1 General facts about inverses.

1. Not every square matrix has an inverse. If a square matrix A has an inverse, A is
said to be non-singular ; if A is not invertible, it is called a singular matrix.

In order for an inverse to exist, a necessary condition is that the matrix be square.

Once this necessary condition has been met, a sufficient condition for the non-
singularity of a matrix is that its rows (or columns) be linearly independent.

When the dual conditions of squareness and linear independence are taken together,
they constitute the necessary-and-sufficient condition for nonsingularity (nonsingu-
larity ⇔ squareness and linear independence).

2. If A is invertible,so is A−1, and
(
A−1

)−1
= A, i.e. A and A−1 are inverses of each

other.

3. If A and B are invertible, so is AB, and

(AB)−1 = B−1A−1

Note that since matrix multiplication is not commutative, (AB)−1 is not in general
equal to A−1B−1.

4. If A and B are square matrices such that AB = I, then both A and B are invertible,
A−1 = B and B−1 = A.

9.1.1 Some important points

1. The adjectives singular, non-singular and invertible apply only to square matrices.

2. AB−1 always means A
(
B−1

)
, not (AB)−1 .

3. Inverse matrices bear some resemblance to reciprocals, but it should not be taken
too literally. In particular if A 6= B then AB−1 and B−1A are in general different;

it is therefore not a good idea to denote either of these matrices by
A

B
. Remember,

there is no such thing as matrix division.
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9.2 Application and calculation

Inverses provide us with a method for solving systems of equations.
Given the system Ax = b, where A is an invertible n× n matrix and b is an n-vector,

then
x = A−1b

is the unique solution.
We could still use Gaussian elimination to solve the system of equations. However,

knowing A−1 enables us to solve Ax = b for any vector b, and this can be useful.

To invert a matrix A, set up an augmented matrix with A on the left and the identity
matrix on the right:

[
A I

]
.

Then apply row operations until the coefficient matrix on the left is reduced to an
identity matrix. The matrix on the right will be the inverse:

[
I A−1

]
.

Example 18 Invert the matrix

A =

2 1 2
3 1 1
3 1 2


Start with the augmented matrix

[
A I

]
: 2 1 2

3 1 1
3 1 2

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


Now reduce the matrix on the left to an identity matrix by applying the elementary row

operations:

1. Subtract 3/2 times row 1 from rows 2 and 3: 2 1 2
0 −1

2 −2
0 −1

2 −1

∣∣∣∣∣∣
1 0 0
−3

2 1 0
−3

2 0 1


2. Add twice the second row to the first row, and subtract the second row from the third

row:  2 0 −2
0 −1

2 −2
0 0 1

∣∣∣∣∣∣
−2 2 0
−3

2 1 0
0 −1 1



17



3. Add twice the third row to the first and second rows: 2 0 0
0 −1

2 0
0 0 1

∣∣∣∣∣∣
−2 0 2
−3

2 −1 2
0 −1 1


4. Divide the first row by 2, and multiply the second row by −2 : 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
−1 0 1
3 2 −4
0 −1 1


Therefore,

A−1=

−1 0 1
3 2 −4
0 −1 1


Example 19 Solve the following system of equations using the inverse method:

2x+ y + 2z = 1

3x+ y + z = 2

3x+ y + 2z = 3

Solve using x = A−1b
The coefficient matrix is :

A =

2 1 2
3 1 1
3 1 2


We calculated the inverse in the last example:

A−1=

−1 0 1
3 2 −4
0 −1 1


So

x = A−1b

=

−1 0 1
3 2 −4
0 −1 1

12
3


=

 2
−5
1
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Example 20 Solve the following system of equations using the inverse method:

2x− y + z = 17

x− 2y − z = 4

3x+ y − 2z = −9

Solve using x = A−1b
The coefficient matrix is

A =

2 −1 1
1 −2 −1
3 1 −2


We need to find A−1

 2 −1 1
1 −2 −1
3 1 −2

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


→

 1 −2 −1
2 −1 1
3 1 −2

∣∣∣∣∣∣
0 1 0
1 0 0
0 0 1

 (1) ↔ (2)

→

 1 −2 −1
0 3 3
0 7 1

∣∣∣∣∣∣
0 1 0
1 −2 0
0 −3 1

 (2)− 2× (1)
(3)− 3× (1)

→

 1 −2 −1
0 1 1
0 7 1

∣∣∣∣∣∣
0 1 0
1/3 −2/3 0
0 −3 1

 (2)× 1/3

→

 1 0 1
0 1 1
0 0 −6

∣∣∣∣∣∣
2/3 −1/3 0
1/3 −2/3 0
−7/3 5/3 1

 (1) + 2× (2)

