Section 6: Mutual Exclusion

Michelle Kuttel
mkuttel@cs.uct.ac.za

Toward sharing resources (memory)

Have been studying parallel algorithms using fork-
join
— Lower span via parallel tasks

Algorithms all had a very simple structure to avoid
race conditions
— Each thread had memory “only it accessed”
* Example: array sub-range

— On fork, “loaned” some of its memory to “forkee”
and did not access that memory again until after
join on the “forkee”

Toward sharing resources (memory)

Strategy won’t work well when:

— Memory accessed by threads is overlapping or
unpredictable

— Threads are doing independent tasks needing
access to same resources (rather than
implementing the same algorithm)

Race Conditions

A race condition is a bug in a program where the
output and/or result of the process is
unexpectedly and critically dependent on the
relative sequence or timing of other events.

The idea is that the events race each other to
influence the output first.

Examples

Multiple threads:

1. Processing different bank-account operations
— What if 2 threads change the same account at the same time?

2. Using a shared cache (e.g., hashtable) of recent files
— What if 2 threads insert the same file at the same time?

3. Creating a pipeline (think assembly line) with a queue for
handing work to next thread in sequence?

— What if enqueuer and dequeuer adjust a circular array queue
at the same time?

Concurrent Programming

Concurrency: Correctly and efficiently managing
access to shared resources from multiple
possibly-simultaneous clients

Even correct concurrent applications are usually
highly non-deterministic:
how threads are scheduled affects what

operations from other threads they see when
— non-repeatability complicates testing and debugging

Sharing, again
It is common in concurrent programs that:

e Different threads might access the same resources in an
unpredictable order or even at about the same time

* Program correctness requires that simultaneous access
be prevented using synchronization

 Simultaneous access is rare
— Makes testing difficult

— Must be much more disciplined when designing /
implementing a concurrent program

Testing concurrent programs

* in general extremely difficult:

— relies on executing the particular sequence of
events and actions that cause a problem

— number of possible execution sequences can be
astronomical

— problem sequences may never occur in the test
environment

Why use threads?

Unlike parallelism, not about implementing algorithms
faster

But threads still useful for:

» Code structure for responsiveness

— Example: Respond to GUI events in one thread while
another thread is performing an expensive computation

* Processor utilization (mask 1/0 latency)
— If 1 thread “goes to disk,” have something else to do

e Failure isolation

— Convenient structure if want to interleave multiple tasks and
don’t want an exception in one to stop the other

Synchronization

Synchronization constraints are requirements
pertaining to the order of events.

* Serialization: Event A must happen before
Event B.

* Mutual exclusion: Events A and B must not
happen at the same time.

Mutual exclusion

One of the two most important problems in
concurrent programming

— several processes compete for a resource, but the
nature of the resource requires that only one
process at a time actually accesses the resource

— synchronization to avoid incorrect simultaneous
access

— abstraction of many synchronization problems

Synchronization

* In real life we often check and enforce
synchronization constraints using a clock. How do
we know if A happened before B? If we know
what time both events occurred, we can just
compare the times.

* |n computer systems, we often need to satisfy
synchronization constraints without the benefit
of a clock, either because there is no universal
clock, or because we don’t know with fine
enough resolution when events occur.

Mutual exclusion

Mutual exclusion: Events A and B must not happen
at the same time.

a.k.a. critical section, which technically has other
requirements

One process must block:
not proceed until the “winning” process has completed
— join is not what we want

— block until another thread is “done using what we
need” not “completely done executing”

Example: Parallel Primality Testing

* Challenge
— Print primes from 1 to 10%°

* Given
— Ten-processor multiprocessor
— One thread per processor

e Goal

— Get ten-fold speedup (or close)

Load Balancing

* Split the work evenly
* Each thread tests range of 10°

Procedure for Thread i

void primePrint {
int 1 = ThreadID.get(); // IDs 1in {0..9}
for (J = 1*10°+1, j<(i+1)*10%; j++) {
1f (AsPrime(3))
print(j);

Issues

* Higher ranges have fewer primes
* Yet larger numbers harder to test
* Thread workloads

— Uneven
— Hard to predict

Issues

* Higher ranges have fewer primes
* Yet larger numbers harder to test
* Thread workloads

