Processes and Threads and how
it is done in Java

Michelle Kuttel
mkuttel@cs.uct.ac.za

Origin of term process

originates from operating systemes.

a unit of resource allocation both for CPU time
and for memory.

A process is represented by its code, data and the
state of the machine registers.

The data of the process is divided into global
variables and local variables, organized as a stack.

Generally, each process in an operating system
has its own address space and some special
action must be taken to allow different processes
to access shared data.

Process memory model

graphic: www.Intel-Software-Academic-Program.com

Origin of term thread

The traditional operating system process has a single
thread of control — it has no internal concurrency.

e With the advent of shared memory multiprocessors,
operating system designers catered for the
requirement that a process might require internal

concurrency by providing lightweight processes or
threads.

* “thread of control”

* Modern operating systems permit an operating system
process to have multiple threads of control.

* |n order for a process to support multiple (lightweight)
threads of control, it has multiple stacks, one for each
thread.

Thread memory model

graphic: www.Intel-Software-Academic-Program.com

What is a parallel program?

A sequential program has a single thread of control
A parallel program has multiple threads of control

— can perform multiple computations in parallel
— can control multiple simultaneous external activities

— threads from the same process share memory (data
and code).

— They can communicate easily, but it's dangerous if
you don't protect your variables correctly.

Sequential Computation

thread
Cnemory
¢
-l -}-QCD -
-

_

Art of Multiprocessor
Programming

Concurrent Computation

Art of Multiprocessor
Programming

Asynchrony

— Page faults (long)
— Scheduling quantum used up (really long)

-_— e e e - - O S S S S S DS DS DS DS D D D DS e e e e ..

Art of Multiprocessor
Programming

~_—_—_—_’

Model Summary

Multiple threads
— Sometimes called processes (!!)

Single shared memory
Objects live in memory

Unpredictable asynchronous delays (arbitrary
speed)

Interleaving (arbitrary order)

Concurrency Jargon

e Hardware
— Processors

e Software
— Threads, processes

e Sometimes OK to confuse them, sometimes
not.

Parallel execution

Parallel execution does not require multiple processors:

Interleaving the instructions from multiple processes
on a single processor can be used to simulate
concurrency, giving the illusion of parallel execution.

called pseudo-concurrent execution since instructions
from different processes are not executed at the same
time, but are interleaved.

it is usual to have more active processes than processors.
In this case, the available processes are switched

between Processors.

Java Threads -1

Java has had support for threads since its very
beginning

at first, low-level approach with interrupt,
join and sleep methods

also notify and wait methods

However, the threading constructs have undergone
modification since the start.

In particular, several dangerous constructs have
been deprecated (dropped from the language)

e.g. Thread deprecated stop and suspend
methods.

Java Threads - 2

Java 1.5 provided a higher level framework

* an extensive library of concurrency constructs:
java.util.concurrent

e threading simpler, easier and less-error prone
way.

Java Threads — 3
Fork/Join framework

Java SE 7 introduced the Fork/Join framework

* desighed to make divide-and-conquer
algorithms easy to parallelize

Basic Threads in Java

We will first learn some basics built into Java via
java.lang.Thread

—operations to create and initialize basic threads and
control their execution

Then move on to a better library for parallel
programming.

Java Threads

The Java Virtual Machine

— executes as a process under some operating
system

— supports multiple threads.

Each Java thread has its own local variables
organized as a stack and threads can access
shared variables.

Basic Threads in Java

A Thread class manages a single sequential thread of
control. Threads may be created and deleted

dynamically.

Thread

run()

i

MyThread

run()

Thread class executes instructions from its
method run(). The actual code executed
depends on the implementation provided for
run() in a derived class.

class MyThread extends Thread ({
public void run() {

/[/......
}
}

Creating a thread object:
Thread a = new MyThread() ;

Basic Threads in Java

Since Java does not permit multiple inheritance,
it is sometimes more convenient to implement
the run() method in a class not derived from
Thread but from the interface Runnable

Basic Threads in Java

————————— | target
Runnable ¥ Thread

|
run() : public interface Runnable {
| public abstract void run();

MyRun class MyRun implements Runnable {

public void run() {

//.....

}
}

Creating a thread object:
Thread b = new Thread(new MyRun()) ;

Basic Threads in Java

So, there are two ways to create a basic thread
In Java:

* Implement the Runnable interface
(java.lang.Runnable)

* Extend the Thread class (java.lang.Thread)

Java Threads

Allocation and construction of a Thread object
do not cause the thread to run.

To get a new thread running:

1. Define a subclass C of
java.lang.Thread, overriding run

2. Create an object of class C
3. Call that object’s start method

* Not run, which would just be a normal method call
 start sets off a new thread, using run as its “main”

thread life-cycle in Java

An overview of the life-cycle of a thread as state transitions:

start() causes the thread to call

‘Q Thread () its run() method.