(3)− 7× (2)

→

 1 0 1
0 1 1
0 0 1

∣∣∣∣∣∣
2/3 −1/3 0
1/3 −2/3 0
7/18 −5/18 −1/6


(3)× (−1/6)

→

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
5/18 −1/18 1/6
−1/18 −7/18 1/6
7/18 −5/18 −1/6

 (1)− (3)
(2)− (3)
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Therefore

A−1 =

 5/18 −1/18 1/6
−1/18 −7/18 1/6
7/18 −5/18 −1/6


=

1

18

 5 −1 3
−1 −7 3
7 −5 −3


Now

x = A−1b

=
1

18

 5 −1 3
−1 −7 3
7 −5 −3

17
4
−9


=

 3
−4
7
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10 Linear dependence and rank

An n×n coefficient matrix A can be considered as an ordered set of row vectors. For the
rows (row vectors) to be linearly independent, none must be a linear combination of the
rest. More formally:

a1,a2, . . . ,an are linearly independent if the only scalars α1, α2, . . . , αn, that satisfy the
vector equation

α1a
1 + α2a

2 + . . .+ αna
n = 0

be αi = 0 for all i.

Example 21 If the coefficient matrix is

A =

3 4 5
0 1 2
6 8 10

 =

a1a2
a3


then, since

[
6 8 10

]
= 2

[
3 4 5

]
, we have 2a1 + 0a2 − a3 = 0.

Thus the third row is expressible as a linear combination of the first two, and the rows
are not linearly independent. (Equivalently, since the set of scalars that led to the zero
vector is not αi = 0 for all i, it follows that the rows are linearly dependent.)

10.1 Rank of a matrix

The rank of an m × n matrix A is the maximum number of linearly independent rows
that can be found in the matrix. (The rank also tells us the maximum number of linearly
independent columns that can be found in the matrix A). The rank of an m× n matrix
can be at most m or n, whichever is smaller.

10.1.1 Finding the rank

One method for finding the rank of a matrixA (not necessarily square), i.e. for determining
the number of independent rows in A, involves transforming A into an echelon matrix by
Gaussian reduction.

Then

rank = number of pivots = number of non-zero rows = number of basic columns

Example 22 Find the rank of the matrix

A =

0 −11 −4
2 6 2
4 1 0
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This can be transformed into the row echelon matrix (show this):1 0 − 1
11

0 1 4
11

0 0 0


Since this matrix contains two pivots (two non-zero rows, two basic columns) we can

conclude that rank(A) = 2.

10.1.2 Note

For an n× n matrix A ,
A is non-singular
⇔ A has n linearly independent rows (or columns)
⇔ A is of rank n
⇔ its echelon matrix must contain exactly n non-zero rows, with no zero rows at all
⇔ a unique solution to the system Ax = b exists, given by x = A−1b
⇔ its determinant is non-zero.

In our previous example rank(A) = 2 < 3 = n. Hence, A is singular.
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11 Determinants

Determinants are defined only for square matrices. It is denoted by |A| (or detA) and
is a uniquely defined scalar (number) associated with that matrix. (Do not confuse this
notation with the symbol for the absolute value of a number!)

11.1 Calculating determinants

11.1.1 Using the rules

The following rules apply to determinants:

1. The determinant of a triangular matrix is the product of its diagonal entries.

2. The determinant changes sign when two rows are exchanged.

3. If a multiple of one row is subtracted from another row, the determinant remains
unchanged.

To calculate the determinant we apply Gaussian elimination, reducing the given matrix
A to an upper triangular matrix U. detU is the product of the diagonal entries of U.
And

detA =(−1)k detU

where k is the number of times two rows have been exchanged in the reduction process.

Example 23 ∣∣∣∣∣∣
0 0 6
0 4 5
1 2 3

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
1 2 3
0 4 5
0 0 6

∣∣∣∣∣∣ = −24

Example 24 Calculate detA when

A =

2 3 4
2 3 7
5 8 6


The elimination step yields the matrix:2 3 4

0 0 3
0 1

2 −4
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Exchanging the second and third rows gives:2 3 4
0 1

2 −4
0 0 3

 = U

Since there has been one row exchange,

detA =(−1)1 detU = −
(
2× 1

2
× 3

)
= −3

11.1.2 Other methods

We can use the rules to derive a formula for the determinant of a 2× 2 matrix:∣∣∣∣a b
c d

∣∣∣∣ = ad− bc

We can also derive a formula for the determinant of a 3× 3 matrix:∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 − a11a23a32 + a12a23a31

−a12a21a33 + a13a21a32 − a13a22a31

Fortunately, there is a simple way to apply this formula:

Example 25∣∣∣∣∣∣
2 1 3
4 5 6
7 8 9

∣∣∣∣∣∣ = (2) (5) (9) + (1) (6) (7) + (3) (8) (4)− (2) (8) (6)− (1) (4) (9)− (3) (5) (7)

= −9.
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This method of cross-diagonal multiplication is NOT applicable to determinants of
orders higher than 3. We must use the Laplace expansion of the determinant instead.

