Section 5: More Parallel
Algorithms

Michelle Kuttel
mkuttel@cs.uct.ac.za

The prefix-sum problem

Given int[] input, produce int[] output where
output[i] isthesumof input[0]+input[1]+..
+input[i]

Sequential can be a CS1 exam problem:

int[] prefix sum(int[] input) {
int[] output = new int[input.length];
output [0] = input[0];

for(int 1=1; 1 < 1nput.length; 1++)
output[i] = output[i-1l]+inputli];
return output;

}

Does not seem parallelizable
— Work: O(n), Span: O(n)
— This algorithm is sequential, but a different algorithm has Work:
O(n), Span: O(1og n)

Parallel prefix-sum

* The parallel-prefix algorithm does two passes
— Each pass has O(n) work and O(1og n) span
— Soin total there is O(n) work and O(1og n) span

— So just like with array summing, the parallelism is n/log n,
an exponential speedup

* The first pass builds a tree bottom-up: the “up” pass

 The second pass traverses the tree top-down: the
“down” pass

Historical note:

— Original algorithm due to R. Ladner and M. Fischer at the
University of Washington in 1977

range 0,8
Example sum 76
fromleft
range 0,4 range 4,8
sum 36 sum 40
fromleft fromleft
range 0,2 range 2,4 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft fromleft fromleft fromleft
r 0,1 r 1,2 r 2,3 r 3,4 r 4,5 r 56 r 6,7 r 7.8
S 6 S 4 S 16 s 10 S 16 s 14 s 2 s 8
f f f f f f f f
input 6 4 16 10 16 14 pi 8
output

range 0,8
Example um 76
fromleft 0
range 0,4 range 4,8
sum 36 sum 40
fromleft 0O fromleft 36
range 0,2 range 2,4 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft O fromleft 10 fromleft 36 fromleft 66
r 0,1 r 1,2 r 2,3 r 3,4 r 4,5 r 56 r 6,7 r 7.8
S 6 4 S 16 s 10 S 16 S 14 s 2 S 8
f O 6 f 10 f 26 f 36 f 52 f 66 f 68
input 6 4 16 10 16 14 2 8
output 6 10 26 36 52 66 68 76

The algorithm, part 1

1. Up: Build a binary tree where
— Root has sum of the range [x, y)

— Ifanode has sum of [Lo,hi)and hi>1lo,
 Left child has sum of [1lo,middle)

 Right child has sum of [middle, hi)
A leaf has sum of [1,i+1), i.e., input[i]

This is an easy fork-join computation: combine results by
actually building a binary tree with all the range-sums

— Tree built bottom-up in parallel
— Could be more clever with an array, as with heaps

Analysis: O(n) work, O(1og n) span

The algorithm, part 2

2. Down: Pass down a value fromLeft
— Root given a fromLeft of O

— Node takes its fromLeft value and
. Passes its left child the same fromLeft

. Passes its right child its fEromLe £t plus its left child’s sum (as stored in part
1)

— At the leaf for array position i, output[i]=fromLeft
+input[i]
This is an easy fork-join computation: traverse the tree built in step 1
and produce no result
— Leaves assigh to output
— Invariant: fromLeft is sum of elements left of the node’s range

Analysis: O(n) work, O(1og n) span

slide from: Sophomoric Parallelism and Concurrency, Lecture 3

Sequential cut-off

Adding a sequential cut-off is easy as always:

* Up:

just a sum, have leaf node hold the sum of a range

* Down:
output[lo] = fromLeft + input[lo];
for(i=lo+l; 1 < hi; i++)
output[i] = output[i-1] +
input[i]

Parallel prefix, generalized

Just as sum-array was the simplest example of a pattern that matches
many, many problems, so is prefix-sum

* Minimum, maximum of all elements to the left of i

Is there an element to the left of i satisfying some property?

