GUls and multithreading

Michelle Kuttel



Single-threaded GUIs

GUI applications have their own peculiar threading
Issues

Nearly all GUI toolkits are single threaded
subsystems

— Jave, Qt, MacOS Cocoa, X Windows...

* This means that all GUI activity is confined to a

single thread
e event dispatch thread (EDT) handles GUI events

GUI objects are kept consistent not by
synchronization, but by thread confinement.



Why are GUIs single threaded?

The many attempts to write multithreaded GUI

frameworks were plagued by race conditions and
deadlock

* deadlock because of interaction between input
event processing and object-oriented modelling
of GUI components:

— actions from the user “bubble-up” from OS to
application

— application-initiated actions “bubble-down” from
application to OS



Why are GUIs single threaded?

Tendency for activities to access the same GUI objects in
opposite order + locks required for thread safety =
inconsistent lock ordering

Recipe for deadlock!

fundamental conflict here between a thread wanting to go
"up" and other threads wanting to go "down",

* while you can fix individual point bugs, you can't fix the
overall situation.

Confirmed by the experience of nearly every GUI toolkit
development effort



Why are GUIs single threaded?

Other source of deadlock is prevalence of
Model-View-Controller (MVC) pattern

e simplifies implementing GUI designs
e prone to inconsistent lock ordering:

— controller calls into model, which notifies the view
that something has changed

— controller can also call view, which may call back
into the model to query the model state



In his weblog,[1] Sun VP Graham Hamilton nicely sums up the challenges,
describing why the multithreaded GUI toolkit is one of the recurring
"failed dreams" of computer science.

[1] http://weblogs.java.net/blog/kgh/archive/2004/10

| believe you can program successfully with multithreaded GUI toolkits
if the toolkit is very carefully designed; if the toolkit exposes its locking
methodology in gory detail; if you are very smart, very careful, and have a
global understanding of the whole structure of the toolkit. If you get one
of these things slightly wrong, things will mostly work, but you will get
occasional hangs (due to deadlocks) or glitches (due to races). This
multithreaded approach works best for people who have been intimately
involved in the design of the toolkit.

Unfortunately, | don't think this set of characteristics scales to
widespread commercial use. What you tend to end up with is normal
smart programmers building apps that don't quite work reliably for
reasons that are not at all obvious. So the authors get very disgruntled
and frustrated and use bad words on the poor innocent toolkit.



Why are GUIs single threaded?

 all eventually arrived at a single-threaded
event queue model, where a dedicated thread
fetches events off a queue and dispatches
them to application-defined event handlers

e achieve thread safety via thread confinement:

— all GUI objects, including visual components and
data models, are accessed exclusively from the

event thread.



Single-threaded GUIs

* Of course, this just pushes some of the thread
safety burden back onto the application
developer, who must make sure these objects
are properly confined.

e e.g. For safety, certain tasks must run in the
Swing event thread

— Swing data structures are NOT thread safe, so
must be confined here



Sequential Event Processing

GUI applications are oriented around processing
fine-grained events:

* mouse clicks, key presses, or timer
expirations.

Events are a kind of task:

the event handling machinery provided by
AWT and Swing is structurally similar to an
Executor.



Sequential Event Processing

Task are processed sequentially:

* one task finishes before the next one begins
* no two tasks overlap.

Upside for programmer:

 vyou don't have to worry about interference from other
tasks.

Downside for user:

e if one task takes a long time to execute, other tasks must
wait until it is finished. If those other tasks are responsible
for responding to user input or providing visual feedback,
the application will appear to have frozen.



Sequential Event Processing

Tasks that execute in the event thread must return
control to the event thread quickly.

A long- running task

— spell-checking a large document, searching the file system,
or fetching a resource over a network, -

must run in another thread so control can return quickly
to the event thread.

To update a progress indicator while a long-running task
executes or provide visual feedback when it
completes, you again need to execute code in the
event thread.

This can get complicated quickly!



Sequential Event Processing

Tasks that execute in the event thread must return
control to the event thread quickly.

A long- running task

— spell-checking a large document, searching the file system,
or fetching a resource over a network, -

must run in another thread so control can return quickly
to the event thread.

To update a progress indicator while a long-running task
executes or provide visual feedback when it
completes, you again need to execute code in the
event thread.

This can get complicated quickly!



Thread confinement in Swing

Swing single-thread rule:

— Swing components and models should be

created, modified, and queried only from the
event-dispatching thread.



Thread confinement in Swing

All Swing components
— JButton and JTable

and data model objects
— TableModel and TReeModel

are confined to the event thread.

Any code that accesses these objects must run
in the event thread.



Thread confinement in Swing

Upside:
e tasks that run in the event thread need not
worry about synchronization when accessing

presentation objects
Downside :

* you cannot access presentation objects from
outside the event thread at all.



Thread confinement in Swing:
exceptions to the rule

A small number of Swing methods may be called safely from any thread;
these are clearly identified in the Javadoc as being thread-safe.

Other exceptions to the single-thread rule include:
SwingUftilities.isEventDispatchThread

— determines whether the current thread is the event thread;
SwingUtilities.invokelater

— schedules a Runnable for execution on the event thread

— callable from any thread
SwingUtilities.invoke And Wait

— schedules a Runnable task for execution on the event thread and blocks the
current thread until it completes (callable only from a non-GUI thread);

methods to enqueue a repaint or revalidation request on the event queue
(callable from any thread);

methods for adding and removing listeners (can be called from any thread,
but listeners will always be invoked in the event thread).



Long-running GUI tasks

* simple short-running tasks can stay entirely in
the event thread

— if all task are short-running, you don’t need
threads at all
* for longer running tasks, some of the
processing should be off-loaded to another
thread

— spell-checking, background compilation etc.