11.1.3 Laplace Expansion

We begin by explaining Laplace expansion for a third-order determinant.
Consider the 3× 3 matrix:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


For each i = 1, 2, 3 and j = 1, 2, 3 we define the (i, j) cofactor of A to be the scalar

cij = (−1)i+j detAij

where Aij is the 2× 2 matrix obtained from A by deleting its ith row and jth column.
For instance:

c11 = +

∣∣∣∣a22 a23
a32 a33

∣∣∣∣
c12 = −

∣∣∣∣a21 a23
a31 a33

∣∣∣∣
We can now express a third-order determinant as

|A| = a11c11 + a12c12 + a13c13

=

3∑
j=1

a1jc1j

i.e. as a sum of three terms, each of which is the product of a first-row element and its
corresponding cofactor.

It is also feasible to expand a determinant by any row or any column of the matrix.
The easiest way to expand the determinant is to expand by a row or column with some
zero entries.

Example 26 Compute

|A| =

∣∣∣∣∣∣
5 6 1
2 3 0
7 −3 0

∣∣∣∣∣∣
We can expand by the first row:

|A| = 5

∣∣∣∣ 3 0
−3 0

∣∣∣∣− 6

∣∣∣∣2 0
7 0

∣∣∣∣+ 1

∣∣∣∣2 3
7 −3

∣∣∣∣ = −27
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Or the first column:

|A| = 5

∣∣∣∣ 3 0
−3 0

∣∣∣∣− 2

∣∣∣∣ 6 1
−3 0

∣∣∣∣+ 7

∣∣∣∣6 1
3 0

∣∣∣∣ = −27

The easiest way is to expand by the third column:

|A| = 1

∣∣∣∣2 3
7 −3

∣∣∣∣ = −27

Example 27 Compute

|A| =

∣∣∣∣∣∣∣∣
4 −3 4 6
−1 −3 0 3
−4 −4 2 −2
4 3 −3 −4

∣∣∣∣∣∣∣∣
Expanding by the third column:

|A| = 4

∣∣∣∣∣∣
−1 −3 3
−4 −4 −2
4 3 −4

∣∣∣∣∣∣− 0

∣∣∣∣∣∣
4 −3 6
−4 −4 −2
4 3 −4

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
4 −3 6
−1 −3 3
4 3 −4

∣∣∣∣∣∣− (−3)

∣∣∣∣∣∣
4 −3 6
−1 −3 3
−4 −4 −2

∣∣∣∣∣∣
= 4

[
−1

∣∣∣∣−4 −2
3 −4

∣∣∣∣− (−3)

∣∣∣∣−4 −2
4 −4

∣∣∣∣+ 3

∣∣∣∣−4 −4
4 3

∣∣∣∣]
+2

[
4

∣∣∣∣−3 3
3 −4

∣∣∣∣− (−3)

∣∣∣∣−1 3
4 −4

∣∣∣∣+ 6

∣∣∣∣−1 −3
4 3

∣∣∣∣]
+3

[
4

∣∣∣∣−3 3
−4 −2

∣∣∣∣− (−3)

∣∣∣∣−1 3
−4 −2

∣∣∣∣+ 6

∣∣∣∣−1 −3
−4 −4

∣∣∣∣]
= 4 [−1 (22) + 3 (24) + 3 (4)]

+2 [4 (3) + 3 (−8) + 6 (9)]

+3 [4 (18) + 3 (14) + 6 (−8)]

= 4 (62) + 2 (42) + 3 (66)

= 530

To sum up, the value of a determinant |A| of order n can be found by the Laplace
expansion of any row or any column as follows:

|A| =

n∑
j=1

aijcij [expansion by the ith row]

=

n∑
i=1

aijcij [expansion by the jth column]
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11.2 Properties of determinants

1. A square matrix is singular if and only if its determinant is zero. This provides
us with another test for the singularity of a matrix. When a matrix has a non-zero
determinant, we say that matrix is non-singular. This means that there is no linear
dependence among the rows and columns of the matrix, and so there must be a unique
solution to the system of equations that the coefficient matrix is representative of.

