Deadlock, Reader-Writer problem
and Condition synchronization



Serial versus concurrent

Sequential correctness is mostly concerned with safety
properties:

— ensuing that a program transforms each before-state to the
correct after-state.

Concurrent correctness is also concerned with safety, but
the problem is much, much harder:

— safety must be ensured despite the vast number of ways
steps of concurrent threads can be be interleaved.

Also,concurrent correctness encompasses a variety of
liveness properties that have no counterparts in the
sequential world.



Concurrent correctness

There are two types of correctness properties:

Safety properties

The property must always be true.

Liveness properties
The property must eventually become true.



Java Deadlocks

We use locking to ensure safety

* but locks are inherently vulnerable to
deadlock

* indiscriminate locking can cause lock-ordering
deadlocks



Dining philosophers

Classic problem used to illustrate deadlock
— proposed by Dijkstra in 1965
e atable with five silent philosophers, five

plates, five forks (or chopsticks) and a big
bowl of spaghetti (or rice).

e Each philosopher must alternately think
and eat.

» Eating is not limited by the amount of unrealistic,
spaghetti left: assume an infinite supply.

_ unsanitary
 However, a philosophers need two forks g
to eat an |
» Aforkis placed between each pair of Interesting

adjacent philosophers.



Dining philosophers

e Basic philosopher loop:

while True: The problem is how to
think () design a concurrent
algorithm such that each
get_forks() philosopher won't
eat () starve, i.e. can forever

continue to alternate
between eating and
thinking.

put forks()

 Some algorithms result in some or all of the
philosophers dying of hunger.... deadlock



Dining philosophers in Java

class Philosopher extends Thread {
int identity;
Chopstick left; Chopstick right;
Philosopher (Chopstick left,Chopstick right){
this.left = left; this.right = right;

}

public void run() {
while (true) {

potential for deadlock

try {
sleep(..); // thinking

right.get(); left.get(); // hungry
sleep(..) ; // eating
right.put(); left.put();

} catch (InterruptedException e) {}



Chopstick Monitor

class Chopstick {
Boolean taken=false;

synchronized void put() {
taken=false;
notify();

}

synchronized void get() throws
InterruptedException

{

while (taken) wait();
taken=true;



Applet for diners

for (int i =0; i<N; ++I) // create Chopsticks
stick[1] = new Chopstick();

for (int i =0; i<N; ++i){ // create Philosophers
phil[i]=new Philosopher(stick[ (1-1+N%N],stick[1]);
phil[i].start();



Dining philosophers cont.

We can avoid deadlock by:

e controlling the number of philosophers
(HOW?)

* change the order in which the philosophers
pick up forks. (HOW?)



Motivating Deadlock Issues

Consider a method to transfer money between bank accounts
class BankAccount {

synchronized void withdraw(int amt) {..}
synchronized void deposit (int amt) {..}
synchronized void transferTo (int amt,
BankAccount a) {
this.withdraw (amt) ;
a.deposit (amt) ;

Notice during call to a.deposit, thread holds 2 locks
— Need to investigate when this may be a problem

Sophomoric Parallelism &

11
Concurrency, Lecture 6



Time

The Deadlock

For simplicity, suppose x and y are static fields holding accounts

Thread 1: x.transferTo (1, V) Thread 2: y.transferTo (1, x)

acquire lock for x
do withdraw from X

acquire lock for vy
do withdraw from y

block on lock for Xx
block on lock for y



Deadly embrace

Simplest form of deadlock:

 Thread A holds lock L while trying to acquire
lock M, while thread B holds lock M while
trying to acquire lock L.



Deadlock, in general

N

A deadlock occurs when there are threads T1, ..., Tn such
that:

 Fori=1,..,n-1, Tiis waiting for a resource held by T(i+1)
* Tnis waiting for a resource held by T1

In other words, there is a cycle of waiting
— Can formalize as a graph of dependencies

Deadlock avoidance in programming amounts to

employing techniques to ensure a cycle can never
arise



Deadlocks in Java

Java applications do not recover from deadlocks:

* when a set of Java threads deadlock, they are
permanently out of commission

e application may stall completely, a subsystem
may stall, performance may suffer

— .... all not good!

