Visual Apprehension

How we process visual information and what we can most easily see

Facilitating visual queries

- Visual attention works like a spotlight
- In a graphic or interface, you want to ensure that all visual queries can be rapidly and effectively served
- How do we design graphical symbols that can be rapidly located?
- The most important and frequent queries should be supported by the most visually distinct objects

Visual query illustration #1

In the following text, find the two p's

ahklhsdfasdgdramzxmxzcbkdkhjsdnnpksdfjzxnc xnfhagspdjgruioqweuyruywutsdbsmawqw

Now, find the two q's

Visual query illustration #1

Finding the p's is very easy

 Finding the q's takes much longer and imposes a much greater cognitive burden

Why do the q's take longer to find?

How humans do low-level feature analysis

 Early stages of visual processing occur in the primary visual cortex:

V1 : general scanning

V2 : stereo vision

V3 : depth and distance

- V4 : colour

– V5 : motion

V6 : objective position of object

object

"Where?" path: location of objects

- V1-V2-V3-V5-V6

"What?" path: identification of objects

- V1-V2-V4

How to find what you are looking for: biased competition

- If you are looking for a particular colour/ orientation/size of an object, the visual system highlights these
 - e.g. if looking for strawberries, all red sensitive cells will "shout louder"
- some things ρ^{0} much more easily than others

What makes objects **POP OUT**?

- Some kinds of shapes have properties to which our eye-movement programming system is sensitive – they pop out
 - can be seen in a single eye movement: at-a-glance
 - processing takes less than a tenth of a second
 - compare with between 1-5 seconds for a search
- easiest when single object differs in one feature from all the objects around it
 - to do with degree of contrast to the environment of the object

What makes objects pop out?

 Simplest features that lead to pop out are:

```
colour,
orientation
size
motion
stereoscopic depth
```


- V1 : general scanning
- V2 : stereo vision
- V3 : depth and distance
- V4:colour
- V5 : motion
- V6 : objective position of objects

What stands out: orientation

What stands out: sharpness

What stands out: joined lines

What stands out: misalignment

What stands out: colour

What stands out: shape

What stands out: size

What stands out: elongation

What stands out: motion

What stands out: surround colour

What stands out: spacial grouping

What stands out: convex and concave

What stands out: curvature

What stands out: surround box

What does not stand out: find the three orange squares

Visual conjunctive search

- Trying to find a target based on two features
 - most visual conjunctions are hard to see

Visual conjunctive search

Feature channels

The more the background varies in a particular feature channel

-- color, texture, orientation etc ---

the larger the difference in that channel required to make the feature distinct

Visual learning

Finding things quickly is not a matter of practice

 this can help with patterns, which are higher up the visual pathway

Visual learning

• e.g. find the 6 and the •

54789342507

10239874•14

32345023931

45677908122

12953709809

Lessons for design

- If you want to make something easy to find, make it different from its surroundings according to some primary visual channel – size colour etc.
- A design to support two different kinds of visual query will be most effective if each query uses a different channel

Design example 1#

Population Growth Rate

Divergence on one channel is good, but two channels can make a symbol more distinct

A set of symbol designed so **all** are independently searchable

Each differs from the others on more than one channel

attempt to produce seven symbols as distinct as possible

Limitations

- When we aim for pop-out, we only have about three difference steps available on each channel: 3 SiZeS, colours etc.
- Many kinds of visibility enhancements are not symmetric:
 - doubling size of a symbol has more an effect than halving size

Motion

- Motion in a special class by itself
 - because humans are prey....
 - ... we are much more sensitive to motion in our peripheral vision

- motion triggers an orientation response
 - strong with high frequency motion which can be irritating —

especially strong with things that emerge into the visual field

too much motion the worst form of visual pollution

Large scale structure

 Can help with visual search, but only if searcher already know where in the large structure a feature exists

