Section 7: Thread Safety, issues
and guidelines

Michelle Kuttel
mkuttel@cs.uct.ac.za

Thread safety

Writing thread-safe code is about managing an
object’s state:

we need to protect data from concurrent access

worried about shared, mutable state
shared: accessed by multiple threads

mutable: value can change

Java frameworks that create threads

There are a number of Java frameworks that create
threads and call your components from these threads,
e.g:

 AWT and Swing create threads for managing user
interface events

* Timer create threads for executing deferred tasks

 Component frameworks, such as servlets and RMI,

create pools of threads an invoke component methods
in these threads

This means that, if you use these frameworks, you need
to ensure that your components are thread-safe

e.g. Timer class

* Timer is a convenience mechanism for scheduling
tasks to run at a later time, either once or
periodically

* TimerTasks are executed in a Thread managed by
the Timer, not the application

* |f TimerTask accesses data that is also accessed
by other application threads, then not only must
the TimerTask do so in a thread safe manner, but
so must any other classes that access that data

— easiest is to ensure that all objects accessed by
TimerTask are themselves thread safe

What is a thread-safe class?

A class can be considered to be thread-safe if it
behaves correctly when accessed from multiple
threads, regardless of the scheduling or
interleaving of the execution of those threads by
the runtime environment and with no additional
synchronization of other coordination on the part
of the calling code.

— no set of operations performed sequentially or

concurrently on instances of a thread-safe class can
cause an instance to be in an invalid state.

Possible data races

Whenever:

more than one thread accesses a given state
variable

all accesses must be coordinated using
synchronization

Done in Java using synchronized keyword, or
volatile variables, explicit locks, atomic variables

Checkpoint

* For safety, is it enough just declare every
method of every shared object as
synchronized?

Checkpoint contd.

Vector has every method synchronized.
* |s the following code atomic?

if (Ivector.contains(element))
vector.add(element);

The Java Monitor Pattern

* An object following this pattern encapsulates
all its mutable stare and guards it with the
object’s own intrinsic lock

 Used by many library classes:
— Vector

— HashTable
 Advantage is that it is simple

Concurrent Building Blocks in Java

* Synchronized collections:
— e.g. Vector, Hashtable

— achieve thread safety by serializing all access to collection’s
state

— POOr concurrency
Only process one request at a time
* All methods are locally sequential

* Accept new messages only when ready
— No other thread holds lock
— Not engaged in another activity

* But methods may make self-calls to other methods during same
activity without blocking (due to reentrancy

— may need additional locking to guard compound actions
* jteration, navigation etc.

Types of race condition

The (poor) term “race condition” can refer to
two different things resulting from lack of
synchronization:

1. Data races: Simultaneous read/write or write/
write of the same memory location

— wmoms dlWaAys an error, due to compiler & HW

2. Bad interleavings: Despite lack of data races,
exposing bad intermediate state

— “Bad” depends on your specification

slide adapted from:
11 Sophomoric Parallelism &

Concurrency, Lecture 5

Guarding state with locks

* if synchronization is used to coordinate access
to a variable, it is needed everywhere that

variable is accessed.

 Furthermore, the same lock, must be used
wherever the variable is accessed.

e the variable is then guarded by that lock

— e.g. Vector class

Guarding state with locks

* Acquiring the lock associated with an object
does NOT prevent other classes from
accessing the object

— it only prevents them from acquiring the same
lock

Compound actions

public class Counter {
private long value;

public long getAndIncrement() {

temp = value;
value = temp + 1;

) Data race

}
Last lectures showed an example of an unsafe

read-modify-write compound action, where
resulting state is derived from the previous
state

Another example is a check-then-act compound
action

check-then-act

Code to find the maximum in a series of
numbers. Each thread checks part of the
series...

1t Ca[1] > cur_max)

cur_max = ali];

check-then-act: Lazy Initialization

This code is NOT thread-safe

@NotThreadSafe
public class LazyInitRace {

private expensiveObject instance = null;
public ExpensiveObject getlInstance() {
1f (1nstance==null)

instance = new ExpensiveObject();
return instance;

¥ Bad interleaving
¥

Compound actions

read-modify-write and check-then-act are
examples of compound actions that must be
executed atomically in order to remain
thread-safe.

