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PREFACE 

Our objective has been to provide, in a systematic tutorial way, an intro-
duction to the field of sequential smoothing and prediction of numerical 
data. The areas of application lie almost anywhere that digital computers 
are in operation — data analysis, process control, operations research, missile 
guidance, satellite work and astronautics being but a few examples. 

Our ai5proach has been to assume that the quantities we are attempting to 
estimate are deterministic functions which have been observed or measured 
in the presence of additive random errors. The estimation of random 
variables is beyond the scope of this book although there is, of course, a very 
strong connection between the two areas. In our final chapter we touch 
very briefly on this problem. Nor are we concerned with the theory of 
numerical filtering in the frequency-domain.t 

The book commences with a review of necessary background material. 
This extends over the first six chapters and covers the essentials of numerical 
analysis, differential equations, perturbation methods, probability and statis-
tics and some basic ideas from estimation theory. Thereafter, the main 
contents are presented in three parts, entitled Fixed-Memory Filtering, 
Expanding-Memory Filtering and Fading-Memory Filtering. This division is 
a very natural one and provides an extremely systematic way in which to 
develop the ideas and techniques involved. 

We do not claim completeness in any of the areas discussed, nor do we 
claim rigor. The author is an engineer, trained as one by engineers and by 

tSee e.g. Kuo, F. and Kaiser, J. F., "System Analysis by Digital Computer," John Wiley & Sons, 
New York, 1966, Chapter 7. 
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Viii 	PREFACE 

applied mathematicians. Correctness and ease of understanding is what have 
been sought throughout and, above all, the needs of the reader entering this 
field for the first time, have been constantly kept in mind. 

There are actually two, essentially separable books, entwined in this 
volume. As a first reading, one could omit Chapters 8, 10, 11, 12, 14 and 
15. The material in Chapters 1 through 7, 9 and 13 forms a consistent 
introduction and covers the very basic area of polynomial estimators. The 
second reading could then include the slightly more advanced material in 
the remaining chapters, in which the ideas of polynomial estimation are 
generalized and extended to cover the area of state estimation of deterministic 
processes governed by arbitrary differential equations. 

Concerning the background expected of the reader, we assume that he is 
familiar with the material presented in a first course on linear algebra, and in 
a first course on probability or statistics. A review is given, in Chapter 5, of 
the necessary techniques in the latter, areas, but we do not formally review 
matrix theory in any one place, although from time to time helpful comments 
are inserted. Heavy use is made of matrix notation throughout the book, 
since any other approach would be utterly hopeless. However, the depth of 
proficiency called for in the area of matrix theory is very slight, knowledge 
being assumed in only the following areas: solvability of sets of linear 
equations, rank of a set of vectors and of a matrix, eigenvalues of a real 
symmetric matrix, quadratic forms, positive-definite and positive semidefinite 
matrices and congruence transformations. 

Every attempt has been made to keep the symbol. usage as simple as 
possible. This is perhaps not always accomplished, but it is hoped, at least, 
that consistency is maintained. A small mental investment on the part of 
the reader will be called for in this regard. 

We have numbered every equation, whether it is to be referenced or not. 
The symbol (3.2.5) refers to Chapter 3, Section 2, Equation 5. Likewise, 
the symbol [9.5] refers to the fifth reference cited at the end of the ninth 
chapter. 

The ideas presented in this book should perhaps best be thought of as the 
primary colors on an artist's palette — the onus is on the user to blend them 
correctly, in order to achieve the desired end-result. If we succeed in taking 
the reader along the first few steps of what is already a very old field — Gauss 
would have found very little new in this volume — then we will have 
accomplished our purpose. 

N. Morrison 
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PART 1 
BACKGROUND 

MATERIAL 

This book is divided into four parts. The first of these extends over 
Chapters 1 through 6, and is devoted to a presentation of background 
material. It constitutes the basis on which all of our subsequent discussion 
on smoothing and prediction will depend. 

Great care has been taken, wherever possible, to ensure that redundant 
material be left out, and only what was felt to be absolutely essential has 
been included. As a result, almost every equation that we develop in Part 
1 will be applied in the later parts of the book. 