* |f there is potential for deadlock it may actually

never happen, but usually does under worst
possible conditions

so we need to ensure that it can’t happen



Back to our example

Options for deadlock-proof transfer:

1. Make a smaller critical section: transferTo not synchronized
— Exposes intermediate state after withdraw before deposit
— May be okay, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for all accounts allowing
transfers between them

—  Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always acquire
locks in the same order

— Entire program should obey this order to avoid cycles
— Code acquiring only one lock is fine



Ordering locks

class BankAccount {

private int acctNumber; // must be unique
vold transferTo (int amt, BankAccount a) {
1f(this.acctNumber < a.acctNumber)
synchronized(this) {
synchronized(a) {
this.withdraw (amt) ;
a.deposit (amt) ;
b}
else
synchronized(a) {
synchronized(this) {
this.withdraw (amt) ;
a.deposit (amt) ;

s

} 17 J\JlJIIUIII\JI A ) Ulullelism &
Concurrency, Lecture 6



Lock-ordering deadlocks

e occur when two threads attempt to acquire the
same locks in a different order

A program will be free of lock-ordering deadlocks
if all threads acquire the locks they need in a
fixed global order
— requires global analysis of your programs locking

behaviour

* A program than never acquires more than one
lock at a time will also never deadlock, but often
impractical



Another example

From the Java standard library

class StringBuffer (
private 1nt count;
private char[] wvalue;

synchronized append(StringBuffer sb) {
int len = sb.length();
1f(this.count + len > this.value.length)
this.expand(..);
sb.getChars (0, len, this.value, this.count) ;
}
synchronized getChars(int x, int, v,
char[] a, 1nt z) {
“copy this.value[x..y] 1into a starting at z”

Sophomoric Parallelism &
19
Concurrency, Lecture 6



Two problems

Problem #1: The lock for sb is not held between calls to
sb.length and sb.getChars

— So sb could get longer
— Would cause append to throw an ArrayBoundsException

Problem #2: Deadlock potential if two threads try to append in
opposite directions, just like in the bank-account first example

Not easy to fix both problems without extra copying:
— Do not want unique ids on every StringBuffer
— Do not want one lock for all StringBuffer objects

Actual Java library: fixed neither (left code as is; changed javadoc)
— Up to clients to avoid such situations with own protocols



Perspective

Code like account-transfer and string-buffer append are
difficult to deal with for deadlock

Easier case: different types of objects
— Can document a fixed order among types

— Example: “When moving an item from the hashtable to the
work queue, never try to acquire the queue lock while holding
the hashtable lock”

Easier case: objects are in an acyclic structure
— Can use the data structure to determine a fixed order

— Example: “If holding a tree node’s lock, do not acquire other
tree nodes’ locks unless they are children in the tree”



Why are Thread.suspend and
Thread.resume deprecated?

Thread.suspend is inherently deadlock-prone.

* If the target thread holds a lock on the monitor
protecting a critical system resource when it is
suspended, no thread can access this resource
until the target thread is resumed.

* |If the thread that would resume the target thread
attempts to lock this monitor prior to calling
resume, deadlock results.

* Such deadlocks typically manifest themselves as
"frozen" processes.




Checkpoint

* The BirdsSpotted2 class is thread safe. Is it also deadlock free?

public final class BirdsSpotted2 {

private long CapeStarling

private long SacredIbis ;
private long CapeRobinChat = 0;

public
public
public

public
public
public

synchronized
synchronized
synchronized

synchronized
synchronized
synchronized

long
long
long

long
long
long

= O;
O.

getStarling() { returnCapeStarling;}
getIbis() { returnSacredIbis;}
getRobin() { returnCapeRobinChat;}

spottedStarling() {return ++CapeStarling;}
spottedIbis() { return ++SacredIbis;}

spottedRobin ()

{ return ++CapeRobinChat;}



Checkpoint

public class MsLunch {
private long orc = 0;
private long dragon = 0;

private Object orcLock = new Object(); ° Why can we have 2

private Object dragonLock = new Object();
separate locks here?
public void inc1() {

synchronized(orcLock) { ° Why is it desirable?