Example

class Stack<iE> {
.. // state used by isEmpty, push, pop
synchronized boolean isEmpty () { .. }
synchronized void push(E val) { .. }
synchronized E pop () {
1f (1sEmpty ())
throw new StackEmptyException()

}

E peek() { // this is wrong
= pop ()’

push (ans) ;

return ans;

FE ans

Sophomoric Parallelism &

18 Concurrency, Lecture 5

peek, sequentially speaking

* |n a sequential world, this code is of questionable
style, but unquestionably correct

* The “algorithm” is the only way to write a peek
helper method if all you had was this interface:

interface Stack<E> {
boolean i1isEmpty ()
volid push (E val);
E pop();

}

class C {
static <E> E myPeek (Stack<E> s) {

}

2?27 }

peek, concurrently speaking

* peek has no overall effect on the shared data
— It is a “reader” not a “writer”

* But the way it's implemented creates an
inconsistent intermediate state

— Even though calls to push and pop are
synchronized so there are no data races on the
underlying array/list/whatever

* This intermediate state should not be exposed
— Leads to several bad interleavings

peek and isEmpty

* Property we want: If there has been a push and no
pop, then isEmpty returns false

* With peek as written, property can be violated — how?

Thread 1 (peek) Thread 2

E ans = pop(); push (x)

boolean b = 1sEmpty ()
push (ans) ;

Time

return ans;

peek and isEmpty

* Property we want: If there has been a push and no
pop, then isEmpty returns false

* With peek as written, property can be violated — how?

Thread 1 (peek) Thread 2

E ans = pop();<$.“-.~push(X)
4&-—————-boolean b = isEmpty ()

push (ans) ;

Time

return ans;

peek and push

* Property we want: Values are returned from pop in
LIFO order

* With peek as written, property can be violated — how?

Thread 1 (peek) Thread 2
E ans = pop(); push (x)
push (y)

push (ans) ; E e = pop()

Time

return ans;

peek and push

* Property we want: Values are returned from pop in
LIFO order

* With peek as written, property can be violated — how?

Thread 1 (peek)h
E ans = pop() push (x)
)
push (ans) ; E e pop ()
return ans;“e”’,——’—————————

Sophomoric Parallelism &
Concurrency, Lecture 5

Time

24

peek and pop

* Property we want: Values are returned from pop in
LIFO order

* With peek as written, property can be violated — how?

Thread 1 (peek) Thread 2
E ans = pop(); push (x)
(y)

push (ans) ;

Time

return ans;

Sophomoric Parallelism &

25 Concurrency, Lecture 5

peek and peek

* Property we want: peek doesn’t throw an exception if
number of pushes exceeds number of pops

* With peek as written, property can be violated — how?

Thread 1 (peek) Thread 2
E ans = pop/(); E ans = pop ()
g push (ans) ; push (ans) ;
=
return ans; return ans;

peek and peek

* Property we want: peek doesn’t throw an exception if
number of pushes exceeds number of pops

* With peek as written, property can be violated — how?

Thread 1 (peek) Thread 2

E ans = pOp()"/E ans = pop () ;

push (ans) ; push (ans) ;

Time

return ans; return ans;

The fix

* Inshort, peek is a compound action: needs synchronization to
disallow interleavings

— The key is to make a larger critical section
— Re-entrant locks allow calls to push and pop

class Stack<E> { class C {
<E> E myPeek (Stack<E> s) {
synchronized E peek () { synchronized (s) {
E ans = pop(); E ans = s.pop();
push (ans) ; s.push (ans) ;
return ans; return ans;

Sophomoric Parallelism &

28 Concurrency, Lecture 5

The wrong “fix”

* Focus so far: problems from peek doing writes
that lead to an incorrect intermediate state

* Tempting but wrong: If an implementation of
peek (or isEmpty) does not write anything,
then maybe we can skip the synchronization?