INTRODUCTION 

Throughout this book we are primarily concerned with the estimation of 
deterministic functions of the real variable t, which is essentially the time 
variable. Of course t could be regarded in any other way and the resulting 
estimation procedures would still be valid in that context. However, since 
time is what we have in mind, we deliberately refrain from assuming that the 
entire t-axis is available to us at every stage. Rather, we shall assume that 
there exists a point called the present, which moves along the t-axis in a 
positively increasing direction, and only points to the left of the present, 
namely the past, are accessible to us. Points to the right of the present are 
the future, and become available only at the real-time rate at which the 
present moves along the t-axis and uncovers them. 

The functions, whose estimation we shall concern ourselves with, are 
supposed to be generated by what we term a process. Examples of processes 
are chemical reactions, bodies moving under the action of a force — in fact 
any system which is governed by a differential equation, whether linear or 
nonlinear. By assumption, the functions of interest will be continuous for 
all t, but we do not assume that their form is known. Instead we will 
suppose that we have some prior knowledge about the process, which enables 
us to construct a model of it, defined by a differential equation. 

Under ideal conditions the model will be identical to the true process, 
but in practice it is usually an approximation to it. The approximations may 
be either deliberate, in order to reduce the complexity of the equations, or 
else forced on us, by virtue of our inability to understand the true process 
completely. Estimation errors will arise because of discrepancies between 
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the model and the process, and we will consider these errors in greater 
detail in our discussion. 

Three successively more general types of model equations will be con-
sidered. Let X (t) be a vector of functions,t i.e. 

X( t) 

and define its time derivative as 

—d x0(t 
dt 

(-1-xi(t) 
—
d

X(t) = 	dt 
dt 

(1.2) 

—
d

x (t) 
dt m  

Then we write the three classes of differential equations as 

= AX (t) 	 (1.3) 

A(t)X(t) 	 (1.4) 

= F[X (t),t] 	 (1.5) 

d
X(t) 

dt 

d
X(t) 

dt 

—d
X(t) 

dt 

The vector X(t) is called the state-vector of the model and its components 
are known as the state-variables. In (1.3) X (t)t is seen to be related to X (t) 

tOur matrix and vector subscripts start from 0 and not from 1. This slight deviation from custo-
mary usage was motivated by the fact that derivatives start from the zeroth, degrees of polynomials 
start from zero and factorials start naturally from zero. These items appear frequently in the material 
to come, and forced on us the decision to start our matrix and vector subscripts from zero as well. 

We shall use the notation X ( t) and ( d/dt) X ( t) interchangeably. 
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by a linear transformation, defined by the constant matrix A. Such a system 
is accordingly called a constant-coefficient linear differential equation. 

In (1.4) we have the general form of the time-varying linear differential 
equation in which X (t) is a linear transformation on X( t), with the transfor-
mation matrix A (t) having time-varying components. 

In (1.5) X (t) is shown related to X (t) by a vector of functions of the form 

	

(t) = fo  [x0  (t), x i (t), 	,x m (t), t]  

	

x i (t) = f i [x 0  (t), x i (t), 	, x.(t), t] 

(1.6) 

	

.(t) = frn [x o (t), x i (t), 	, x.(t),t] 

where each of the functions 10 , f i , • • • , fm  is a possibly nonlinear function of 
the vector X (t) and possibly of t as well. Equation (1.5) is thus the general 
form of a nonlinear differential equation. 

If we assume that initial conditions are specified by a vector of deter-
ministic numbers, then it is clear that in all of the above three cases X (t) will 
be a deterministic vector-function of time, and it is essentially with such 
models that we are concerned. However, in the final chapter we will consider 
very briefly the situation where X (t) is governed by a differential equation of 
the form 

	

X(t) = A(t)X(t) + U(t) 	 (1.7) 

in which U(t) is a vector of white random variables. This clearly makes X (t) a 
vector of random variables and so, strictly speaking, the estimation of such a 
vector is beyond our scope. However the brief treatment given in Chapter 
15 is included because it throws further light on the algorithms developed in 
the earlier chapters. 

