Section 5: More Parallel Algorithms

Michelle Kuttel

mkuttel@cs.uct.ac.za

The prefix-sum problem

```
Given int[] input, produce int[] output where output[i] is the sum of input[0]+input[1]+... +input[i]
```

Sequential can be a CS1 exam problem:

```
int[] prefix_sum(int[] input) {
  int[] output = new int[input.length];
  output[0] = input[0];
  for(int i=1; i < input.length; i++)
    output[i] = output[i-1]+input[i];
  return output;
}</pre>
```

Does not seem parallelizable

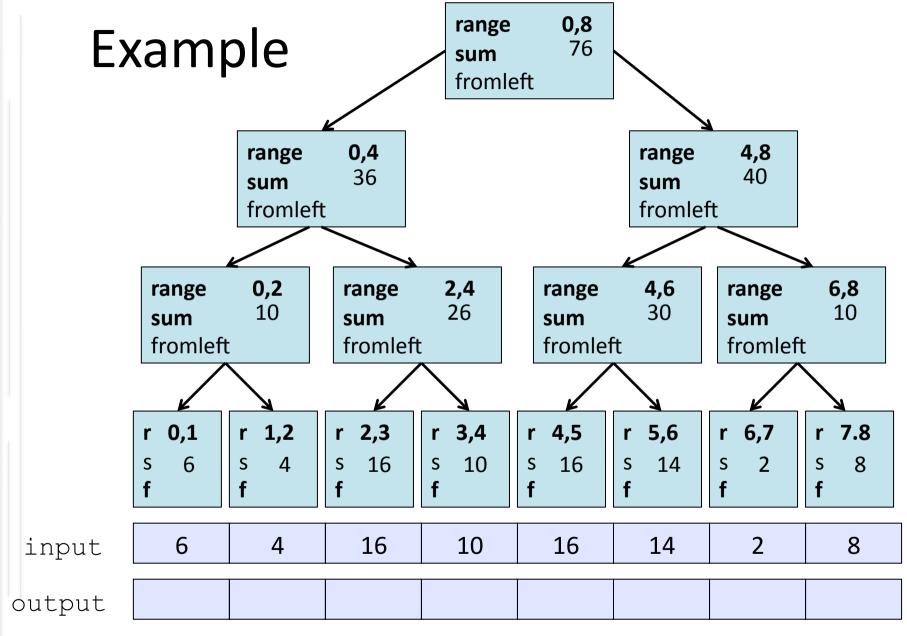
- Work: O(n), Span: O(n)
- This algorithm is sequential, but a different algorithm has Work: O(n), Span: $O(\log n)$

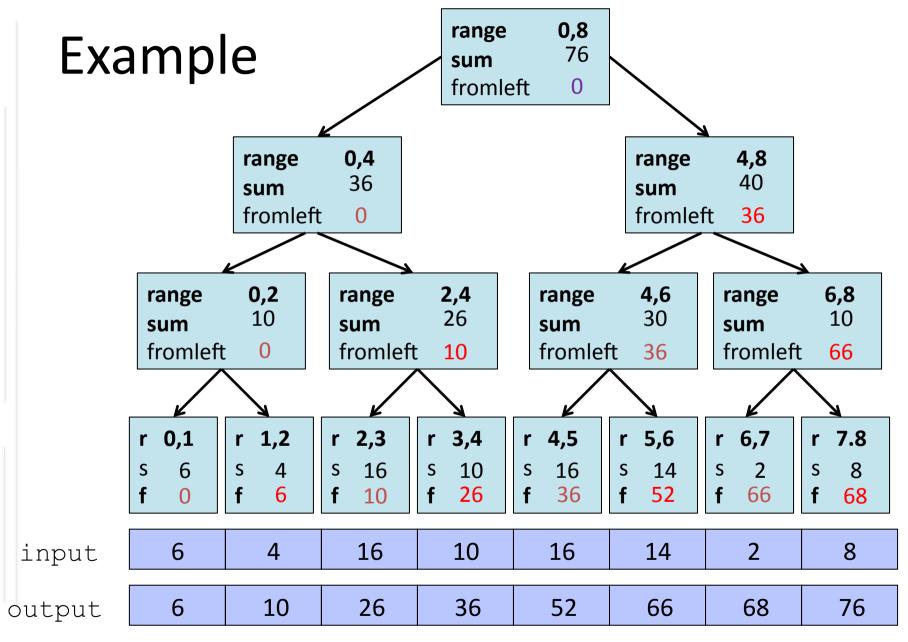
Parallel prefix-sum

- The parallel-prefix algorithm does two passes
 - Each pass has O(n) work and $O(\log n)$ span
 - So in total there is O(n) work and $O(\log n)$ span
 - So just like with array summing, the parallelism is $n/\log n$, an exponential speedup
- The first pass builds a tree bottom-up: the "up" pass
- The second pass traverses the tree top-down: the "down" pass