* Does not work due to data races with push and
POpP...

Exam ple, dg8d N (no resizing or checking)

class Stack<iE> {

private E[] array = (E[])new Object[SIZE];

int index = -1;

boolean isEmpty() { // unsynchronized: wrong?!
return index==-1;

}

synchronized void push(E val) {
array[++index] = val;

}

synchronized E pop () {
return arrayl[index—--];

}

E peek() { // unsynchronized: wrong!
return array[index];

Sophomoric Parallelism &
30
Concurrency, Lecture 5

Why wrong?

* It/ooks like isEmpty and peek can “get away with
this” since push and pop adjust the state “in one tiny
step”

* But this code is still wrong and depends on language-
implementation details you cannot assume
— Even “tiny steps” may require multiple steps in the
implementation: array [++index] = wval probably
takes at least two steps

— Code has a data race, allowing very strange behavior

 Moral: Don’t introduce a data race, even if every
interleaving you can think of is correct

Sharing Objects: Visibility

* Synchronization is not only about atomicity

— It is NOT TRUE that you only need synchronization
when writing to variables.

* itis also about memory visibility:

— when a thread modifies an object, we need to ensure
that other threads can see the changes that were
made.

— without synchronization, this may not happen...

...ever

Visibility and Stale data

Unless synchronization is used every time a
shared variable is accessed, it is possible to
see a stale value for that variable

Worse, staleness in not all-or-nothing:

some variable may be up-to-date, while others
are stale

even more complicated if the stale data is an
object reference, such as in a linked list

But it is easy to fix:

* Synchronized also has the side-effect of
clearing locally cached values and forcing
reloads from main storage

* 50, synchronize all the getters and setters of
shared values...on the SAME lock

Locks and Caching

Locking generates messages between threads and
memory

— Lock acquisition forces reads from memory to thread
cache

— Lock release forces writes of cached updates to memory

memory cells

CPU CPU
HEENENEN
HpE NN
Cache L L - Cache
[unlock
B B
[] state oFob]-ect

Locks and Caching

Without locking, there are NO promises about if
and when caches will be flushed or reloaded

e Can lead to unsafe execution
e Can lead to nonsensical execution

Volatile Variables »)

volatile keyword controls per-variable flush/reload

When a field is declared volatile, they are not cached where
they are hidden from other processes

— a read of a volatile variable always returns the most recent
write by any thread.

Implementation:

* No locking, so lighter weight mechanism than
synchronized.

— no locking, so accessing variable cannot cause another thread
to block

* slower than regular fields, faster than locks
But limited utility: fragile and code more opaque.
Really for experts: avoid them; use standard libraries instead

Volatile Variables

most common use of volatile is for aflag
variable:

volatile boolean asleep;
while (!asleep)
countSomeSheep();

While locking can guarantee both visibility and
atomicity, volatile variables can only guarantee
visibility-

NB volatile does NOT mean atomic!!!

And then we get reordering
problems...

* The things that can go wrong are so
counterintuitive...

Motivating memory-model issues

Tricky and surprisingly wrong unsynchronized concurrent code

class C {
First understand why it looks like the

private int x = 0; _ o
private int y = 0; assertion can’t fail:
void f() A » Easy case: call to g ends before any
x =1; call to f starts
y = 1;
} . Easy case: at least one call to £
void g () {
. _ completes before call to g starts
int a = y;
int b = x;
assert (b >= a); * Ifcallsto £ and g interleave...
}

Sophomoric Parallelism &
40
Concurrency, Lecture 6

Interleavings

There is no interleaving of £ and g where the assertion fails

— Proof #1: Exhaustively consider all possible orderings of access to
shared memory (there are 6)

— Proof #2: If ! (b>=a), then a==1 and b==0. But if a==1, then
a=y happened after y=1. And since programs execute in order,
b=x happened after a=y and x=1 happened before y=1. So by
transitivity, b==1. Contradiction.