Given that a process is modelled by one of the three differential equations 
in (1.3), (1.4) or (1.5), there still exists an infinity of possible trajectories 
along which .the state-vector X (t) might be evolving. Without a set of initial 
conditions, and we assume that this is not explicitly available, it is not known 
which trajectory is the one currently being generated. We accordingly require 
some further information in order to enable us to narrow down our choice 
and to select a . trajectory as being the one along which we believe the process 
to be evolving. 
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This further information is provided us by one or more measuring instru-
ments, assumed to be at our disposal. These enable us to observe the process, 
and they provide us with vectors of observations which, under ideal condi-
tions, are linear or possibly nonlinear transformations on some or all of the 
state-variables. In practice however, the measuring instruments introduce 
errors which are assumed to be additive. 

Thus, letting X (t.) be the vector of model state-variables at t = to  and 
letting Y. be the vector of observations obtained at that tirne,t we consider 
three successively more general observation schemes: 

Y n = MX (t n) + Nn 	 (1.8) 

Y n = Mn X (t n) + Nn 	 (1.9) 

	

Y = G 	[X (tn ), tn] + N 	 (1.10) 

In (1.8) we show Y n  as being equal to a constant linear transformation on 
X (tn ), as defined by the matrix M, plus a vector of errors symbolized by Nn . 
In (1.9) Y. is related to X (t.) by the time-varying linear transformation Mn , 
plus an error vector Nn. Finally in (1.10) the vector Y n  is related to X (t.) by 
a system of nonlinear equations in which both the elements of X(t.) and 
possibly t o  as well constitute the independent variables. 

An example would be the following. Let the state-variables of the model 
be the position and velocity, in Cartesian coordinates, of a body in straight 
line motion. Then its differential equation will be 

xo  (0\ 	/0 ooloo\ I xo (t)\ 

	

x (t) 	0 0 0 0 1 0 	x 1 (t) 

	

d X 2 (t) 	0 0 0 0 0 1 	x2  (t) 

	

dt xo  (t) 	0 0 0 0 0 0 	xo (t) 

	

x l  ( t) 	0 0 0 0 0 0 	z 1 (t) 

	

).C 2  (t) 	\0 0 0 0 0 0/ V.C 2  (0/ 

which is of the form of (1.3). Also, let Y .  be the vector of observations made 
directly on the position coordinates of the body. Then the observation 
relation would be 

The vectors Y and X need not have the same numbers of elements. 
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(Y0 

Y 1) 

Y 2 n  

0 
(1 

0 

0 

1 
0 

0 

0 
1 

0 
0 
0 

0 
0 
0 

0 
0) 

0 

x o  (tn)\ 

x i  (tn) 

x 2  (tn
)io  (tn ) 

x i  (tn) 
Z 2 (tn)/ 

(

2 

0) 

V 
 (1.12) 

which is of the form of (1.8). 
Alternatively, let Yn  be the observations obtained by a radar, located at 

the Cartesian origin, of the range, azimuth and elevation of the body. Then 
the observation relation would be 

@O.  = (x02  + x 1
2  

x i  
tan-1 (T) 

-1 

+ X
2

2 ) 1/2  

+ 
(711)n 

t= t o  

X. 2 

t=tn 
-I- ( \ 

t= tn  

11 0/n 	• 

(1, 2)n 

(1.13) 

(1.14) 

(1.15) 
X 02 + X 12)1/2 

[ 	
(1 

which is of the form of (1.10). 
The primary purpose of this book is to show how the theory of differential 

equations (introduced through the model) can be combined with techniques 
from estimation theory ( introduced through the observations), so that one 
trajectory of the possible infinity, referred to previously, can be selected. 
Criteria will be set up so that the selection process is best in some clearly 
defined sense. It will be the basic task, in each of the chapters from Chapter 
7 on, to derive the algorithm which, based on a model and a set of observa-
tions, will select the trajectory which best satisfies the chosen criterion. 