Long-running GUI tasks

* Can create an Executor to help with long-
running tasks

ExecutorService backgroundExec = Executors.newCachedThreadPool();

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
backgroundExec.execute(new Runnable() {
public void run() { doBigComputation(); }
};
Ik

"fire and forget” example



Long-running GUI tasks

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
button.setEnabled(false);
label.setText("busy");
backgroundExec.execute(new Runnable() {
public void run() {
try {
doBigComputation();
} finally {
GuiExecutor.instance().execute(new Runnable() {
public void run() {
button.setEnabled(true);
label.setText("idle");

visual feedback example



Cancellation and Shutdown

Michelle Kuttel



Cancellation and shutdown

Starting tasks and threads is easy and most of the
time we let them stop by themselves

Sometimes we want to stop tasks earlier, e.g.:
 when a user cancelled an operation
 when the application needs to shut down

Here we talk about techniques for convincing tasks
and threads to terminate prematurely.

elegant shutdown is a factor that defines a truly
robust concurrent application



Deprecated thread primitives

* Not easy to get threads to stop safely, quickly
and reliably

— Thread.stop and Thread.suspend and
Thread.resume were an attempt at doing this

— nhow deprecated, as too dangerous

java.sun.com/j2se/1.5.0/docs/guide/misc/
threadPrimitiveDeprecation.html



Why is Thread.stop deprecated?

 Because it is inherently unsafe.

Stopping a thread causes it to unlock all the monitors that it has
locked. (The monitors are unlocked as the ThreadDeath

exception propagates up the stack.)

If any of the objects previously protected by these monitors
were in an inconsistent state, other threads may now view these
objects in an inconsistent state.

* Such objects are said to be damaged.

When threads operate on damaged objects, arbitrary behavior
can result.

Unlike other unchecked exceptions, ThreadDeath kills threads
silently; thus, the user has no warning that the program may be
corrupted. The corruption can manifest itself at any time after
the actual damage occurs, even hours or days in the future.



Why are Thread.suspend and
Thread.resume deprecated?

Thread.suspend is inherently deadlock-prone.

* If the target thread holds a lock on the monitor
protecting a critical system resource when it is
suspended, no thread can access this resource
until the target thread is resumed.

* |If the thread that would resume the target thread
attempts to lock this monitor prior to calling
resume, deadlock results.

* Such deadlocks typically manifest themselves as
"frozen" processes.




Java

Java does not now provide any mechanism for
forcing a thread to stop

* instead, ask the thread to stop what it is doing through
interruption

* cooperative approach

— don’t want a thread to stop immediately, since that could
leave shared data and structures in an inconsistent state

— allow threads to clean up work currently in progress and then
terminate



Task cancellation

An activity is cancellable if external code can
move it to completion before its normal
completion.



Examples of Task cancellation

User-requested cancellation. e.g. pressing cancel button

Time-limited activities. e.g. an optimization must
terminate after a certain period, after which the best

Application events. e.g. where different tasks are
searching a problem space, when one task finds a
solution, all must terminate

Errors. e.g. disk is full and all tasks must terminate.

Shutdown. when an application is shutdown, work
currently being processed must be dealt with (either
allowed to complete, or cancelled).



Methods for cancellation

There is not safe way to preemptively stop a task
In Java

— there are only cooperative mechanisms, where
the task and the code requesting cancellation
follow an agreed-upon protocol.

e e.g.set a “cancellation requested” flag, which
is checked periodically.

— NB: for this to work, the flag must be volatile.



Cancellation policies

”

Specify the “how”, “when” and “what” of
cancellation.

* how other code can request cancellation

* when the task checks that cancellation has
been requested

* what action the task takes in response to a
cancellation request



Limitations of flags

Using flags for cancellation in combination with
a blocking method can cause a task to run for
ever

e.g. BlockingQueue.put

* if producer blocks because queue is full, and consumer
subsequently sets flag, then cancels itself, producer will
never come out of suspension



Interruption

e Java provides a cooperative interruption

mechanism that can be used to facilitate
cancellation

— but it is up to you to construct protocols for
cancellation and use them effectively

e Using FutureTask and the Executor framework
simplifies building cancellable tasks and
services.



Interruption

* Each thread has a boolean interrupted status
— interrupting a thread sets it status to true



Interruption

Thread provides the methods:

volid interrupt()
Interrupts this thread.

static boolean interrupted()
Tests whether the current thread has been
interrupted. The interrupted status of the thread

is cleared by this method.
public boolean isInterrupted()

Tests whether this thread has been interrupted. The
interrupted status of the thread is unaffected by
this method.




Interruption

Interruption is a cooperative mechanism:

* thread A requests that thread B stops when
convenient, it cannot force it to stop.

Blocking methods like Thread.sleep and
Object.wait try to detect when a thread has
been interrupted and return early

* but the JVM makes no guarantees on how
quickly this will happen



Interruption

If a thread is interrupted when it is not blocked, it is
up to the cancelled activity to poll the interrupted
status to detect interruption

* calling interrupt on a target thread merely
delivers the message that interrupt has been
requested

Interruption is “sticky” — it persists until it is cleared

Interruption is usually the most sensible way to
request cancellation



public void run()

{
try

{

while (IThread.currentThread().isInterrupted())
{

do more work

}
}

catch(InterruptedException e)

{

// thread was interrupted during sleep or wait

}
finally

{

cleanup, if required

}

// exiting the run method terminates the thread



Interruption policies

Determines how a thread interprets an
Interruption request

* usually: exit as quickly as possible, cleanup
where necessary

* could be: pausing or resuming a service