orc++;

}
}

public void inc2() {
synchronized(dragonlLock) {
dragon++;

}
}
}



Checkpoint

public class MsLunch {
private long orc = 0;
private long dragon = 0;

private Object orcLock = new Object(); ° Why can we have 2

private Object dragonLock = new Object();
separate locks here?
public void inc1() {

synchronized(orcLock) { Y Why iS it desi ra ble?
orc++; ]
} Advantage of this using private lock:
} lock is encapsulated so client code
cannot acquire it
public void inc2() { — clients incorrectly using lock can

cause liveness problems

synchronized(dragonLock) { — verifying that a publically
dragon++; accessible lock is used properly
} requires examining the entire
program, compared to a single
} class for a private one

}



Progress Conditions

* Deadlock-free: some thread trying to acquire the lock
eventually succeeds.

e Starvation-free: every thread trying to acquire the
lock eventually succeeds.



Starvation

much less common a problem than deadlock

situation where a thread is unable to gain regular access to
shared resources and is unable to make progress.

— most commonly starved resource is CPU cycles

happens when shared resources are made unavailable for
long periods by "greedy" threads.

For example:

— suppose an object provides a synchronized method that often
takes a long time to return.

— If one thread invokes this method frequently, other threads that

also need frequent synchronized access to the same object will
often be blocked.



Starvation

* |n Java can be caused by inappropriate use of
thread priorities

e or indefinite loops or resource waits that do
not terminate where a lock is held



Livelock

A thread often acts in response to the action of another thread.

— |If the other thread's action is also a response to the action of another
thread, then livelock may result.

— As with deadlock, livelocked threads are unable to make further
progress.

Process is in a livelock if it is spinning while waiting for a condition
that will never become true (busy wait deadlock)

comparable to two people attempting to pass each otherin a
corridor: Alphonse moves to his left to let Gaston pass, while

Gaston moves to his right to let Alphonse pass.

Seeing that they are still blocking each other, Alphone moves to his
right, while Gaston moves to his left. They're still blocking each
other, so...



Readers/writer locks



Reading vs. writing

Recall:
— Multiple concurrent reads of same memory: Not a problem
— Multiple concurrent writes of same memory: Problem
— Multiple concurrent read & write of same memory: Problem

So far:

— If concurrent write/write or read/write might occur, use
synchronization to ensure one-thread-at-a-time

But this is unnecessarily conservative:
— Could still allow multiple simultaneous readers!



Readers and writers problem

variant of the mutual exclusion problem where
there are two classes of processes:

e writers which need exclusive access to
resources

e readers which need not exclude each other



Readers/Writers

e Easy to solve with mutual exclusion

* But mutual exclusion requires waiting
— One waits for the other

— Everyone executes sequentially

e Performance hit!



Example

Consider a hashtable with one coarse-grained lock
— So only one thread can perform operations at a time

But suppose:
— There are many simultaneous 1ookup operations
— insert operations are very rare

Note: Important that 1lookup doesn’t actually
mutate shared memory, like a move-to-front list
operation would



Readers/writer locks

A new synchronization ADT: The readers/writer lock

A lock’s states fall into three categories:

— “not held” 0 <writers<1
— “held for writing” by one thread O < readers
— “held for reading” by one or more threads writers*readers==

* new: make a new lock, initially “not held”

° acquire write: blockif currently “held for reading” or
“held for writing”, else make “held for writing”

°* release write: make “not held”

° acquire read: block if currently “held for writing”, else
make/keep “held for reading” and increment readers count

° release read: decrement readers count, if 0, make “not
held”

Sophomoric Parallelism &

35 Concurrency, Lecture 6



Pseudocode example (not Java)

class Hashtable<K, V> {

// coarse-grained, one lock for table

RWLock 1k = new RWLock() ;

V lookup (K key) {
int bucket = hasher (key);
lk.acquire read();
. read array[bucket]
lk.release read();

}

volid 1nsert (K key, V val) {
int bucket = hasher (key);
lk.acquire write ()
. write array/[bucket]
lk.release write();

}

supnuinulic Parallelism &

36 Concurrency, Lecture 6



Readers/writer lock details

* A readers/writer lock implementation (“not our problem”)
usually gives priority to writers:

— Once a writer blocks, no readers arriving later will get the lock
before the writer

— Otherwise an insert could starve

* Re-entrant? Mostly an orthogonal issue
— But some libraries support upgrading from reader to writer

* Why not use readers/writer locks with more fine-grained
locking, like on each bucket?