[Created] start()(Alive]

run() returns

Terminated
The predicate isAlive() can be]
used to test if a thread has been started
but not terminated. Once terminated, it
cannot be restarted.

thread alive states in Java

Once started, an alive thread has a number of substates :

running
&
< = {@s
P %) D
) = g
= S
Q. S
& >
iti > runnable i iti
waiting J notify ()l interval timed waiting

J . \
expires /

(p]
o
rr
c
(p]
o}
/)]
[created] [terminated]

_

start ()

Deprecated thread primitives

Most of the time we allow threads to stop by running to
completion
Sometimes we want to stop threads sooner, e.g. when
— user cancels operation
— application needs to shutdown quickly

* Not easy to get threads to stop safely, quickly and reliably
— Thread.stop and Thread.suspend were an attempt at doing this
— now deprecated, as too dangerous

— Java does not now provide any mechanism for forcing a thread
to stop
* instead, ask the thread to stop what it is doing

* Will discuss this further later, when we talk about safety
and deadlock

java.sun.com/j2se/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html

Here is a complete example of a useless Java program that starts with one thread
and then creates 20 more threads:

class C extends java.lang.Thread {
int i;
C(int i) { this.i = i; }
public void run() {
System.out.println("Thread " + i +
System.out.println("Thread " + i +

" says hi");
says bye");

}

class M {
public static void main(String[] args) {
for(int i=1; i <= 20; ++i) {
C ¢ = new C(1i);
c.start();

}

When this program runs, it will print 40 lines of output, one of which is:
Thread 13 says hi

Non-determinism

Concurrent programs are often non-
deterministic:

it is not possible to tell, by looking at the
program, what will happen when it executes.

Concurrent execution

In sequential programs, instructions are
executed in a fixed order determined by the
program and its input. The execution of one
procedure does not overlap in time with
another. Deterministic

In concurrent programs, computational activities
may overlap in time and the subprogram
executions describing these activities proceed
concurrently. Nondeterministic

Simple example of a non-deterministic
program

Thread A: Thread B:
print “A” print “1”
print “B” print “2”

What is the output?

Parallelism idea

 Example: Sum elements of a large array
* |dea: Have 4 threads simultaneously sum 1/4 of the array
— Warning: Inferior first approach

ansO(nsl ans2

— Create 4 thread objects, each given a portion of the work

— Call start () on each thread object to actually run it in parallel
— Wait for threads to finish using join ()

— Add together their 4 answers for the final result

slide from: Sophomoric Parallelism and Concurrency, Lecture 1

First attempt, part 1

class SumThread extends java.lang.Thread {
int lo; // arguments
int hi;
int[] arr;

int ans = 0; // result

SumThread (int[] a, int 1, int h) {
lo=1; hi=h; arr=a;
}

public void run () //override must have this type
for(int i=lo; 1 < hi; 1++)
ans += arr[i];

Because we must override a no-arguments/no-result run, we use fields
to communicate across threads

Sophomoric Parallelism and

31 Concurrency, Lecture 1

First attempt, continued (wrong)

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // arguments

int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ ... } // override
}
int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i1i=0; i < 4; i++) // do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+1l) *len/4) ;

for(int 1i=0; i < 4; i++) // combine results
ans += ts[i].ans;
return ans;

Sophomoric Parallelism and

32 Concurrency, Lecture 1

First attempt, continued (wrong)

class SumThread extends java.lang.Thread {

int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ .. } // override
}
WHAT IS WRONG?
int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++) // do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+1l) *len/4) ;

for(int 1i=0; i < 4; i++) // combine results
ans += ts[i].ans;
return ans;

Sophomoric Parallelism and

33 Concurrency, Lecture 1

Second attempt (still wrong)

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // arguments

int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ ... } // override
}
int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int 1=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4, (i+1l) *len/4) ;

ts[i].start(); // start not run

}

for (int i=0; i < 4; i++) // combine results
ans += ts[i].ans;
return ans;

Sophomoric Parallelism and

34 Concurrency, Lecture 1

Basic Fork-Join parallelism

* The only synchronization primitive we will
need is Join, which causes one thread to
wait until another thread has terminated.