2. If one row of a matrix is multiplied by the scalar λ, and the others are left unchanged,
the determinant is multiplied by λ.

3. If A is n× n, det (λA) = λn detA.

4. det (AB) = detA× detB

5. detA−1 =
1

detA

12 Transposition

Definition 13 The transpose of a (not necessarily square matrix) A is the matrix A′ (or
AT ) whose rows are columns of A,

Example 28

If A =

[
3 1 4
8 9 6

]
then A′ =

3 8
1 9
4 6
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12.1 Properties of transposes

1. (αA+ βB)′ = αA′ + βB′

2. (AB)′ = B′A′

Note the order of multiplication. In particular note that (AB)′ 6= A′B′ in general.

3. (A′)′ = A

4. (A′)−1 =
(
A−1

)′
5. rank(A′) = rank(A)

6. detA′ = detA

13 The adjoint matrix

Definition 14 The cofactor matrix of an n× n matrix A is the matrix of cofactors: it is
the matrix C whose (i.j) entry cij is the (i.j) cofactor of A.

Definition 15 The adjoint matrix of A is the transpose of the cofactor matrix, and is
denoted adjA.

adjA = C′

13.1 Finding the inverse of a matrix

We can now use a formula for the inverse of a matrix, often called the ‘adj-over-det’ formula:
if A is invertible,

A−1 =
1

|A|
adjA

Example 29 Find the inverse of A

A =

4 1 −1
0 3 2
3 0 7


1. Find |A|. (expand by first column)

|A| = 4

∣∣∣∣3 2
0 7

∣∣∣∣− 0 + 3

∣∣∣∣1 −1
3 2

∣∣∣∣ = 99 6= 0 so inverse exists.
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2. Find the cofactor matrix

C =



∣∣∣∣3 2
0 7

∣∣∣∣ −
∣∣∣∣0 2
3 7

∣∣∣∣ ∣∣∣∣0 3
3 0

∣∣∣∣
−
∣∣∣∣1 −1
0 7

∣∣∣∣ ∣∣∣∣4 −1
3 7

∣∣∣∣ −
∣∣∣∣4 1
3 0

∣∣∣∣∣∣∣∣1 −1
3 2

∣∣∣∣ −
∣∣∣∣4 −1
0 2

∣∣∣∣ ∣∣∣∣4 1
0 3

∣∣∣∣


=

21 6 −9
−7 31 3
5 −8 12


3. Find the adjoint matrix

adjA = C′

=

21 −7 5
6 31 −8
−9 3 12


4. Find the inverse

A−1 =
1

|A|
adjA

=
1

99

21 −7 5
6 31 −8
−9 3 12


Example 30 Use the inverse method to solve the system Ax = b, where

A =

6 3 1
1 4 −2
4 −1 5

 , x =

x1x2
x3

 , b =

2212
10


We solve using x = A−1b.
Step 1: Find the inverse of A.

|A| = 6

∣∣∣∣ 4 −2
−1 5

∣∣∣∣− 3

∣∣∣∣1 −2
4 5

∣∣∣∣+ 1

∣∣∣∣1 4
4 −1

∣∣∣∣
= 6 (20− 2)− 3 (5 + 8) + 1 (−1− 16)

= 52

6= 0 ∴ a unique solution exists.
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C =



∣∣∣∣ 4 −2
−1 5

∣∣∣∣ −
∣∣∣∣1 −2
4 5

∣∣∣∣ ∣∣∣∣1 4
4 −1

∣∣∣∣
−
∣∣∣∣ 3 1
−1 5

∣∣∣∣ ∣∣∣∣6 1
4 5

∣∣∣∣ −
∣∣∣∣6 3
4 −1

∣∣∣∣∣∣∣∣3 1
4 −2

∣∣∣∣ −
∣∣∣∣6 1
1 −2

∣∣∣∣ ∣∣∣∣6 3
1 4

∣∣∣∣


=

 18 −13 −17
−16 26 18
−10 13 21



adjA = C′

=

 18 −16 −10
−13 26 13
−17 18 21



A−1 =
1

|A|
adjA

=
1

52

 18 −16 −10
−13 26 13
−17 18 21


Step 2: Now solve for x.

x = A−1b

=
1

52

 18 −16 −10
−13 26 13
−17 18 21

2212
10


=

23
1


Example 31 Consider the general 2× 2 matrix

A =

[
a b
c d

]
We can find the inverse of A by using the ‘adj-over-det’ formula:

|A| = ad− bc
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adjA = C′

=

[
d −c
−b a

]′
=

[
d −b
−c a

]
Therefore

A−1 =
1

|A|
adjA

=
1

ad− bc

[
d −b
−c a

]
This gives us a formula for inverting a 2× 2 matrix.