— Not wrong, but likely not worth it due to low contention



In Java

Java’s synchronized statement does not support readers/writer

Instead, library

java.util.concurrent.locks.ReentrantReadWriteL
ock

e Different interface: methods readLock and writelLock
return objects that themselves have 1lock and unlock
methods

* Does not have writer priority or reader-to-writer upgrading
— Always read the documentation



Condition variables



Condition variables: Producer-
Consumer synchronization problem

In multithreaded programs there is often a
division of labor between threads.

* |n one common pattern, some threads are
producers and some are consumers.

— Producers create items of some kind and add
them to a data structure;

— consumers remove the items and process them

* a hew coordination problem: Producer-
Consumer



Producer-Consumer

producer(s) buffer T flejd]|c consumer(s)
L
enqueue ‘_‘__7 back front *v,\ dequeue
 I—  I—  I—
— —  I—  I— —
 I—  I—  I—
 I—  I—
 I—  I— — —  I—

canonical example of a bounded buffer for sharing work
among threads

Bounded buffer: A queue with a fixed size
— (Unbounded still needs a condition variable, but 1 instead of 2)

For sharing work — think an assembly line:
— Producer thread(s) do some work and enqueue result objects
— Consumer thread(s) dequeue objects and do next stage
— Must synchronize access to the queue



Producer-consumer problem

Event-driven programs are a good example.

* Whenever an event occurs, a producer
thread creates an event object and adds it

to the event buffer.

* Concurrently, consumer threads take
events out of the buffer and process them.



Producer-consumer problem

For this to work correctly:

* Producers must not produce when the
buffer is full — must wait till there is a gap.

e Consumers must not consume when the
buffer is empty — must wait till it is filled.



Code, attempt 1

class Buffer<iE> {
E[] array = (E[])new Object[SIZE];
.. // front, back fields, isEmpty, isFull methods
synchronized void enqueue (E elt) {
1f(isFull())
oo
else

. add to array and adjust back ..
}

synchronized E dequeue ()
1f (1sEmpty () )
277
else
take from array and adjust front ..

Sophomoric Parallelism &
44
Concurrency, Lecture 6



Waiting

* enqueue to a full buffer should not raise an exception
— Wait until there is room

* dequeue from an empty buffer should not raise an exception
— Wait until there is data

Bad approach is to spin (wasted work and keep grabbing lock)

vold enqueue(E elt) {
while (true) {
synchronized(this) {
if (isFull()) continue;
. add to array and adjust back ..
return;

b1}

// dequeue similar

Sophomoric Parallelism &

4 Concurrency, Lecture 6



What we want

Better would be for a thread to wait until it can proceed
— Be notified when it should try again
— In the meantime, let other threads run

Like locks, not something you can implement on your own

— Language or library gives it to you, typically implemented with
operating-system support

An ADT that supports this: condition variable

— Informs waiter(s) when the condition that causes it/them to wait
has varied

Terminology not completely standard; will mostly stick with Java



Java approach: not quite right

class Buffer<iE> {

synchronized void enqueue (E elt) {
1f (isFull ())
this.wait(); // releases lock and waits
add to array and adjust back
1f (buffer was empty)
this.notify(); // wake somebody up
}
synchronized E dequeue () {
1f (1sEmpty () )
this.wait(); // releases lock and waits
take from array and adjust front
1f (buffer was full)
this.notify(); // wake somebody up

YUNIIVITIVIIG | uuqulism &

47 Concurrency, Lecture 6



Key ideas

Java weirdness: every object “is” a condition variable (and
a lock)

— other languages/libraries often make them separate

wait:
— “register” running thread as interested in being woken up
— then atomically: release the lock and block
— when execution resumes, thread again holds the lock

notify:
— pick one waiting thread and wake it up

— no guarantee woken up thread runs next, just that it is no
longer blocked on the condition — now waiting for the lock

— if no thread is waiting, then do nothing



Time

Bug #1

synchronized vold enqueue (E elt) {
1f(isFull())
this.wait (),
add to array and adjust back

}

Between the time a thread is notified and it re-acquires
the lock, the condition can become false again!