Historical note:

 Original algorithm due to R. Ladner and M. Fischer at the University of Washington in 1977





The algorithm, part 1

- 1. Up: Build a binary tree where
 - Root has sum of the range [x, y]
 - If a node has sum of [lo,hi) and hi>lo,
 - Left child has sum of [lo,middle)
 - Right child has sum of [middle, hi)
 - A leaf has sum of [i,i+1), i.e., input[i]

This is an easy fork-join computation: combine results by actually building a binary tree with all the range-sums

- Tree built bottom-up in parallel
- Could be more clever with an array, as with heaps

Analysis: O(n) work, $O(\log n)$ span

The algorithm, part 2

- 2. Down: Pass down a value fromLeft
 - Root given a fromLeft of 0
 - Node takes its fromLeft value and
 - Passes its left child the same fromLeft
 - Passes its right child its fromLeft plus its left child's sum (as stored in part
 1)
 - At the leaf for array position i, output[i]=fromLeft +input[i]

This is an easy fork-join computation: traverse the tree built in step 1 and produce no result

- Leaves assign to output
- Invariant: fromLeft is sum of elements left of the node's range

Analysis: O(n) work, $O(\log n)$ span

Sequential cut-off

Adding a sequential cut-off is easy as always:

 Up: just a sum, have leaf node hold the sum of a range

Down:

```
output[lo] = fromLeft + input[lo];
for(i=lo+1; i < hi; i++)
   output[i] = output[i-1] +
input[i]</pre>
```

Parallel prefix, generalized

Just as sum-array was the simplest example of a pattern that matches many, many problems, so is prefix-sum

- Minimum, maximum of all elements to the left of i
- Is there an element to the left of i satisfying some property?
- Count of elements to the left of i satisfying some property
 - This last one is perfect for an efficient parallel pack...
 - Perfect for building on top of the "parallel prefix trick"
- We did an *inclusive* sum, but *exclusive* is just as easy

Pack

[Non-standard terminology]

Given an array input, produce an array output containing only elements such that f(elt) is true in the same order...

```
Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
    f: is elt > 10
    output [17, 11, 13, 19, 24]
```

Parallelizable?

- Finding elements for the output is easy
- But getting them in the right place seems hard

Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

- Parallel-prefix sum on the bit-vector
 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]
- 3. Parallel map to produce the output output [17, 11, 13, 19, 24]

```
output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++) {
  if(bits[i]==1)
   output[bitsum[i]-1] = input[i];
}</pre>
```

Pack comments

- First two steps can be combined into one pass
 - Just using a different base case for the prefix sum
 - No effect on asymptotic complexity
- Can also combine third step into the down pass of the prefix sum
 - Again no effect on asymptotic complexity
- Analysis: O(n) work, $O(\log n)$ span
 - 2 or 3 passes, but 3 is a constant
- Parallelized packs will help us parallelize quicksort...

Quicksort review

- Very popular sequential sorting algorithm that performs well with an average sequential time complexity of O(nlogn).
 - First list divided into two sublists.
 - All the numbers in one sublist arranged to be smaller than all the numbers in the other sublist.
- Achieved by first selecting one number, called a pivot, against which every other number is compared.
 - If the number is less than the pivot, it is placed in one sublist. Otherwise, it is placed in the other sublist.

Quicksort review

sequential, in-place, expected time $O(n \log n)$

Best / expected case work

1. Pick a pivot element

O(1)

2. Partition all the data into:

O(n)

- A. The elements less than the pivot
- B. The pivot
- C. The elements greater than the pivot
- 3. Recursively sort A and C

2T(n/2)

How should we parallelize this?