13.2 Cramer’s Rule

Note that we can write the inverse method in general form as:

x =
1

|A|


∑n

i=1 bici1∑n
i=1 bici2

...∑n
i=1 bicin


This should look familiar to you. Recall that the expansion of a determinant |A| by its

first column can be expressed in the form
n∑

i=1
ai1ci1.

If we replace the first column of |A| by the column vector b but keep all the other
columns intact, then a new determinant will result, which we can call |A1| - the subscript
1 indicating that the first column has been replaced by b. The expansion of |A1| by its

first column (the b column) will yield the expression
n∑

i=1
bici1, because the elements bi now

take the place of the elements ai1. We can therefore write

x∗1 =
1

|A|
|A1|

This procedure can be generalised to give us Cramer’s Rule:
If A is invertible, the solution to the system Ax = b is

x∗j =
|Aj |
|A|

for j = 1, . . . , n

where, for each j,Aj is the matrix obtained from A by replacing its jth column by b.
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Example 32 Find the solution of the equation system

5x1 + 3x2 = 30

6x1 − 2x2 = 8

In matrix form:

Ax = b[
5 3
6 −2

] [
x1
x2

]
=

[
30
8

]
Step 1: Find |A| .

|A| =
∣∣∣∣5 3
6 −2

∣∣∣∣ = −28 6= 0 ∴ a unique solution exists.

Step 2: Find |A1| by replacing the first column of |A| with b.

|A1| =
∣∣∣∣30 3
8 −2

∣∣∣∣ = −84

Step 3: Find |A2| by replacing the second column of |A| with b.

|A2| =
∣∣∣∣5 30
6 8

∣∣∣∣ = −140

Step 4: Find x∗1 and x∗2.

x∗1 =
|A1|
|A|

=
−84

−28
= 3

x∗2 =
|A2|
|A|

=
−140

−28
= 5

Example 33 Find the solution of the equation system

7x1 − x2 − x3 = 0

10x1 − 2x2 + x3 = 8

6x1 + 3x2 − 2x3 = 7

In matrix form:

A =

 7 −1 −1
10 −2 1
6 3 −2

 ,x=

x1x2
x3

 ,b=

08
7
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Step 1: Find |A| .

|A| = 7

∣∣∣∣−2 1
3 −2

∣∣∣∣+ 1

∣∣∣∣10 1
6 −2

∣∣∣∣− 1

∣∣∣∣10 −2
6 3

∣∣∣∣
= −61 6= 0 ∴ a unique solution exists.

Step 2: Find |A1| by replacing the first column of |A| with b.

|A1| =

∣∣∣∣∣∣
0 −1 −1
8 −2 1
7 3 −2

∣∣∣∣∣∣ = 0 + 1

∣∣∣∣8 1
7 −2

∣∣∣∣− 1

∣∣∣∣8 −2
7 3

∣∣∣∣ = −61

Step 3: Find |A2| by replacing the second column of |A| with b.

|A2| =

∣∣∣∣∣∣
7 0 −1
10 8 1
6 7 −2

∣∣∣∣∣∣ = 7

∣∣∣∣8 1
7 −2

∣∣∣∣+ 0− 1

∣∣∣∣10 8
6 7

∣∣∣∣ = −183

Step 4: Find |A3| by replacing the second column of |A| with b.

|A3| =

∣∣∣∣∣∣
7 −1 0
10 −2 8
6 3 7

∣∣∣∣∣∣ = 7

∣∣∣∣−2 8
3 7

∣∣∣∣+ 1

∣∣∣∣10 8
6 7

∣∣∣∣+ 0 = −244

Step 5: Solve for x∗1, x
∗
2 and x∗3.

x∗1 =
|A1|
|A|

=
−61

−61
= 1

x∗2 =
|A2|
|A|

=
−183

−61
= 3

x∗3 =
|A3|
|A|

=
−244

−61
= 4
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14 Economic applications

We will use Cramer’s Rule to solve some economic models. You could solve these using
the inverse method as well, and you should make sure that you can do this.

