University of Cape Town - Department of Physics

Honours Computational Physics

TOPIC 1 - BASIC MONTE CARLO : RANDOM NUMBER GENERATORS

This worksheet accompanies the EJS simulation BasicMC_No1_RandomGeneratorTest.jar

Computers generate 'pseudo-random' numbers by some deterministic process. One example is the linear congruential generator that generates a sequence of pseudo-random numbers r_{1}, r_{2}, \ldots over the interval $[0, M-1]$ according to:

$$
r_{i+1}=\left(a r_{i}+c\right) \quad \bmod M,
$$

with r_{1} the seed (often supplied by the user) and a, c and M constants. Division of r_{i} by M then returns a result x_{i} in the interval $[0,1)$. In addition, most programming languages have built-in functions that return pseudo-random numbers, generated by more elaborate means, in the interval $[0,1$) (e.g. Math.random() in Java).
Before using a random number generator, one should test its quality. Suppose that we have a sequence $x_{1}, x_{2}, \ldots, x_{N}$ thought to be random and uniformly distributed over the interval $[0,1)$. The simplest test is simply to look for regularity in a scatter plot of $\left(x_{2 i}, x_{2 i+1}\right)$. One can also easily calculate the $k^{\text {th }}$ moment $\left\langle x^{k}\right\rangle$ of the sequence:

$$
\left\langle x^{k}\right\rangle \equiv \frac{1}{N} \sum_{i=1}^{N} x_{i}^{k},
$$

as well as the near-neighbour correlations in the sequence:

$$
C(l) \equiv \frac{1}{N-l} \sum_{i=1}^{N-l} x_{i} x_{i+l} \quad l=1,2,3, \ldots
$$

Task 1: Assuming a uniform and random distribution for x over $[0,1)$, show that:

$$
\left\langle x^{k}\right\rangle \simeq \frac{1}{k+1} \pm \frac{1}{\sqrt{N}} \sqrt{\frac{1}{2 k+1}-\left(\frac{1}{k+1}\right)^{2}} .
$$

Task 2: Assuming a uniform and random distribution for x over $[0,1)$, show that:

$$
C(l) \simeq \frac{1}{4} \pm \frac{1}{\sqrt{N-l}} \sqrt{\frac{1}{24}} .
$$

Questions:

1. Consider the linear congruential method using the unwise choice of $\left(a, c, M, r_{1}\right)=(57,1,256,10)$.
(a) Determine the period of the sequence.
(b) Consider the scatter plot of successive pairs as well as the moments and near-neighbour correlations. Do these indicate a poor generator?
2. Test the randomness and uniformity of Java's built-in random number generator by focusing on the $k^{\text {th }}$ moments for $k=1,3,7$ and $N=100,10000,100000$. Consider also the near-neighbour correlations with $l=1,5,10$ and $N=100,10000,100000$. Repeat this for the Mersenne Twister generator.