Third attempt (correct in spirit)

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // arguments

int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ .. } // override
}
int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for (int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread (arr,i*len/4, (i+1l) *len/4) ;

ts[i].start () ;

}

for (int 1=0; 1 < 4; i++) { // combine results
ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

}

return ans;

Sophomoric Parallelism and
Concurrency, Lecture 1

36

Join (not the most descriptive word)

 The Thread class defines various methods you could not
implement on your own

— For example: start, which calls run in a new thread

* The join method is valuable for coordinating this kind of
computation

— Caller blocks until/unless the receiver is done executing
(meaning its run returns)

— Else we would have a race condition on ts[i] .ans
* This style of parallel programming is called “fork/join”

* Java detail: code has 1 compile error because join may
throw java.lang.InterruptedException

— In basic parallel code, should be fine to catch-and-exit

Shared memory?

Fork-join programs (thankfully) don’t require much focus
on sharing memory among threads

But in languages like Java, there is memory being shared.
In our example:

— lo, hi, arr fields written by “main” thread, read by helper
thread

— ans field written by helper thread, read by “main” thread

When using shared memory, you must avoid race
conditions

— While studying parallelism, we’ll stick with join

— With concurrency, we’ll learn other ways to synchronize

A better approach

Several reasons why this is a poor parallel algorithm

1. Want code to be reusable and efficient across platforms
— “Forward-portable” as core count grows

— So at the very least, parameterize by the number of threads

int sum(int[] arr, int numThreads) {
: // note: shows idea, but has integer-division bug
int sublLen = arr.length / numThreads;
SumThread[] ts = new SumThread[numThreads];
for (int 1=0; 1 < numThreads; i++) {

ts[1] = new SumThread (arr,i*sublen, (i+1) *subLen) ;
ts[i].start () ;

}

for(int 1=0; i1 < numThreads; i++) {

-

Sophomoric Parallelism and
39
Concurrency, Lecture 1

A Better Approach

2. Want to use (only) processors “available to you now”

— Not used by other programs or threads in your program
Maybe caller is also using parallelism
* Available cores can change even while your threads run

— If you have 3 processors available and using 3 threads would
take time X, then creating 4 threads would take time 1. 5X

// numThreads == numProcessors 1s bad
// if some are needed for other things
int sum(int[] arr, int numThreads) {

}

A Better Approach

3. Though unlikely for sum, in general subproblems
may take significantly different amounts of time

— Example: Apply method £ to every array element, but
maybe £ is much slower for some data items

e Example: Is a large integer prime?

— |f we create 4 threads and all the slow data is processed
by 1 of them, we won’t get nearly a 4x speedup
* Example of a load imbalance

A Better Approach

The counterintuitive (?) solution to all these problems is to use lots
of threads, far more than the number of processors

— But this will require changing our algorithm
— And for constant-factor reasons, abandoning Java’s threads

L T T T P T L LT LT

ans0 &sl\ //ansN

ans

Forward-portable: Lots of helpers each doing a small piece
Processors available: Hand out “work chunks” as you go

 If 3 processors available and have 100 threads, then ignoring
constant-factor overheads, extra time is < 3%

Load imbalance: No problem if slow thread scheduled early enough
e Variation probably small anyway if pieces of work are small

Sophomoric Parallelism and

42 Concurrency, Lecture 1

Naive algorithm is poor
Suppose we create 1 thread to process every 1000 elements

int sum(int[] arr) {

Int numThreads

arr.length / 1000;
SumThread[] ts

new SumThread[numThreads];

Then combining results will have arr.length / 100 additionsto
do —still linear in size of array

In fact, if we create 1 thread for every 1 element, we recreate a
sequential algorithm

A better idea

INENENENENERENENENENENERENENENENENERENENNNNNENED
i

\/ N/ N/ N/ N/

~, ~, ~, N
\+ - \+ -
—_

This is straightforward to implement using divide-and-conquer
— Parallelism for the recursive calls

Sophomoric Parallelism and

a4 Concurrenc y, Lecture 1

Divide-and-conquer to the rescue!

class SumThread extends java.lang.Thread {
int lo; int hi; int[] arr; // arguments
int ans = 0; // result
SumThread (int[] a, int 1, int h) { .. }
public void run(){ // override
1f(hi - lo < SEQUENTIAL CUTOFF)
for(int i=lo; 1 < hi; i++)
ans += arr[i];
else {
SumThread left = new SumThread(arr,lo, (hi+lo)/2);
SumThread right= new SumThread (arr, (hi+lo)/2,hi);
left.start () ;
right.start ()

left.join(); // don’t move this up a line - why?
right.join () ;
ans = left.ans + right.ans;
}
}
}
int sum(int[] arr) {
SumThread t = new SumThread(arr,0,arr.length);

t.run () ;
return t.ans;

Loricurrericy, Lecuure 1

Divide-and-conquer really works

* The key is divide-and-conquer parallelizes the result-combining

— If you have enough processors, total time is height of the tree: O(1log
n) (optimal, exponentially faster than sequential O(n))