Example 34 National Income Model
Consider the simple national income model below

Y = C + I +G

C = a+ bY a > 0, 0 < b < 1

where: Y represents national income, C represents (planned) consumption expenditure,
I represents investment expenditure and G represents government

expenditure.
These can be re-arranged as follows, with the endogenous variables on the left and the

exogenous variables on the right:

Y − C = I +G

−bY + C = a

In matrix form: [
1 −1
−b 1

] [
Y
C

]
=

[
I +G
a

]
Use Cramer’s Rule to solve for Y and C.
Step 1: Find |A| .

|A| =
∣∣∣∣ 1 −1
−b 1

∣∣∣∣ = 1− b

6= 0 (since 0 < b < 1)

∴ a unique solution exists.

Step 2: Find |A1| by replacing the first column of |A| with b.

|A1| =
∣∣∣∣I +G −1

a 1

∣∣∣∣ = I +G+ a

Step 3: Solve for Y ∗.

Y ∗ =
|A1|
|A|

=
I +G+ a

1− b

Step 4: Find |A2| by replacing the second column of |A| with b.

|A2| =
∣∣∣∣ 1 I +G
−b a

∣∣∣∣ = a+ b (I +G)
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Step 5: Solve for C∗.

C∗ =
|A2|
|A|

=
a+ b (I +G)

1− b

Example 35 National Income Model
Let the national income model be:

Y = C + I +G

C = a+ b(Y − T ) a > 0, 0 < b < 1

T = d+ tY d > 0, 0 < t < 1

where Y is national income, C is (planned) consumption expenditure, I is investment
expenditure, G is government expenditure and T is taxes.

Put system in matrix form: 1 −1 0
−b 1 b
−t 0 1

YC
T

 =

I +G
a
d


Step 1: Find |A| .

|A| =

∣∣∣∣∣∣
1 −1 0
−b 1 b
−t 0 1

∣∣∣∣∣∣ = 1

∣∣∣∣1 b
0 1

∣∣∣∣+ 1

∣∣∣∣−b b
−t 1

∣∣∣∣+ 0

= 1− b+ bt

= 1− b (1− t)

> 0 (since 0 < b < 1, 0 < t < 1)

∴ a unique solution exists.

Step 2: Find |A1| by replacing the first column of |A| with b.

|A1| =

∣∣∣∣∣∣
I +G −1 0
a 1 b
d 0 1

∣∣∣∣∣∣
= 0− b

∣∣∣∣I +G −1
d 0

∣∣∣∣+ 1

∣∣∣∣I +G −1
a 1

∣∣∣∣
= a− bd+ I +G

Step 3: Solve for Y ∗.

Y ∗ =
|A1|
|A|

=
a− bd+ I +G

1− b (1− t)
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Step 4: Find |A2| by replacing the second column of |A| with b.

|A2| =

∣∣∣∣∣∣
1 I +G 0
−b a b
−t d 1

∣∣∣∣∣∣
= 0− b

∣∣∣∣ 1 I +G
−t d

∣∣∣∣+ 1

∣∣∣∣ 1 I +G
−b a

∣∣∣∣
= a− bd+ b (1− t) (I +G)

Step 5: Solve for C∗.

C∗ =
|A2|
|A|

=
a− bd+ b (1− t) (I +G)

1− b (1− t)

Step 6: Find |A3| by replacing the third column of |A| with b.

|A3| =

∣∣∣∣∣∣
1 −1 I +G
−b 1 a
−t 0 d

∣∣∣∣∣∣
= 1

∣∣∣∣−b a
−t d

∣∣∣∣+ 1

∣∣∣∣ 1 I +G
−t d

∣∣∣∣− 0

= d (1− b) + t (a+ I +G)

Step 7: Solve for T ∗.

T ∗ =
|A3|
|A|

=
d (1− b) + t (a+ I +G)

1− b (1− t)

Example 36 Market Model
The system of equations below describes the market for widgets:

Qd = α− βP + γG

Qs = −δ + θP − λN

Qd = Qs α, β, γ, δ, θ, λ > 0

where G is the price of substitutes for widgets and N is the price of inputs used in
producing widgets.

Re-arrange equations:

Qd + βP = α+ γG

Qs − θP = −δ − λN

Qd −Qs = 0
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Put into matrix form: 1 0 β
0 1 −θ
1 −1 0

Qd

Qs

P

 =

 α+ γG
−δ − λN

0


Step 1: Find |A| .

|A| =

∣∣∣∣∣∣
1 0 β
0 1 −θ
1 −1 0

∣∣∣∣∣∣
= 1

∣∣∣∣ 1 −θ
−1 0

∣∣∣∣− 0 + 1

∣∣∣∣0 β
1 −θ

∣∣∣∣
= 1 (0− θ) + 1 (0− β)

= − (β + θ)

Step 2: Find |A1|.

|A1| =

∣∣∣∣∣∣
α+ γG 0 β
−δ − λN 1 −θ

0 −1 0

∣∣∣∣∣∣
= 0−

(
−1

∣∣∣∣ α+ γG β
−δ − λN −θ

∣∣∣∣)+ 0

= −θ (α+ γG)− β (−δ − λN)

= −θ (α+ γG) + β (δ + λN)

Step 3: Solve for Qd.