— Uneven

— Hard to predict
* Need dynamic load balaneing

Art of Multiprocessor 18
Programming

Shared Counter

each thread takes
a humber

Art of Multiprocessor

p : 19
rogramming

Procedure for Thread i

int counter = new Counter(l);

void primePrint {
long j = O;
while (3 < 1010) {
j = counter.getAndIncrement();
if (isPrime(j))
print(j);

Procedure for Thread i

[Counter counter = new Counter(l);]

void primePrint {
long j = O;
while (J < 1019) {
J = counter.getAndIncrementy);
if (isPrime(j)) Shared counter
print(j); object

Art of Multiprocessor

: 21
Programming

Where Things Reside

code
void primePrint {

int 1 =] |
ThreadiD.get(); // IDs OCa
in {0..9} ~ >

for (i = %109+1, variables
j<@(i+1)*10%; j++) {
if (isPrime(j))
print(j);
} ‘ |

shared
memory

shared counter

Art of Multiprocessor

: 22
Programming

Procedure for Thread i

Counter counter = new Counter(l);

void primePrint {

lon = 0;
[while (J < 10) { ———Stop when every value

J = counter. getAndIncrement(t':)aken
1t (isPrime(3))

print(j);

Art of Multiprocessor

: 23
Programming

Procedure for Thread i

Counter counter = new Counter(l);

void primePrint {

long j = O;
] (< 10103y {
j = counter. getAndIncrement()

if (isPrime(j))

\} print(j);)
} Increment & return
each new value

Art of Multiprocessor

p : 24
rogramming

Counter Implementation

public class Counter {
private long value;

public long getAndIncrement() {
return value++;
¥

}

Counter Implementation

public class Counter {
private long value;

¥
}

Art of Multiprocessor
Programming

26

What It Means

public class Counter {
private long value;

public long getAndIncrement() {
return value++;

¥
}

What It Means

public class Counter {
private long value;

public long getAndIncrement() f{

| return va1ue++;! temp = value;
¥ value = value + 1;

} return temp;

Art of Multiprocessor

: 28
Programming

Not so good...
Value..

|
read write read write
1 2 2 3

Art of Multiprocessor
Programming

29

Is this problem inherent?

m write m
’readlf’ ﬂ
66 read \ 6

write
If we could only glue reads and writes...

Art of Multiprocessor

: 30
Programming

Challenge

public class Counter {
private long value;

public long getAndIncrement() {

temp = value;
value = temp + 1;
return temp;

}
}

Challenge

public class Counter {
private long value;

public long getAndIncrement() f{
temp value;

[va1ue temp + 1;
return temps;

} Make these steps

} atomic (indivisible)

Art of Multiprocessor How do we do this?

p : 32
rogramming

Atomic actions

Operations A and B are atomic with respect to
each other if, from the perspective of a thread
executing A, when another thread executes B,
either all of B has executed or none of it has

The operation is indivisible

Hardware Solution

public class Counter {
private long value;

public long getAndIncrement() f{
[temp value;

value temp + 1;
return temp;

}
1 ReadModifyWrite()

instruction

Art of Multiprocessor

p : 34
rogramming

Mutual exclusion in Java

Programmer must implement critical sections

— “The compiler” has no idea what interleavings
should or shouldn’t be allowed in your program

— Buy you need language primitives to do it!

Mutual exclusion in Java: Thread safe
classes

One way we could fix this is by using an existing
thread-safe atomic variable class

java.util.concurrent.atomic contains
atomic variable classes for effecting atomic state
transitions on numbers and object references.

e.g. can replace a long counter with AtomiclLong to
ensure that all actions that access the counter
state are atomic

Mutual exclusion in Java

e Atomic variable only make a class thread-safe
if ONE variable defines the class state

* to preserve state consistency, you should
update related state variables in a single
atomic operation

— exercise: give an example showing why this is

Another example: atomic won’t work

Correct code in a single-threaded world

class BankAccount {

private int balance = 0;
int getBalance() { return balance; }
vold setBalance (int x) { balance = x; }
vold withdraw (int amount) {

int b = getBalance();

1f (amount > b)
throw new WithdrawTooLargeException () ;
setBalance (b — amount) ;

. // other operations like deposit, etc.