Quicksort

Best / expected case work

1. Pick a pivot element

O(1)

2. Partition all the data into:

O(n)

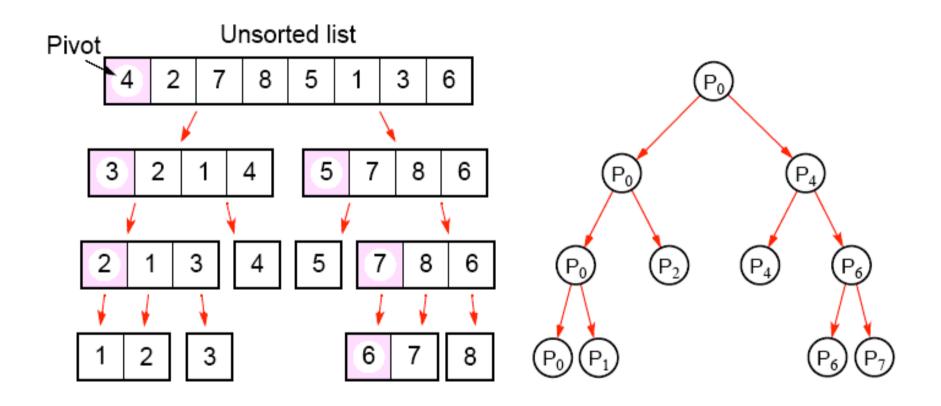
- A. The elements less than the pivot
- B. The pivot
- C. The elements greater than the pivot
- 3. Recursively sort A and C

2T(n/2)

Easy: Do the two recursive calls in parallel

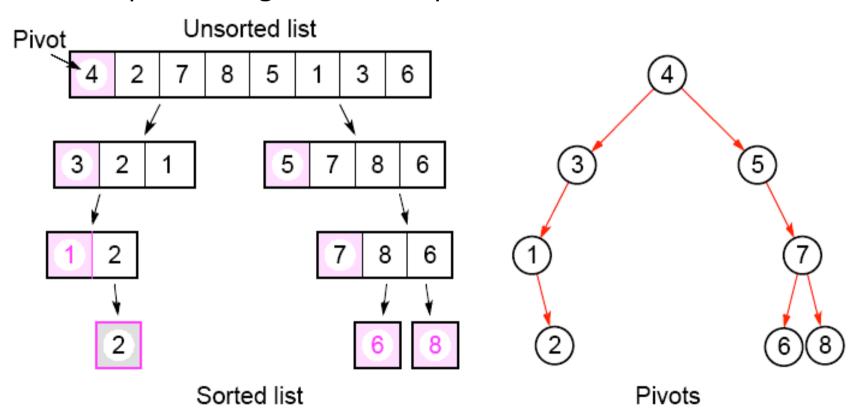
- Work: unchanged, of course, O(n log n)
- Span: Now T(n) = O(n) + 1T(n/2) = O(n)
- So parallelism (i.e., work / span) is O(log n)

Naïve Parallelization of Quicksort



Parallelizing Quicksort

With the pivot being withheld in processes:



Analysis

- Fundamental problem with all tree constructions initial division done by a single thread, which will seriously limit speed.
- Tree in quicksort will not, in general, be perfectly balanced
 - Pivot selection very important to make quicksort operate fast.

Doing better

- $O(\log n)$ speed-up with an infinite number of processors is okay, but a bit underwhelming
 - Sort 10⁹ elements 30 times faster
- Google searches strongly suggest quicksort cannot do better because the partition cannot be parallelized
 - The Internet has been known to be wrong ©
 - But we need auxiliary storage (no longer in place)
 - In practice, constant factors may make it not worth it, but remember Amdahl's Law
- Already have everything we need to parallelize the partition...

Parallel partition (not in place)

Partition all the data into:

- A. The elements less than the pivot
- B. The pivot
- C. The elements greater than the pivot
- This is just two packs!
 - We know a pack is O(n) work, $O(\log n)$ span
 - Pack elements less than pivot into left side of aux array
 - Pack elements greater than pivot into right size of aux array
 - Put pivot between them and recursively sort
 - With a little more cleverness, can do both packs at once but no effect on asymptotic complexity
- With $O(\log n)$ span for partition, the total span for quicksort is $T(n) = O(\log n) + 1T(n/2) = O(\log^2 n)$
- Hence the available parallelism is proportional to

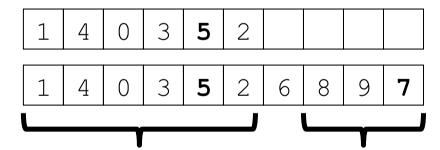
n
$$\log n/\log^2 n = n/\log n$$

an exponential speed-up.

Example

Step 1: pick pivot as median of three

- Steps 2a and 2c (combinable): pack less than, then pack greater than into a second array
 - Fancy parallel prefix to pull this off not shown



- Step 3: Two recursive sorts in parallel
 - Can sort back into original array (like in mergesort)