In addition to setting up the algorithms, we will also study the errors in 
the estimate, i.e., in the selected trajectory. The errors which we consider 
will be seen to arise from two sources — errors in the model and errors in the 
observations. The former give rise, in the estimate, to what are termed the 
systematic or bias errors, and the latter to what we call the random errors. 

rrhe symbol ** will be used to signify the end of an example or the completion of a proof 
(theorems, lemmas, etc.). 
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The observations are assumed to be streaming in to a computer, whose 
function it is to accept and store them and to operate on them in order to 
arrive at a vector of numbers which constitutes an estimate of the process 
state-vector. These numerical values then stream out of the computer and 
serve as the most up-to-date estimates of the trajectory currently under way. 
As successive observations arrive, the algorithm will possibly modify the 
selected trajectory. 

We will examine in detail three classes of smoothing procedures. The 
first will be the Fixed-Memory Filters in which the trajectory is always 
chosen on the basis of observations taken over a fixed time-interval into the 
past. The Expanding-Memory Filters, on the other hand, base their current 
estimates on all observations made up to the present, and as time moves 
forward, this is naturally an expanding set. Finally the Fading-Memory 
Filters perform their trajectory selection on the basis of all observations 
made up to the present, but a stress-factor is applied so that the older or 
staler an observation becomes, the less influence it exerts on the current 
estimate. 

In addition to setting up algorithms and studying their error properties, 
we will also concern ourselves with some of the important practical problems, • 
such as computer memory-space requirements, the amount of computation 
needed to execute the algorithms, numerical difficulties that can be expected, 
etc. It will emerge that each of the three classes of filters to be discussed has 
its own set of properties in respect to errors, memory-space and computa-
tional details. Depending upon the specific situation the user must then 
select the best compromise. There is no perfect filtering algorithm for use 
in all cases. 

The output of a filter is a vector which we shall always show with a star, 
e.g. r, and the star should be immediately associated with the word "esti-
mate." It is also necessary that we append two subscripts to X*, the first 
to designate the time-instant at which this vector estimate applies, and the 
second to show the time-instant of the most recent observation on which 
the estimate is based. Thus, suppose X* is an estimate of X (tp) and let it 
be based on observations up to and including those made at t . Then we 
show it as 

q* 
X*P 	We will, on occasions, refer to t as the validity instant,  

meaning of course the instant for which this estimate of the true state-
vector is valid. The instant t q  should be thought of as the "most recent 
observation" instant. 

We distinguish three cases. If tp  > t q  then Xp* is called a prediction and 
the algorithm producing it is called a predictor. if t 	t 	

4 
, then X* is said 

13 , 

to be an updated estimate, and finally if tp  < tq, then we say that we are 
retrodicting and X: q  is called a retrodiction. 
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Many of the algorithms to be developed put out predictions of the state-
vector which are valid for the time at which the next observation vector is to 
be made. Such an estimate is written + 1 n 

	

X* 	and is called a 1-step prediction. 

	

n 	, 
We shall frequently use the term 1-step predictor, by which we mean an 
algorithm which is putting out, on successive cycles, the sequence of vectors 

X* X* 	
• • n - 1, n - 2' n, n - 	n + 1,n' • 

Other words which we shall use are filter and estimator, in addition to or 
in place of the word algorithm. The word filter is intended, as in electrical 
engineering, to convey the ideal of a wanted component (the true process) 
being allowed to pass, with an unwanted component (the observation errors) 
being retarded and diminished. An estimator accepts information in the 
presence of errors and estimates the values of certain quantities or parameters. 
The word smoother, in use in the literature, essentially coincides with the 
word filtent 

Our algorithms will accomplish various combinations of the above ideas. 
Thus we might develop an algorithm which puts out smoothed 1-step pre-
dictions of position and velocity together with estimates of a parameter in 
the process, based on observations of position. It will be an estimator, a 
predictor and a smoother. -  

In addition to obtaining Xp*,,, it will frequently be the case that our 
algorithm also puts out estimates of the statistics of X: 4 . These will be in 
the form of its covariance matrix, a topic which we shall discuss in greater 
detail in Chapter 5. The covariance matrix of nq  will be written Sp* 4. 