Sophomoric Parallelism &

38 Concurrency, Lecture 4

Interleaving

Suppose:
— Thread Tl calls x .withdraw (100)
— Thread T2 calls y .withdraw (100)

If second call starts before first finishes, we say the calls
interleave

— Could happen even with one processor since a thread can
be pre-empted at any point for time-slicing

If x and y refer to different accounts, no problem

— “You cook in your kitchen while | cook in mine”
— But if x and y alias, possible trouble...

A bad interleaving

Interleaved withdraw (100) calls on the same account
— Assume initial balance == 150

Thread 1 Thread 2
int b = getBalance();
int b = getBalance();
1f (amount > b)
throw new ..;

Q
£ setBalance (b — amount) ;
= 1f (amount > b)
throw new ..;
setBalance (b — amount) ;
v “Lost withdraw” —

unhappy bank

Incorrect “fix”

It is tempting and almost always wrong to fix a bad interleaving by
rearranging or repeating operations, such as:

volid withdraw(int amount) {
1f (amount > getBalance())
throw new WithdrawTooLargeException() ;

// maybe balance changed
setBalance (getBalance () - amount);

This fixes nothing!
* Narrows the problem by one statement
* (Not even that since the compiler could turn it back into the old
version because you didn’t indicate need to synchronize)

* And now a negative balance is possible — why?

Mutual exclusion

The sane fix: At most one thread withdraws
from account A at a time

— Exclude other simultaneous operations on A too
(e.g., deposit)

~ Wrong!
Why can’t we implement our own mutual-
exclusion protocol?

— It's technically possible under certain assumptions, but won’t work in real languages anyway

class BankAccount {

private int balance = 0;

private boolean busy = false;

vold withdraw (int amount) {
while (busy) { /* “spin-wait” */ }
busy = true;
int b = getBalance ()
1f (amount > b)

throw new WithdrawTooLargeException () ;

setBalance (b - amount) ;
busy = false;

}

// deposit would spin on same boolean

Sophomoric Parallelism &
43
Concurrency, Lecture 4

Time

Still just moved the problem!

Thread 1 Thread 2
while (busy) { }
while (busy) { }
busy = true;
busy = true;
int b = getBalance();
int b = getBalance();
1f (amount > b)
throw new ..;

setBalance (b — amount) ;
1f (amount > b)

throw new ..;

setBalance (b - amount) ; Lost withdraw” —

unhappy bank

Mutual exclusion in Java: Locks

An ADT with operations:
—new: make a new lock, initially “not held”
—acquire: blocks if this lock is already
currently “held”
* Once “not held”, makes lock “held”

— release: makes this lock “not held”

e if >= 1 threads are blocked on it, exactly 1 will
acquire it

slide adapted from Sophomoric
45 Parallelism & Concurrency,
Lecture 4

Why Locks work

* An ADT with operations new, acquire,
release

* The lock implementation ensures that given
simultaneous acquires and/or releases, a correct
thing will happen

— Example: Two acquires: one will “win” and one will
block

 How can this be implemented?

— Need to “check and update” “all-at-once”

— Uses special hardware and O/S support
* See computer-architecture or operating-systems course

Almost-correct pseudocode

class BankAccount {
private int balance = 0;
private Lock 1k = new Lock();

vold withdraw (int amount) {
lk.acquire(); /* may block */
int b = getBalance();
1f (amount > b)
throw new WithdrawTooLargeException () ;
setBalance (b — amount) ;
lk.release () ;

}

// deposit would also acquire/release 1k

Sophomoric Parallelism &

47 Concurrency, Lecture 4

Locks

A lock is a very primitive mechanism
— Still up to you to use correctly to implement critical sections

Incorrect: Use different locks for withdraw and deposit
— Mutual exclusion works only when using same lock

Poor performance: Use same lock for every bank account
— No simultaneous operations on different accounts

Incorrect: Forget to release a lock (blocks other threads forever!)
— Previous slide is wrong because of the exception possibility!