Thread 1: £ Thread 2: g
X = 1; int a = y;
y = 1; int b = x;

assert (b >= a);

Wrong

However, the code has a data race
— Two actually

— Recall: data race: unsynchronized read/write or write/write of
same location

If code has data races, you cannot reason about it with
interleavings!

— That’s just the rules of Java (and C, C++, C#, ...)

— (Else would slow down all programs just to “help” programs with
data races, and that’s not a good engineering trade-off)

— So the assertion can fail

Recall Guideline #0: No data races

Sophomoric Parallelism &

42 Concurrency, Lecture 6

How is this possible? -Reordering

There is no guarantee that operations in one

t

t
C

nread will be performed in the order given in
ne program, as long as the reordering is not

etectable from within that thread

...even if reordering is apparent to other
threads!

Why

For performance reasons, the compiler and the hardware
often reorder memory operations

— Take a compiler or computer architecture course to learn why

Thread 1: £ Thread 2: g
x = 1; int a = y;
y = 1 int b = x;

assert (b >= a);

Of course, you cannot just let them reorder anything they want
e Each thread executes in order after all!
* Consider:x=17; y=x;

Sophomoric Parallelism &

a4 Concurrency, Lecture 6

The grand compromise

The compiler/hardware will never perform a memory reordering
that affects the result of a single-threaded program

The compiler/hardware will never perform a memory reordering
that affects the result of a data-race-free multi-threaded program

So: If no interleaving of your program has a data race, then you can
forget about all this reordering nonsense: the result will be
equivalent to some interleaving

Your job: Avoid data races
Compiler/hardware job: Give interleaving (illusion) if you do your job

Fixing our example

Naturally, we can use synchronization to avoid data races
— Then, indeed, the assertion cannot fail

class C {

private int x = 0;
private int y = 0;
void £ () {
synchronized(this) { x = 1;
synchronized(this) { yv = 1;
}
void g () {
int a, b;
synchronized(this) { a = y;

-
X

synchronized(this) {
assert (b >= a);

Sophomoric Parallelism &

46 Concurrency, Lecture 6

Code that’s wrong

 Here is a more realistic example of code that is wrong
— No guarantee Thread 2 will ever stop
— But honestly it will “likely work in practice”

class C {
boolean stop = false;
void £ () {
while (!stop) {
// draw a monster
}

}
void g () A

stop = didUserQuit () ;
}

Thread 1: £ ()

Thread 2: g ()

Checkpoint
What are all the possible outputs of this code?

public class possibleReordering {

static int x=0, y=0;
static int a=0, b=0;

public static void main (String[] args) throws

InterruptedException {

Thread one = new Thread(new Runnable() {

public void run() {
a=1;
X=b;
}
})i
Thread two = new Thread(new Runnable() {
public void run() {
b=1;
y=aj;
}
})i
one.start(); two.start();
one.join(); two.join();
System.out.println("(" + x + "," + y + ")");

(1,0)
(0,1)
(1,1)
(0,0)

Outputs

Aside: Java Memory model

* Java has rules for which values may be seen by
a read of shared memory that is updated by
multiple threads.

* As the specification is similar to the memory
models for different hardware architectures,
these semantics are known as the Java
programming language memory model.

Aside: Java Memory model

Java memory model requires maintenance of within
thread as-if-serial semantics.

e each thread must has same result as if executed
serial

The JVM defines a partial ordering called happens-
before on all actions in a program

To guarantee that an action B sees the results of
action A, there must be a happens-before
relationship between them

If there isn’t one, Java is free to reorder the actions

Aside: Java Memory model

The Java Memory Model is specified in ‘happens
before’-rules, e.g.:

 monitor lock rule: a release of a lock happens
before every subsequent acquire of the same
lock.