Along with the two subscripts discussed above, it will also frequently be 
necessary to show the matrix subscripts. Thus 

X*  n,n (1.16) 

shows that the updated estimate X n* n  has two components (xt)n,n  and (A) 
n, n . 

Likewise its covariance matrix would be 

tone convention, sometimes adopted, is as follows. Let X 4:„ q be the output of an algorithm. 
Then if p < q, we are smoothing, if p = q, we are filtering and if p > qwe are predicting. We shall 
however, use the looser meanings discussed above. 
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showing the four components (so, 	(Rt 	(R o,„,„5 	 and (4,1),.. Observe 
that the matrix subscripts are inside the matrix brackets and the time 
subscripts are outside. 

The letter n will be reserved exclusively for use as the general form of the 
time-ordering subscript. Thus the sequence of observations 

Y1' Y2' • • • ' Yn - 1' Yn' • " 

has as its general term y n  whose predecessor is y n  _ 1  and whose successor 
will be y. 1. Likewise the general term of a one-step predictor will be 

+ 1,n 	 n X * 	whose predecessor was X*
. n - 1 

. The general term of an updated  
estimator is r with successor - X* 

n,n 	 n + 1, n + 1• 

On occasions we shall be forced to modify the double subscript notation 
very slightly and to write X to tn , by which we of course mean a C -second 
prediction. 

The above notation will be used repeatedly and will be frequently rede-
fined in the earlier chapters as we add to it. The reader should have no 
trouble becoming familiar with it and, like any system of notation, it is 
not perfect, having both advantages and drawbacks. However, we have 
striven for consistency, and with a little patience the symbolism should 
soon become easily understood. 

In Figure 1.1 we display, in flow-chart form, the essential contents of the 
book, as contained in Chapters 6 through 15. As the development progresses, 
the reader should refer back to the chart, where he will be able to identify 
the titles and symbols appearing in each of the blocks. The chart is useful in 
defining the assumptions which lead to each of the algorithms and in 
establishing the interrelationships between them. 

We now embark on a review of some background material needed for the 
development of the smoothing and prediction techniques to follow. 



2 
DISCRETE 

FUNCTION 

ANALYSIS 

2.1 INTRODUCTION 

In the course of developing various numerical filters, we will frequently be 
dealing with sampled or discretized functions of the form 

f = f (nr) 	f (t) I 	 (2.1.1) 

While f(t) may be amenable to analysis using the differential and integral 
calculus, the same is not true for fn . However a corresponding calculus does 
exist for such discretized functions, and it is the purpose of this chapter to 
outline as much of what we accordingly call discrete function analysis as 
will be required for subsequent use. 

Note from (2.1.1) that we are considering equispaced sampling, the 
separation being r seconds. This is true for the entire present chapter. 

2.2 THE SHIFTING OPERATORS 

Assume that f(t) is defined for all t. Sampling it at t = nr, where 
n = 0, 1, 2, . 	gives the sequence 

f 0  = f(0), f l 	f (r), 	f 	f (nr) 

12 
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We define the backward-shifting operator q by the equation 

qk in  = in  k 	 (2.2.1) 

where k is any integer. 
We sometimes prefer to use the forward-shifting operator, E, defined by 

Ekfn = f n k 	
(2.2.2) 

Then 

gin = 

Efn  = fn+i  

If we define the product qm qk by 

in 	(qk in ) 

then 	 I. 

qm q k = qm k = q k qm 

(2.2.3) 

(2.2.4) 

(2.2.5) 

Moreover 

qm Ek = qm k  = Ek qm 	 (2.2.6) 

Thus the q and E operators commute with themselves and with each other. 
For m = 0 the operator qm is defined by (2.2.1) to give 

12,0 in  

The shifting operators are linear since 

qm(c o fn  + ci gn) = co qm fn  + 	gn  

Also since 

(a °  qm 4- a l qk)fn = a  gm + a 1 gk fn  

we see that polynomials in q (or E) can be defined. Thus, 

(2.2.7) 

(2.2.8) 

(2.2.9) 
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(I I al  q) f
n  j=0 - 

(2.2.10) 

 

   

By (2.2.3) 

qEfn  = fn 	 (2.2.11) 

and so q and E are each other's inverse. The inverse of q is q-zn or Em. 