Qd =
|A1|
|A|

=
−θ (α+ γG) + β (δ + λN)

− (β + θ)

=
θ (α+ γG)− β (δ + λN)

(β + θ)

= Qs
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Step 4: Find |A2|.

|A2| =

∣∣∣∣∣∣
1 α+ γG β
0 −δ − λN −θ
1 0 0

∣∣∣∣∣∣
= 1

∣∣∣∣ α+ γG β
−δ − λN −θ

∣∣∣∣− 0 + 0

= −θ (α+ γG)− β (−δ − λN)

= −θ (α+ γG) + β (δ + λN)

Step 5: Solve for Qs.

Qs =
|A2|
|A|

=
−θ (α+ γG) + β (δ + λN)

− (β + θ)

=
θ (α+ γG)− β (δ + λN)

(β + θ)

This is the same solution we had for Qd, which shouldn’t surprise you because we know
that Qd = Qs.

Step 6: Find |A3| .

|A3| =

∣∣∣∣∣∣
1 0 α+ γG
0 1 −δ − λN
1 −1 0

∣∣∣∣∣∣
= 1

∣∣∣∣ 1 −δ − λN
−1 0

∣∣∣∣− 0 + 1

∣∣∣∣0 α+ γG
1 −δ − λN

∣∣∣∣
= 1 (0− δ − λN) + 1 (0− α− γG)

= −δ − λN − α− γG

Step 7: Solve for P.

P =
|A3|
|A|

=
−δ − λN − α− γG

− (β + θ)

=
δ + λN + α+ γG

(β + θ)
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15 Quadratic forms

15.1 Quadratic forms and symmetric matrices

Recall that a quadratic function is a function of the form

f (x) = ax2 + bx+ c

where a, b, c are constants.
We can generalise this to a quadratic form in two variables x1, x2 :

g (x1, x2) = ax21 + bx1x2 + cx22

By the rules of matrix multiplication, we may write

g (x1, x2) =
[
x1 x2

] [a p
q c

] [
x1
x2

]
where p and q are any two numbers such that p + q = b. Consider in particular what

happens when p = q =
b

2
, then

g (x1, x2) = x′Ax

where

x =

[
x1
x2

]
and A =

a
b

2
b

2
c


Note that A is a symmetric matrix.

Definition 16 A symmetric matrix is a square matrix whose transpose is itself. So the
n× n matrix A is symmetric if and only if

A = A′

Definition 17 Associated with each symmetric n × n matrix A is the quadratic form
x′Ax , where x is an arbitrary n-vector.

Example 37 Consider the typical 2× 2 symmetric matrix

A =

[
a p
p c

]
which has the quadratic form

x′Ax =ax21 + cx22 + 2px1x2
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Example 38 Consider the typical 3× 3 symmetric matrix

A =

a p q
p b r
q r c


which has the quadratic form

x′Ax =ax21 + bx22 + cx23 + 2px1x2 + 2qx1x3 + 2rx2x3

15.2 Definite and semidefinite quadratic forms

Definition 18 A symmetric matrix A is said to be

Positive definite
Positive semidefinite
Negative definite

Negative semidefinite

 if x′Ax is invariably


positive

nonnegative
negative

nonpositive

(> 0)
(≥ 0)
(< 0)
(≤ 0)

for every non-zero vector x.

If x′Ax changes sign when x assumes different values, A is said to be indefinite.

Example 39 Let A be the symmetric matrix1 0 0
0 1 −1
0 −1 1


Then

x′Ax = x21 + (x2 − x3)
2

which is nonnegative. Thus A is positive semidefinite.

Note that A is not positive definite since x′Ax = 0 for any vector x of the form

0c
c

,
such as x =

01
1

 .
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Example 40 Let A be the symmetric matrix[
−1 0
0 1

]
Then

x′Ax = −x21 + x22

and

x′Ax = −1 when x =

[
1
0

]
x′Ax = 1 when x =

[
0
1

]
Therefore A is indefinite.

The terms ‘positive definite’, ‘negative semidefinite’, etc. are often applied to the
quadratic forms themselves as well as the symmetric matrices which define them.