1f (amount > b) {
lk.release(); // hard to remember!
throw new WithdrawTooLargeException () ;

Other operations

If withdraw and deposit use the same lock, then
simultaneous calls to these methods are properly
synchronized

But what about getBalance and setBalance?
— Assume they’re public, which may be reasonable

If they don’t acquire the same lock, then a race between
setBalance and withdraw could produce a wrong
result

If they do acquire the same lock, then withdraw would
block forever because it tries to acquire a lock it already has

Re-acquiring locks?

int setBalancel (int x) {
balance = x;

}

int setBalance? (int x) {
lk.acquire () ;
balance = x;
lk.release () ;

}

volid withdraw(int amount)
lk.acquire () ;

setBalanceX (b - amount);
lk.release () ;

{

Can’t let outside world call
setBalancel

Can’t have withdraw call
setBalance?2

Alternately, we can modify
the meaning of the Lock ADT

to support re-entrant locks

— Java does this

— Then just use
setBalance?2

Re-entrant lock

A re-entrant lock (a.k.a. recursive lock)

 “Remembers”
— the thread (if any) that currently holds it
— acount

When the lock goes from not-held to held, the count is O

If (code running in) the current holder calls acquire:
— it does not block
— it increments the count

* Onrelease:
— if the count is > 0, the count is decremented
— if the count is O, the lock becomes not-held

Mutual exclusion in Java: synchronised
block

e Java provides a more general built-in locking
mechanism for enforcing atomicity: the
synchronized block

* every object has a lock that can be used for
synchronizing access to fields of the object

Mutual exclusion in Java: synchronised
block

Critical sections of code can be made mutually exclusive by
prefixing the method with the keyword synchronized.

Synchronized can be either a method or block
qualifier:

* synchronized void f() { body; } is equivalent to:

* void f() { synchronized(this) { body; } }

e a synchronized block has two parts:
— a reference to an object that will serve as the lock
— a block of code to be guarded by that lock

synchronized (object)
{ statements }

Now some Java

Java has built-in support for re-entrant locks
— Several differences from our pseudocode
— Focus on the synchronized statement

synchronized (expression) ({
statements

}

1. Evaluates expression to an object

 Every object (but not primitive types) “is a lock” in Java
2. Acquires the lock, blocking if necessary

* “If you get past the {, you have the lock”
3. Releases the lock “at the matching }”

* Even if control leaves due to throw, return, etc.

* Soimpossible to forget to release the lock

Sophomoric Parallelism &

o4 Concurrency, Lecture 4

Java version #1 (correct but non-

idiomatic)
class BankAccount {
private 1nt balance = 0;

private Object 1k = new Object();
int getBalance ()
{ synchronized (lk) { return balance; } }
void setBalance (int Xx)
{ synchronized (lk) { balance = x; } }
volid withdraw(int amount) {
synchronized (1lk) {
int b = getBalance () ;
1f (amount > Db)
throw ..
setBalance (b — amount) ;

}
}

// deposit would also use synchronized(lk)

Sophomoric Parallelism &
Concurrency, Lecture 4

55

Improving the Java

* As written, the lock is private
— Might seem like a good idea

— But also prevents code in other classes from
writing operations that synchronize with the
account operations

 More idiomatic is to synchronize on this...

Java version #2

class BankAccount {
private int balance = 0O;
int getBalance ()
{ synchronized (this){ return balance; } }
void setBalance (int Xx)

{ synchronized (this){ balance = x; } }
volid withdraw(int amount) {
synchronized (this) {
int b = getBalance();
1f (amount > b)
throw ..
setBalance (b — amount) ;

}
}

// deposit would also use synchronized(this)

Sophomoric Parallelism &

>/ Concurrency, Lecture 4

Syntactic sugar

Version #2 is slightly poor style because there is a
shorter way to say the same thing:

Putting synchronized before a method
declaration means the entire method body is
surrounded by

synchronized(this) {..}

Therefore, version #3 (next slide) means exactly the
same thing as version #2 but is more concise

Sophomoric Parallelism &

o8 Concurrenc y, Lecture 4

Java version #3 (final version)

class BankAccount {

private 1nt balance = 0;
synchronized int getBalance ()

{ return balance; }
synchronized void setBalance (int x)

{ balance = x; }
synchronized void withdraw(int amount) ({

int b = getBalance();
1f (amount > Db)
throw ..
setBalance (b — amount) ;

}

// deposit would also use synchronized

Sophomoric Parallelism &

29 Concurrency, Lecture 4

In the first example...

public class Counter {
private long value;

public long getAndIncrement() {

(this)
temp = value;
value = temp + 1;

return temp;

}

Java

public class Counter {
private long value;

public long getAndIncrement() f{

" synchronized (this)
temp = value;
value = temp + 1;

9 }

return temp,

¥
}

Art of Multiprocessor
Programming

61

Synchronized block

Java

public class Counter {
private long value;
Mutual Exclusion
public long getAndIncremen
synchronized i
temp = value;
value = temp + 1;
5
return temp;

}

}

Art of Multiprocessor

Programming 62

But, how is synchronization done in
Java?