Every shifting operator thus has an inverse. 
We now ask whether the operator 	a. q1  defined in (2.2.10) has an .v=0 1 

inverse? Consider first the simpler case 

(1 - q) gn  = fn 	 (2.2.12) 

This is simply the operational form of the linear recursion relation 

f 

gn gn 
(2.2.13) 

in which gn  is computed as a linear combination of its predecessor and the 
input fn . By iterating (2.2.13) starting with n = 0, we obtain 

n 

gn 	g-1 	 k = g-1 
	 k f 
	 (2.2.14) 

k=0 	 k=0 

We shall assume, henceforth, that any of the systems to which we shall 
apply these operators is initially in a completely relaxed state, i.e., both 
gn  and fn  are identically zero prior to some time. Without loss of generality, 
we let that time be t = 0. Then g_ 1  in (2.2.14) is zero. Moreover, we can 
also then write 

( i q) fn  k=0  

( 

qic)
fn  

k=0 

(2.2.15) 

and so (2.2 14) gives, under this assumption 

(2.2.16) 
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If we now compare (2.2.16) with (2.2.12) we see that the inverse of 1 - q 

is 
 l

c°  qk . But 1/(1 - q) if treated algebraically gives (by direct division) 
.k=0 

(1 - q) -1  = 1 + q + q2  + 

00 
	 (2.2.17) 

k 

k=0 

We see then that we can find the inverse of 1 - q by algebraic reciprocation, 

i.e. 

Inv (1 — q) = 	
1 	(1 0 -1 

1 — q 

In a like manner, we can show that for any number 9 

Inv (q j3) — 	
1 

= (q - 13)
-1 

— 

Moreover, if 

( q P (q P2 )  gn = n 

then, by transposing the operators one at a time, it follows that 

1 	1 
g„, = 	 f,, (q 	p 2 ) ( q 	p i) .• 

(2.2.18) 

(2.2.19) 

(2.2.20) 

(2.2.21) 

Thus the inverse of (q - p 1 ) (q - p 2) is its algebraic reciprocal. 
Now, any polynom.  ial in q (or E) can be factored, i.e., for any set of a's 

there exist /3's so that 

a ql = a H (q - /3 i) 
	

(2.2.22) 
i=0 	 .1=1 

the order of the factors being immaterial, since it is easily seen that they 
commute with each other. Then 

( 
i 	 i 

Inv laj qi = Inv ai r' ( 

j=0 

	j) 	
1 H 	1 ) 

(2.2.23) 
j=1 	

a i j=i q — Pi 
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and so 

Inv ( I a, q) 

	
1 	

(2.2.24) 

j=0 
ai qi  

showing that / a, q1  does in fact have an inverse — its algebraic reciprocal. i=0 
This means that any rational function of q such as 

R (q) = 
1 y 1 g1 

 j=0 

ai q 
j=o 

(2.2.25) 

is a well defined operator. Moreover R (q) can be combined with other such 
operators using +, x and = in their ordinary algebraic sense to form further 
rational operators involving q or F . 

Any linear recursion relation is now seen to have an equivalent operational 
form involving the shifting operators. Thus if g . is related to f by the 
linear recursion 

g n = 	ai gn - 	Yi in - 
j =1 	 j=0 

then using the q - operator we can write it as: 

a . 	g = 	v 	f • 	n 
( Po 	n 	j=0 

(2.2.26) 

(2.2.27) 

(where « 0  = 1) and so 

Yi  qj  

gn 
	i=o 	In 	 (2.2.28) 

i=0 
ai  qi 
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We are thus able to express any linear recursion relation of the form 
(2.2.26) by the equivalent statement 

g. = R(q)f. 	 (2.2.29) 

where R (q) is a rational function in q. We shall return at the end of this 
chapter to the solution of (2.2.29) for gn given fn . 

A word of caution is in order. All of the above development was based 
on the assumption that the coefficients of the operators were constants, 
i.e., independent of n. When this is not the case, careful attention must be 
given to the rules formulated for q and E. (See Ex. 2.3.) Such situations 
will arise in later chapters and we will accordingly handle them with the 
care they deserve. 