— Next lecture: study reality of P << n processors

* Will write all our parallel algorithms in this style

— But using a special library engineered for this style
* Takes care of scheduling the computation well

— Often relies on operations being associative (like +)

INENENENENERENENENENENERENENENENENERENENNNNNENED
Py

N N NN/ + +
\+/ \+/ \+/ ~,
\-I-/ \-I-/
_

46 Sophomoric Parallelism and

Concurrency, Lecture 1

Being realistic

* |n theory, you can divide down to single elements, do all
your result-combining in parallel and get optimal
speedup

— Total time O(n/numProcessors + 1og n)

* |n practice, creating all those threads and
communicating swamps the savings, so:

— Use a sequential cutoff, typically around 500-1000

 Eliminates almost all the recursive thread creation (bottom
levels of tree)

* Exactly like quicksort switching to insertion sort for small
subproblems, but more important here
— Don’t create two recursive threads; create one and do the
other “yourself”
Cuts the number of threads created by another 2x

Half the threads

// wasteful: don’t // better: do
SumThread left .. SumThread left
SumThread right SumThread right

left.start () ; // order of next 4 lines
right.start () ; // essential - why?
left.join () ; left.start () ;

right.join () ; right.run();
ans=left.anst+right.ans; left.join () ;

ans=left.anst+right.ans;

* If alanguage had built-in support for fork-join parallelism, |
would expect this hand-optimization to be unnecessary

* But the library we are using expects you to do it yourself
— And the difference is surprisingly substantial
* Again, no difference in theory

Fewer threads pictorially

INENENENENERENENENENENERENENENENENERENENNNNNENED
PPy

VNS N N D

2 new 8 \+/ 9 \0\ /11 12\ A3 14~ /15
threads

7
at each step 4 \4./ > 6 \+/

do much work)

(and only leaves 5y T . 3
1

INENENENENERENENENENENERENENENENENERENENNNNNENED
Py

VNS N N D
1 new 5\+/3 6\/2 ~, 4 8\/1

thread 3 \ /2 4 \ 1
at each step , T— / .

Sophomoric Parallelism and

49 Concurrenc y, Lecture 1

That library, finally

Even with all this care, Java’s threads are too
“heavyweight”

— Constant factors, especially space overhead

— Creating 20,000 Java threads just a bad idea ®

The ForkJoin Framework is designed to meet the needs of
divide-and-conquer fork-join parallelism
— In the Java 7 standard libraries
* (Also available in Java 6 as a downloaded . jar file)
— Section will focus on pragmatics/logistics

— Similar libraries available for other languages
e C/C++: Cilk (inventors), Intel’s Thread Building Blocks

e C#: Task Parallel Library

— Library’s implementation is a fascinating but advanced topic

Different terms, same basic idea

To use the ForkJoin Framework:
e Alittle standard set-up code (e.g., create a ForkJoinPool)

Don’t subclass Thread Do subclass RecursiveTask<V>

Don’t override run Do override compute

Do not use an ans field Do return a V from compute
Don’t call start Do call fork

Don’t just call join Do call Join which returns answer

Don’t call run to hand-optimize Do call compute to hand-optimize
Don’t have a topmost call to run Do create a pool and call invoke

See the web page for
“A Beginner’s Introduction to the ForkJoin Framework”

Example: final version (missing imports)

class SumArray extends RecursiveTask<Integer> {
int lo; int hi; int[] arr; // arguments
SumArray (int[] a, int 1, int h) { .. }
protected Integer compute () {// return answer
1f(hi - lo < SEQUENTIAL CUTOFF) {
int ans = 0; -
for(int i=lo; 1 < hi; 1i++)
ans += arr[i];
return ans;
} else {
SumArray left = new SumArray(arr,lo, (hi+lo)/2);
SumArray right= new SumArray(arr, (hi+lo)/2,hi);
left.fork () ;
int rightAns = right.compute () ;
int leftAns = left.join();
return leftAns + rightAns;

}
) }
static final ForkJoinPool fjPool = new ForkJoinPool () ;
int sum(int[] arr) {
return f£jPool.invoke (new SumArray(arr,0,arr.length));

}

Sophomoric Parallelism and

o2 Concurrency, Lecture 1

Getting good results in practice

Sequential threshold

— Library documentation recommends doing approximately
100-5000 basic operations in each “piece” of your algorithm

Library needs to “warm up”

— May see slow results before the Java virtual machine re-optimizes
the library internals

— Put your computations in a loop to see the “long-term benefit”

Wait until your computer has more processors ©

— Seriously, overhead may dominate at 4 processors, but parallel
programming is likely to become much more important

Beware memory-hierarchy issues
— Won’t focus on this, but often crucial for parallel performance