Every Java object created, including every Class loaded,
has an associated lock (or monitor).

Putting code inside a synchronized block makes the
compiler append instructions to acquire the lock on
the specified object before executing the code, and
release it afterwards (either because the code finishes

normally or abnormally).

Between acquiring the lock and releasing it, a thread is
said to "own" the lock. At the point of Thread A
wanting to acquire the lock, if Thread B already owns
the it, then Thread A must wait for Thread B to

release it.

Java locks

Every Java object possesses one lock
— Manipulated only via synchronized keyword
— Class objects contain a lock used to protect statics

— Scalars like 1nt are not Objects, so can only be
locked via their enclosing objects

Java locks

Java locks are reentrant

* Athread hitting synchronized passes if

the lock is free or it already possesses the lock,
else waits

* Released after passing as many }'s as {’s for the
lock

— cannot forget to release lock

Reentrant locks

e This code would deadlock without the use of
reentrant locks:

class Widget {
public synchronized void doSomething() {

}
}

class BobsWidget {
public synchronized void doSomething() {
System.out.printin(“Calling super”);
super.doSomething();

Who gets the lock?

 There are no fairness specifications in Java, so
if there is contention to call synchronized

methods of an object, an arbitrary process will
obtain the lock.

Java: block synchronization versus
method synchronization

Block synchronization is preferred over method
synchronization:

e with block synchronization you only need to
lock the critical section of code, instead of
whole method.

* Synchronization comes with a performance

cost:

— we should synchronize only part of code which
absolutely needs to be synchronized.

More Java notes

e Class
java.util.concurrent.locks.ReentrantLock
works much more like our pseudocode

— Oftenuse try { .. } finally { .. } toavoid forgetting
to release the lock if there’s an exception

* Also library and/or language support for readers/writer
locks and condition variables (future lecture)

e Java provides many other features and details. See, for
example:

— Chapter 14 of Corelava, Volume 1 by Horstmann/Cornell
— Java Concurrency in Practice by Goetz et al

Costly concurrency errors (#1)

2003

a race condition in
General Electric
Energy's Unix-based
energy management
system aggravated the
USA Northeast Blackout

affected an estimated 55
million people

Costly concurrency errors (#1)

August 14, 2003,

a high-voltage power line in northern Ohio brushed against some
overgrown trees and shut down

Normally, the problem would have tripped an alarm in the control
room of FirstEnergy Corporation, but the alarm system failed due to a
race condition.

Over the next hour and a half, three other lines sagged into trees and
switched off, forcing other power lines to shoulder an extra burden.

Overtaxed, they cut out, tripping a cascade of failures throughout
southeastern Canada and eight northeastern states.

All told, 50 million people lost power for up to two days in the biggest
blackout in North American history.

The event cost an estimated $6 billion

source: Scientific American

Costly concurrency errors (#2)

L

1985 | ﬁ
P

Therac-25 Medical Accelerator*®
a radiation therapy device that could deliver two
different kinds of radiation therapy: either a low-
power electron beam (beta particles) or X-rays.

*An investigation of the Therac-25 accidents, by Nancy Leveson and Clark Turner
(1993).

Costly concurrency errors (#2)

E

1985 | ﬁ
P

Therac-25 Medical Accelerator*®
Unfortunately, the operating system was built by a programmer who
had no formal training: it contained a subtle race condition which
allowed a technician to accidentally fire the electron beam in high-
power mode without the proper patient shielding.

In at least 6 incidents patients were accidentally administered lethal or
near lethal doses of radiation - approximately 100 times the intended
dose. At least five deaths are directly attributed to it, with others

seriously injured.

*An investigation of the Therac-25 accidents, by Nancy Leveson and Clark Turner
(1993).

Costly concurrency errors (#3)

Mars Rover “Spirit” was nearly lost not long after
landing due to a lack of memory management
and proper co-ordination among processes

Costly concurrency errors (#3)

— a six-wheeled driven, four-wheeled steered vehicle designed by NASA to
navigate the surface of Mars in order to gather videos, images, samples and
other possible data about the planet.

— Problems with interaction between concurrent tasks
caused periodic software resets reducing availability for
exploration.