15.3 Testing symmetric matrices

The determinantal test for sign definiteness is widely used, although it is more easily
applicable to positive and negative definiteness as opposed to semidefiniteness.

Before we can discuss the determinantal test for the sign definiteness of a matrix, we
must first define a principal minor and a leading principal minor of a matrix.

Definition 19 A principal minor of a square matrix A is the determinant of a submatrix
obtained using the rule that the kth row of A is deleted if and only if the kth column of A
is deleted.

Definition 20 A leading principal minor of a square matrix A is the determinant of a
submatrix obtained by deleting everything except the first m rows and columns, for 1 ≤
m ≤ n.

Example 41 Consider the 3× 3 matrix A :

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


The first leading principal minor is the determinant of the submatrix obtained by delet-

ing everything except the first 1 row and column.

|M1| =
∣∣a11∣∣

= a11
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The second leading principal minor is the determinant of the submatrix obtained by
deleting everything except the first 2 rows and columns.

|M2| =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣
= a11a22 − a12a21

The third leading principal minor is the determinant of the submatrix obtained by delet-
ing everything except the first 3 rows and columns.

|M3| =

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= |A|

The other principal minors are:∣∣a22∣∣ = a22∣∣a33∣∣ = a33∣∣∣∣a22 a23
a32 a33

∣∣∣∣ = a22a33 − a23a32∣∣∣∣a11 a13
a31 a33

∣∣∣∣ = a11a33 − a13a31

We can now define a test for the sign definiteness of symmetric matrices:

1. An n × n symmetric matrix is positive definite if and only if its leading principal
minors are all positive.

2. An n×n symmetric matrix is positive semidefinite if and only if its principal minors
are all non-negative.

Note that non-negativity of the leading principal minors is NOT a sufficient condition
for a symmetric matrix to be positive semidefinite.

We can generalise these rules to tests for negative definiteness, but it is usually easier
to consider the matrix −A : A is negative definite if −A is positive definite, and A is
negative semidefinite if −A is positive semidefinite.

1. An n × n symmetric matrix is negative definite if and only if its leading principal
minors are alternately negative and positive, beginning with a negative (i.e. |M1| <
0, |M2| > 0, |M3| < 0, etc.)
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Example 42 Determine the definiteness of the symmetric matrix

A =

[
4 1
1 6

]
Let us first consider the leading principal minors:

|M1| = |4| = 4 > 0

|M2| =

∣∣∣∣ 4 1
1 6

∣∣∣∣ = 23 > 0

The leading principal minors are all positive, therefore A is positive definite.

Example 43 Determine the definiteness of the symmetric matrix

A =

 −2 −1 2
−1 −2 2
2 2 −5


Let us first consider the leading principal minors:

|M1| = |−2| = −2 < 0

|M2| =

∣∣∣∣ −2 −1
−1 −2

∣∣∣∣ = 3 > 0

|M3| =

∣∣∣∣∣∣
−2 −1 2
−1 −2 2
2 2 −5

∣∣∣∣∣∣ = −7 < 0

The leading principal minors alternate in sign beginning with a negative, therefore A is
negative definite.

Alternatively, we could consider −A :

−A =

 2 1 −2
1 2 −2
−2 −2 5


The leading principal minors are:

|M1| = |2| = 2 > 0

|M2| =

∣∣∣∣ 2 1
1 2

∣∣∣∣ = 3 > 0

|M3| =

∣∣∣∣∣∣
2 1 −2
1 2 −2
−2 −2 5

∣∣∣∣∣∣ = 7 > 0

The leading principal minors are all positive, therefore −A is positive definite. This
means that A is negative definite.
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Example 44 Determine the definiteness of the symmetric matrix

A =

 1 0 0
0 0 0
0 0 −1


Let us first consider the leading principal minors:

|M1| = |1| = 1 > 0

|M2| =

∣∣∣∣ 1 0
0 0

∣∣∣∣ = 0

|M3| =

∣∣∣∣∣∣
1 0 0
0 0 0
0 0 −1

∣∣∣∣∣∣ = 0

The leading principal minors are not all positive, so we must also consider the other
principal minors:

|0| = 0

|−1| = −1 < 0∣∣∣∣1 0
0 −1

∣∣∣∣ = −1 < 0∣∣∣∣0 0
0 −1

∣∣∣∣ = 0

The principal minors are not all non-negative so A is not positive semidefinite. Even
though the leading principal minors are non-negative, this is not sufficient to conclude that
A is positive semidefinite.

−A is neither positive definite nor positive semidefinite, so A is also not negative
definite or negative semidefinite.

A is therefore indefinite.
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