Aside: Java Memory model

The Java Memory Model is specified in ‘happens
before’-rules, e.g.:
* volatile variable rule: a write of a volatile

variable happens before every subsequent
read of the same volatile variable

Non-atomic 64-bit operations

out-of-thin-air safety is a guarantee that, when
a thread reads a variable without
synchronization, it may see a stale value, but it
will be a value that was actually written at
some point

— i.e. not a random value

Non-atomic 64-bit operations

out-of-thin-air safety guarantee applies to all
variables that are not declared volatile,
except for 64-bit numeric variables

— the JVM can read or write these in 2 separate 32-
bit operations

— shared mutable double and 1long values
MUST be declared volatile or guarded by a lock

Policies and guidelines for thread
safety

Guarding state with locks

It is up to you to construct locking protocols or
synchronization policies that let you access shared
state safely

Every shared mutable variable should be accessed by
exactly one lock.
— make it clear to maintainers which lock it is

But mutable, unshared variables do not need to be
locked

And neither do immutable, shared variables

Most useful policies for using and sharing
objects in a concurrent Java program
Thread-confined (thread-local)

- — object owned exclusively by and confined to one
thread

— can be modified by owning thread

Shared read-only (immutable)

— can be accessed by multiple threads without
synchronization

— no modifications

Shared thread-safe

— performs synchronization internally, so can be freely

accessed by multiple threads
Synchronized (Guarded)
— accessed only when a lock is held

58

Thread-local

Whenever possible, don’t share resources: called thread confinement

— Easier to have each thread have its own thread-local copy of a resource
than to have one with shared updates

— Thisis correct only if threads don’t need to communicate through the

resource
. That is, multiple copies are a correct approach
. Example: Random objects

— Note: Since each call-stack is thread-local, never need to synchronize on
local variables

— if data is accessed only from a single thread, no synchronization is needed
* its usage is automatically thread-safe, even if the object itself is not

In typical concurrent programs, the vast majority of objects should be
thread-local: shared-memory should be rare — minimize it

slide adapted from: Sophomoric Parallelism &

29 Concurrency, Lecture 5

I:\ Thread Confinement

Swing uses thread confinement extensively:

— Swing visual components and data model objects
are not thread safe

— safety achieved by confining them to the Swing
event dispatch thread

* NB code running in other threads should not access
these objects

— many concurrency errors in Swing applications are a result of
this

Immutable

Immutable Objects are always thread safe

 they only have one state

Use of final guarantees initialization safety

So, make all fields final unless they need to be mutable.

Whenever possible, don’t update objects
— Make new objects instead
* One of the key tenets of functional programming

— Generally helpful to avoid side-effects
— Much more helpful in a concurrent setting

* If alocation is only read, never written, then no synchronization is
necessary!
— Simultaneous reads are not races and not a problem

In practice, programmers usually over-use mutation — minimize it

The rest

After minimizing the amount of memory that is (1) thread-
shared and (2) mutable, we need guidelines for how to use
locks to keep other data consistent

Guideline #0: No data races

 Never allow two threads to read/write or write/write
the same location at the same time

Necessary: In Java or C, a program with a data race is almost
always wrong

Not sufficient: Our peek example had no data races

@ Consistent Locking

Guideline #1: For each location needing synchronization, have a
lock that is always held when reading or writing the location

 We say the lock guards the location
 The same lock can (and often should) guard multiple locations
* Clearly document the guard for each location

* InJava, often the guard is the object containing the location
— this inside the object’s methods

— But also often guard a larger structure with one lock to ensure
mutual exclusion on the structure

Consistent Locking continued

 The mapping from locations to guarding locks is conceptual
* |t partitions the shared-&-mutable locations into “which lock”

©e®e ®® 0®
6 00 o

Consistent locking is:

* Not sufficient: It prevents all data races but still allows bad
interleavings

— Our peek example used consistent locking

* Not necessary: Can change the locking protocol dynamically...
Consistent locking is an excellent guideline: “default assumption” about program
design

Sophomoric Parallelism &

o4 Concurrency, Lecture 5

Locking caveats

* Whenever you use locking, you should be
aware of what the code in the block is doing

and how likely it is to take a long time to
execute

* Holding a lock for a long time introduces the
risk of liveness and performance problems

— avoid holding locks during lengthy computations
or during network of console I/O

Lock granularity

Coarse-grained: Fewer locks, i.e., more objects per lock
— Example: One lock for entire data structure (e.g., array)
— Example: One lock for all bank accounts

