Visual Thinking

Visual Space

Depth

- Egocentric space consists of up-down, sideways and towards-away dimensions
- 2.5 dimensions
 - for every one of the million brain pixels recording up and sideways information, there is only, at best, one point of depth information
- depth cues are pictorial and non-pictorial

Depth

 When viewing a graphic, we simultaneously see the flat, 2D picture plane and the 3D picture space

Diego Rodríguez de Silva y Velázquez, Las Meninas, c. 1656, oil on canvas, 125 1/4 x 108 5/8 in. (Museo Nacional del Prado, Madrid)

Pictorial Depth Cues

- pictorial (or monocular) depth cues can be reproduced in a photograph or painting
 - defined by the projection of points on a plane
 - need only one eye to see them

Pictorial Depth Cues

- pictorial depth cues do not have to be defined in an all-or-nothing fashion: they can be applied according to goals of design
 - choice is **not 2D or 3D**, but **which** of the depth cues **to apply**
 - each have unique properties that support different kinds of visual query

Pictorial Depth Cues: Occlusion

strongest depth cue

- if placed in competition with another, such as size constancy, occlusion wins
- objects near to us block or visually occlude objects further away.
- an object that occludes another appears closer

Pictorial Depth Cues: Occlusion

- a **method** and **metaphor** for ranking ordered information
 - most important partially occlude less important
- very important to ensure that the occluded object can still be identified

Pictorial depth cues: Perspective

- Size gradients: more distant objects are smaller on the picture plane than similarly sized nearby objects
- visual metaphor for relative importance

advantage that less important information takes

up less space

Pictorial depth cues: Perspective

wordle tag cloud for "Biological components of sex differences in color preference Anya C. Hurlbert and Yazhu Ling

Pictorial depth cues: Perspective

- Texture gradients: texture elements reduce in size and increase in density with distance
- Provide a size reference for objects
- but usually less effective than a grid for making size judgements
- also, fine textures usually not reproduced on computer displays

Pictorial depth cues: Linear perspective

- Projections of parallel lines converge on the picture plane
- grid of parallel lines used often in 3D layouts of scientific objects to provide a reference plane for layout and size measurement

visualization of a severe supercell thunderstorm

Pictorial depth cues: Shading and Cast Shadows

 surface of objects reflect more or less light depending on how they are oriented to a light source

http://art.nmu.edu/

 The shadow cast by one object on another provides information about the distance between them

Pictorial depth cues: Height on the picture plane

Georges Seurat
A Sunday Afternoon on the Island of La
Grande Jatte
1884-86, oil on canvas

Pictorial depth cues: Depth of focus

- The human eye focuses objects at a specific distance:
 - objects closer or further away are blurred
 - degree of blur can be used to direct attention

Pictorial depth: reference to known objects

- objects of known size are a reference against which other objects are judged
 - absolute size
 - knowledge-based, but one of the most important cues to distance

We see the duck as closer than the elephant

http://art.nmu.edu/

Pictorial depth: Degree of contrast

 Because air and water are not completely transparent, the contrast between an object and its background is reduced as distance

"atmospheric perspective"

increases

http://art.nmu.edu/cognates/concepts/175_depthcues.html

Non-pictorial depth: stereoscopic depth

- Not captured in a static image
- V1 has mechanisms to extract small differences in images on two eyes to get distance information
- stereoscopic information is used for guiding our hands
- for objects at nearly the same depth

The diagram indicates a left and right eye. Both eyes converge on a box but due to retinal disparity, the angle of viewing is slightly different for each eye. The brain combines the two images to create the perception of a three-dimensional object.

Non-pictorial depth: stereoscopic depth

Non-pictorial depth: depth from motion

- better depth from steropsis
- brain takes advantage of series of views to interpret depth information

2.5 design

- treat depth very differently from other two dimensions:
 - depth cues used selectively to support design goals
 - objects laid out with minimum of occlusions minimize depth
 - ensure critical information not occluded use transparency where necessary
 - display text in the image plane

2D or 3D?

 when deciding whether as display should be 2D or 3D, the nature of what is displayed is very important:

- some data already has 3D spatial properties
 - architectural designs and physical and biological data

2D or 3D?

- many other kinds of data are not inherently spatial
 - business statistics, social networks, abstract concepts
- some people have tried to use three dimensional representations for these, with the justification that, as we live in a 3D world, 3D must be better than 2D

2D or 3D?

- BUT we don't perceive 3 dimensions
 - 2.5D or, more realistically, 2.05 D
- The cost of getting a good viewpoint in 3D is almost always higher than clicking to follow a hypertext link or zooming in 2 dimensions
- eye movements are the lowest cognitive cost method we have for getting information on our environment