Thread 1 (enqueue) Thread 2 (dequeue) Thread 3 (enqueue)
1f(isFull ())
this.wait () ;

take from array

1f(was full)
this.notify (),

make full again

v add to array



Bug fix #1

synchronized void enqueue (E elt) {
while (1isFull ())
this.wait();

}

synchronized E dequeue () {
while (1sEmpty () )
this.wait();

Guideline: Always re-check the condition after re-gaining the lock

— In fact, for obscure reasons, Java is technically allowed to notify a
thread spuriously (i.e., for no reason)

Sophomoric Parallelism &

20 Concurrency, Lecture 6



Time

Bug #2

* |f multiple threads are waiting, we wake up only one
— Sure only one can do work now, but can’t forget the others!

Thread 1 (enqueue)  Thread 2 (enqueue) Thread 3 (dequeues)
while (1sFull()) while(isFull())
this.wait () ; this.wait () ;

// dequeue #1
1f (buffer was full)
this.notify () ;

// dequeue #2
1f(buffer was full)
this.notify () ;



Bug fix #2

synchronized void enqueue (E elt) {

1f (buffer was empty)
this.notifyAll(); // wake everybody up
}

synchronized E dequeue () {

1f(buffer was full)
this.notifyAll(); // wake everybody up
}

notifyAll wakes up all current waiters on the condition
variable

Guideline: If in any doubt, use notifyAll
— Wasteful waking is better than never waking up

* So why does notify exist?
— Well, it is faster when correct...

59 Sophomoric Parallelism &

Concurrency, Lecture 6



A new liveness hazard: missed signals

* A missed signal occurs when a thread must
wait for a specific condition that is already
true, but fails to check before waiting

* notifyAll is almost always better than notify,
because it is less prone to missed signals



Alternate approach

* An alternative is to call notify (not
notifyAll) on every enqueue / dequeue,
not just when the buffer was empty / full

— Easy: just remove the 1 £ statement

* Alas, makes our code subtly wrong since it’s
technically possible that an enqueue and a
dequeue are both waiting.

— See notes for the step-by-step details of how this can
happen

* Works fine if buffer is unbounded since then only
dequeuers wait



Alternate approach fixed

The alternate approach works if the enqueuers and dequeuers wait
on different condition variables

— But for mutual exclusion both condition variables must be associated
with the same lock

Java’s “everything is a lock / condition variable” doesn’t support
this: each condition variable is associated with itself

Instead, Java has classes in java.util.concurrent. locks
for when you want multiple conditions with one lock

— class ReentrantLock has a method newCondition that
returns a new Condition object associate with the lock

— See the documentation if curious



Last condition-variable comments

notify/notifyAll oftencalled signal/
broadcast, also called pulse/pulseAll

Condition variables are subtle and harder to use than locks

But when you need them, you need them
— Spinning and other work-arounds don’t work well

Fortunately, like most things in a data-structures course,
the common use-cases are provided in libraries written by
experts

— Example:
java.util.concurrent.ArrayBlockingQueue<E>

— All uses of condition variables hidden in the library; client just
calls put and take



Condition synchronization

Java has built-in mechanisms for waiting for a condition
to become true:

wait() andnotify ()

They are tightly bound to intrinsic locking and can be
difficult to use correctly

Often easier to use existing synchronizer classes:
« coordinate control flow of cooperating threads
e.g. BlockingQueue and Semaphore



Java Blocking queues and the
producer-consumer design pattern

BlockingQueue extends Queue with blocking
insertion and retrieval operations

— put and take methods
— timed equivalents: of fer and poll

If queue is empty, a retrieval (take) blocks
until an element is available

If queue is full (for bounded queues), insertion
(put) blocks until there is space available