Count of elements to the left of i satisfying some property
— This last one is perfect for an efficient parallel pack...
— Perfect for building on top of the “parallel prefix trick”

We did an inclusive sum, but exclusive is just as easy

Pack

[Non-standard terminology]

Given an array input, produce an array output containing only
elements such that £ (elt) is true inthe same order...

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f: is elt > 10
output [17, 11, 13, 19, 24]

Parallelizable?
— Finding elements for the output is easy
— But getting them in the right place seems hard

Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, O, 0, 0, 1,0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output
output [17, 11, 13, 19, 24]

output = new array of size bitsum/[n-1]
FORALL (1=0; 1 < 1nput.length; 1i++) {
1if(bits[1]==1)
output[bitsum[1]-1] = input[i];

Pack comments

First two steps can be combined into one pass
— Just using a different base case for the prefix sum
— No effect on asymptotic complexity

Can also combine third step into the down pass of the prefix sum
— Again no effect on asymptotic complexity

Analysis: O(n) work, O(1og n) span
— 2 or 3 passes, but 3 is a constant

Parallelized packs will help us parallelize quicksort...

Quicksort review

Very popular sequential sorting algorithm that performs well
with an average sequential time complexity of O(nlogn).

— First list divided into two sublists.

e All the numbers in one sublist arranged to be smaller
than all the numbers in the other sublist.

Achieved by first selecting one number, called a pivot, against
which every other number is compared.

— If the number is less than the pivot, it is placed in one
sublist. Otherwise, it is placed in the other sublist.

Quicksort review

sequential, in-place, expected time O(n 1og n)

Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort Aand C 2T(n/2)

How should we parallelize this?

Quicksort

Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort Aand C 2T(n/2)

Easy: Do the two recursive calls in parallel
* Work: unchanged, of course, O(n log n)
* Span: Now T(n) = O(n) + 1T(n/2) = O(n)
* So parallelism (i.e., work / span) is O(log n)

Naive Parallelization of Quicksort

Unsorted list

Pivot
\|‘4 7181(5] 1
3 4| |5
/ \
2 4115
'
1 3

@

& © © &

16

Parallelizing Quicksort

With the pivot being withheld in processes:

Pivot Unsorted list
Tal2|7|8|5]|1]3]|6 (4)
y \
3121 5/7|8/|6 (3)
' \

1| 2 718|6 (1) (D)
, ‘o \ [\
z A @ ®®

Sorted list Pivots

17

Analysis

 Fundamental problem with all tree constructions — initial
division done by a single thread, which will seriously limit

speed.

* Tree in quicksort will not, in general, be perfectly

balanced
— Pivot selection very important to make quicksort operate fast.

Doing better

* O(log n) speed-up with an infinite number of processors is
okay, but a bit underwhelming

— Sort 10°? elements 30 times faster

* Google searches strongly suggest quicksort cannot do
better because the partition cannot be parallelized

— The Internet has been known to be wrong ©
— But we need auxiliary storage (no longer in place)

— In practice, constant factors may make it not worth it, but
remember Amdahl’s Law

* Already have everything we need to parallelize the
partition...

Parallel partition (not in place)

Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

This is just two packs!

— We know a pack is O(n) work, O(1og n) span

— Pack elements less than pivot into left side of aux array

— Pack elements greater than pivot into right size of aux array
— Put pivot between them and recursively sort

— With a little more cleverness, can do both packs at once but no
effect on asymptotic complexity

With O(1og n) span for partition, the total span for quicksort is

T(n) =0(log n)+1T(n/2)=0(log? n)

Hence the available parallelism is proportional to
nlog n/log?n=n/logn
an exponential speed-up.

Example

e Step 1: pick pivot as median of three

814 |9(0[3|5|2]|7]|6

e Steps 2a and 2c (combinable): pack less than, then pack greater than
into a second array

— Fancy parallel prefix to pull this off not shown

114103152

1141035 |2|6[8]9|7

_'_I_'_I

e Step 3: Two recursive sorts in parallel

— Can sort back into original array (like in mergesort)

