Section 5: More Parallel
Algorithms

Michelle Kuttel
mkuttel@cs.uct.ac.za



The prefix-sum problem

Given int[] input, produce int[] output where
output[i] isthesumof input[0]+input[1]+..
+input[i]

Sequential can be a CS1 exam problem:

int[] prefix sum(int[] input) {
int[] output = new int[input.length];
output [0] = input[0];

for(int 1=1; 1 < 1nput.length; 1++)
output[i] = output[i-1l]+inputli];
return output;

}

Does not seem parallelizable
— Work: O(n), Span: O(n)
— This algorithm is sequential, but a different algorithm has Work:
O(n), Span: O(1og n)



Parallel prefix-sum

* The parallel-prefix algorithm does two passes
— Each pass has O(n) work and O(1og n) span
— Soin total there is O(n) work and O(1og n) span

— So just like with array summing, the parallelism is n/log n,
an exponential speedup

* The first pass builds a tree bottom-up: the “up” pass

 The second pass traverses the tree top-down: the
“down” pass

Historical note:

— Original algorithm due to R. Ladner and M. Fischer at the
University of Washington in 1977
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The algorithm, part 1

1. Up: Build a binary tree where
— Root has sum of the range [x, y)

— Ifanode has sum of [Lo,hi)and hi>1lo,
 Left child has sum of [1lo,middle)

 Right child has sum of [middle, hi)
A leaf has sum of [1,i+1), i.e., input[i]

This is an easy fork-join computation: combine results by
actually building a binary tree with all the range-sums

— Tree built bottom-up in parallel
— Could be more clever with an array, as with heaps

Analysis: O(n) work, O(1og n) span



The algorithm, part 2

2. Down: Pass down a value fromLeft
— Root given a fromLeft of O

— Node takes its fromLeft value and
. Passes its left child the same fromLeft

. Passes its right child its fEromLe £t plus its left child’s sum (as stored in part
1)

— At the leaf for array position i, output[i]=fromLeft
+input[i]
This is an easy fork-join computation: traverse the tree built in step 1
and produce no result
— Leaves assigh to output
— Invariant: fromLeft is sum of elements left of the node’s range

Analysis: O(n) work, O(1og n) span

slide from: Sophomoric Parallelism and Concurrency, Lecture 3



Sequential cut-off

Adding a sequential cut-off is easy as always:

* Up:

just a sum, have leaf node hold the sum of a range

* Down:
output[lo] = fromLeft + input[lo];
for(i=lo+l; 1 < hi; i++)
output[i] = output[i-1] +
input[i]



Parallel prefix, generalized

Just as sum-array was the simplest example of a pattern that matches
many, many problems, so is prefix-sum

* Minimum, maximum of all elements to the left of i

Is there an element to the left of i satisfying some property?

Count of elements to the left of i satisfying some property
— This last one is perfect for an efficient parallel pack...
— Perfect for building on top of the “parallel prefix trick”

We did an inclusive sum, but exclusive is just as easy



Pack

[Non-standard terminology]

Given an array input, produce an array output containing only
elements such that £ (elt) is true inthe same order...

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f: is elt > 10
output [17, 11, 13, 19, 24]

Parallelizable?
— Finding elements for the output is easy
— But getting them in the right place seems hard



Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, O, 0, 0, 1,0, 1, 1, 0, 1]

2. Parallel-prefix sum on the bit-vector
bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3. Parallel map to produce the output
output [17, 11, 13, 19, 24]

output = new array of size bitsum/[n-1]
FORALL (1=0; 1 < 1nput.length; 1i++) {
1if(bits[1]==1)
output[bitsum[1]-1] = input[i];



Pack comments

First two steps can be combined into one pass
— Just using a different base case for the prefix sum
— No effect on asymptotic complexity

Can also combine third step into the down pass of the prefix sum
— Again no effect on asymptotic complexity

Analysis: O(n) work, O(1og n) span
— 2 or 3 passes, but 3 is a constant

Parallelized packs will help us parallelize quicksort...



Quicksort review

Very popular sequential sorting algorithm that performs well
with an average sequential time complexity of O(nlogn).

— First list divided into two sublists.

e All the numbers in one sublist arranged to be smaller
than all the numbers in the other sublist.

Achieved by first selecting one number, called a pivot, against
which every other number is compared.

— If the number is less than the pivot, it is placed in one
sublist. Otherwise, it is placed in the other sublist.



Quicksort review

sequential, in-place, expected time O(n 1og n)

Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort Aand C 2T(n/2)

How should we parallelize this?



Quicksort

Best / expected case work

1. Pick a pivot element O(1)
2. Partition all the data into: O(n)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot
3. Recursively sort Aand C 2T(n/2)

Easy: Do the two recursive calls in parallel
* Work: unchanged, of course, O(n log n)
* Span: Now T(n) = O(n) + 1T(n/2) = O(n)
* So parallelism (i.e., work / span) is O(log n)



Naive Parallelization of Quicksort

Unsorted list

Pivot
\|‘4 7181(5] 1
3 4| |5
/ \
2 4115
'
1 3

@

& © © &

16



Parallelizing Quicksort

With the pivot being withheld in processes:

Pivot Unsorted list
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Analysis

 Fundamental problem with all tree constructions — initial
division done by a single thread, which will seriously limit

speed.

* Tree in quicksort will not, in general, be perfectly

balanced
— Pivot selection very important to make quicksort operate fast.



Doing better

* O(log n) speed-up with an infinite number of processors is
okay, but a bit underwhelming

— Sort 10°? elements 30 times faster

* Google searches strongly suggest quicksort cannot do
better because the partition cannot be parallelized

— The Internet has been known to be wrong ©
— But we need auxiliary storage (no longer in place)

— In practice, constant factors may make it not worth it, but
remember Amdahl’s Law

* Already have everything we need to parallelize the
partition...



Parallel partition (not in place)

Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

This is just two packs!

— We know a pack is O(n) work, O(1og n) span

— Pack elements less than pivot into left side of aux array

— Pack elements greater than pivot into right size of aux array
— Put pivot between them and recursively sort

— With a little more cleverness, can do both packs at once but no
effect on asymptotic complexity

With O(1og n) span for partition, the total span for quicksort is

T(n) =0(log n)+1T(n/2)=0(log? n)

Hence the available parallelism is proportional to
nlog n/log?n=n/logn
an exponential speed-up.



Example

e Step 1: pick pivot as median of three

814 |9(0[3|5|2]|7]|6

e Steps 2a and 2c (combinable): pack less than, then pack greater than
into a second array

— Fancy parallel prefix to pull this off not shown

114103152

1141035 |2|6[8]9|7

\_'_I\_'_I

e Step 3: Two recursive sorts in parallel

— Can sort back into original array (like in mergesort)