Producer-consumer design pattern

separates identification of work to be done from
execution of that work

 work items are placed on “to do” list for later
processing

* removes code dependencies between
producers and consumers

Most common design is a thread pool coupled
with a work queue



Several implementations of blocking
gueue

* LinkedBlockingQueue, ArrayBlockingQueue:
— FIFO queues

* Priority blocking queue

e SynchronousQueue:
— queued THREADS



The Executor Framework and Thread
Pools

* usually the easiest way to implement a producer-
consumer design is to use a thread pool
implementation as part of the Executor
framework

public interface Executor {
void execute(Runnable command);

}
An Executor object typically creates and manages a
group of threads called a thread pool

* threads execute the Runnable objects passed to
the execute method



Concurrency summary

Access to shared resources introduces new kinds of
bugs

— Data races

— Critical sections too small

— Critical sections use wrong locks

— Deadlocks

Requires synchronization
— Locks for mutual exclusion (common, various flavors)
— Condition variables for signaling others (less common)

Guidelines for correct use help avoid common pitfalls

Not clear shared-memory is worth the pain
— But other models (e.g., message passing) not a panacea



Java synchronizers

A synchronizer is any object that coordinates the
control flow of threads based on its state.
Java has:
— Blocking Queues
— Semphores
— Barriers
— Latches



Java synchronizers

All synchronizers:

* determine whether arriving threads should be
allowed to pass or be forced to wait based on
encapsulated state

e provide methods to manipulate state

e provide methods to wait efficiently for the
synchronizers to enter the desired state



Latches

Acts as a gate: no thread can pass until the gate
opens, and then all can pass

e delays progress of threads until it enters
terminal state

e cannot then change state again (open forever)

For example, can be used to wait until all
parties involved in an activity are ready to
proceed:

— like all players in a multi-player game



CountDownLatch

CountDownLatch allows one or more
threads to wait for a set of events to occur

Latch state is a counter initialized to a positive
number, representing number of elements to
wait for



Semaphores

Counting semaphores are used to control the
number of activities that can access a certain
resource or perform a given action at the
same time

* |like a set of virtual permits

— activities can acquire permits and release then
when they are done with them

e Useful for implementing resource pools, such
as database connection pools.



WL Barriers  \Llll//

(] (]

Similar to latches — block a group of threads until
an event has occurred — but:

e latches wait for events
e barriers wait for other threads



CyclicBarrier

Allows a fixed number of parties to rendezvous
repeatedly at a barrier point

Threads call await when they reach the barrier
point and await blocks until all threads have
reached the barrier point.

Once all threads are there, the barrier is passed,
all threads are released and the barrier is
reset.



CyclicBarrier

Useful in parallel iterative algorithms that break
down a problem into a fixed number of
independent subproblems:

* |n many simulations, the work done in one
step can be done in parallel, but all work in
one step must be completed before the next
step begins...




Conway’s game of life

Conway’s game of life is a cellular automaton first proposed by the
British mathematician John Horton Conway in 1970.

The game is a simulation on a two-dimensional grid of cells. Each cell
starts off as either alive or dead. The state of the cell changes
depending on the state of its 7 neighbours in the grid. At each
time-step, we update the state of each cell according to the
following four rules.

* Alive cell with fewer than two live neighbors dies due to
underpopulation.

* Alive cell with more than three live neighbors dies due to
overpopulation.

* Alive cell with two or three live neighbors survives to the next
generation.

A dead cell with exactly three live neighbors becomes a live cell due
to breeding.



Multithreaded Conway’s game of life

Time Step O Time Step 1 Time Step 2

Parallel program generates threads equal to the number of cells,

e or, better, a part of the grid -

and updates the status of each cell independently.

* Before proceeding to the next time step, it is necessary that all the
grids have been updated.

* This requirement can be ensured by using a global barrier for all
threads.



Causes of Efficiency Problems in Java

Too much locking

e Cost of using synchronized

e Cost of blocking waiting for locks

e Cost of thread cache flushes and reloads

Too many threads

e Cost of starting up new threads

e Cost of context switching and scheduling

e Cost of inter-CPU communication, cache misses
Too much coordination

e Cost of guarded waits and notification messages
e Cost of layered concurrency control

Too many objects

 Cost of using objects to represent state, messages, etc