-\ -\ ‘ _eee - ‘

~ - -
~< , _- _-
~ - -
= =] -~ -
-~ -
< - _-
-

Fine-grained: More locks, i.e., fewer objects per lock
— Example: One lock per data element (e.g., array index)
— Example: One lock per bank account

6, 996. 8

“Coarse-grained vs. fine-grained” is really a continuum

Sophomoric Parallelism &

o6 Concurrency, Lecture 5

Trade-offs

Coarse-grained advantages
— Simpler to implement

— Faster/easier to implement operations that access multiple
locations (because all guarded by the same lock)

— Much easier: operations that modify data-structure shape

Fine-grained advantages

— More simultaneous access (performance when coarse-grained
would lead to unnecessary blocking)

Guideline #2: Start with coarse-grained (simpler) and move to
fine-grained (performance) only if contention on the
coarser locks becomes an issue. Alas, often leads to bugs.

Example: Hashtable

* Coarse-grained: One lock for entire hashtable
* Fine-grained: One lock for each bucket

Which supports more concurrency for insert and lookup?

Which makes implementing resize easier?
— How would you do it?

If a hashtable has a numElements field, maintaining it will
destroy the benefits of using separate locks for each bucket

Critical-section granularity

A second, orthogonal granularity issue is critical-section size
— How much work to do while holding lock(s)

If critical sections run for too long:
— Performance loss because other threads are blocked

If critical sections are too short:

— Bugs because you broke up something where other threads
should not be able to see intermediate state

Guideline #3: Don’t do expensive computations or |/O in
critical sections, but also don’t introduce race conditions

Example

Suppose we want to change the value for a key in a
hashtable without removing it from the table

— Assume lock guards the whole table

Papa Bear’s
critical section
was too long

(table locked
during expensive
call)

synchronized (lock) {
vl = table.lookup (k) ;
v2 = expensive (vl);
table.remove (k) ;
table.insert (k,v2) ;

Example

Suppose we want to change the value for a key in a
hashtable without removing it from the table

— Assume lock guards the whole table

Mama Bear’s
critical section was
too short

(if another thread
updated the entry,
we will lose an
update)

synchronized(lock) ({
vl = table.lookup (k) ;
}
v2 expensive (vl) ;
synchronized (lock) {
table.remove (k) ;
table.insert (k,v2) ;

Example

Suppose we want to change the value for a key in a
hashtable without removing it from the table

— Assume lock guards the whole table

done = false;

Baby Bear’s critical while (!done) {
section was just synchronized (lock) {
right vl = table.lookup (k) ;
}
(if another update v2 = expensive (vl) ;
occurred, try our synchronized (lock) {
update again) if (table.lookup (k)==v1) {
done = true;

table.remove (k) ;
table.insert (k,v2) ;
}}

Atomicity

An operation is atomic if no other thread can see it partly
executed

— Atomic as in “(appears) indivisible”

— Typically want ADT operations atomic, even to other threads
running operations on the same ADT

Guideline #4: Think in terms of what operations need to be
atomic

— Make critical sections just long enough to preserve atomicity

— Then design the locking protocol to implement the critical
sections correctly

That is: Think about atomicity first and locks second

Don’t roll your own

* |tis rare that you should write your own data structure
— Provided in standard libraries

— Point of these lectures is to understand the key trade-offs and
abstractions

e Especially true for concurrent data structures

— Far too difficult to provide fine-grained synchronization without
race conditions

— Standard thread-safe libraries like ConcurrentHashMap
written by world experts

Guideline #5: Use built-in libraries whenever they meet your
needs

Concurrent Building Blocks in Java

* Synchronized collections achieve thread safety by
serializing all access to the collection’s state

— poor concurrency, because of collection-wide lock

* Concurrent collections are designed for
concurrent access from multiple threads:

e ConcurrentHashMap
* CopyOnWriteArrayList

* Replacing synchronized collections with
concurrent collections can result in dramatic
scalability improvement with little risk