2.3 THE DIFFERENCE OPERATORS 

Define the backward-difference operator V byt 

Vf n 	In 
	

in- 1 
	 (2.3.1) 

and the forward-difference operator A byt 

Afn 	tc.+1 —  fn 

It then follows that 

V = 1 — q 

A E — 1 = 	(1 — q) 

Hence their inverses are, respectively 

1 1 	1+q+q2 
1 — q 

and 

(2.3.2) 

(2.3.3) 

(2.3.4) . 

= q (1 	q + 	 (2.3.5) 

tFor V read "Nabla" and for A read "Delta." Sometimes we shall subscript V or A to show which 
variable they are operating on e.g., Vx (x - i) / 	 - ) 1 - 	 - 1 - 
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By (2.3.3) 

Vm = (1 — q) m  

for any integer m. Thus for r, m, and k integers 

Vm Vk 	k  = V k Vm 

Om  \T in  = 1 

vm (Vk vr) = vm + k + r 	(vm vk)vr 

(2.3.6) 

(2.3.7) 

The integral powers of V thus form a set of operators which commute, have 
inverses and associate. Moreover they are all linear operators. Writing out 
(2.3.6) for m = 2 gives 

V 2 y. = (1 — 2q + q 2)y. = y. — 2y._ 1  + 	_ 2 	 (2.3.8) 

and so on for V 3  etc. 
Since, by (2.3.3), Arn (for m an integer) is defined as a rational function in 

q, it too forms a set of linear operators which commute, have inverses and 
associate. Moreover any rational combinations of Om, A t, and qk  will thus 
also commute and associate with one another, and will constitute linear 
operators. 

Given the values of fn  for various n, we can set up a table of backward 
differences as follows: 

n fn V fn  V 2  fn  V3  fn  V 4  fn  

-2 -4 

-1 1 5 

0 0 -1 -6 

1 -1 -1 0 6 

2 4 5 6 6 0 

3 21 17 12 6 0 

In this instance f n  is the cubic n 3  — 2n although any function fn  can be 
treated in this way. 

In a like manner, for the above fn  we can set up the table of forward 
differences of successively higher powers: 
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n  fn  Afn  A2 fn  A3 fn  ,,,,it fn  

-2 

-1 

0 

1 

2 

3 

-4 

1 

0 

- 1 

4 

21 

5 

-1 

-1 

5 

17 

-6 

0 

6 

12 

6 

6 

6 

0 

0 

The operators V and A come closest to the idea of differentiation. Using 
a Taylor series expansion, we have 

2 

f(t — 	 = f (t) — ri(t) + 	- ) 

2! 

and so we see that 

2 r 
fn  — in- 1 = Tin 2! in- t 

Thus to within an error term (T 2 /2) fn  _ t  

fn 	Tin  

Likewise 

(2.3.9) 

(2.3.10) 

(2.3.11) 

fn 	 11  + 1 — fn = Tin 	21 fn+ e 0 « 1 (2.3.12) 

giving 

6`in = Tin 
	 (2.3.13) 

with an error (r2 /2) fn e . 

Neglecting the error terms, (2.3.10) and (2.3.12) give us the square-law 
(or Euler's law) numerical integration rules 

n  = fn  _ 1  + Tin 	 (2.3.14) 

fn  = fn  -1  + Tin  - 	 (2.3.15) 



2r 
• 	fn ÷1 — fn-1

- 	 fn   (2.3.20) 
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and their average gives the trapezoidal rule 

n  
(in  + 1,2 _ 1\  

+ r \ 2 
(2.3.16) 

whose error term 

	

= 2 (in 1  +e 	) 
	

(2.3.17) 

is easily shown to be of the form 

	

E = 
2 

(4 e - 	p. 	0 < p, < 1 	(see Ex. 2.5) 	(2.3.18) 

By averaging (2.3.11) and (2.3.13) we obtain the differentiation rule 

fn  
'fn + Vfn  

(2.3.19) 
2r 

whose error is a term in r 2 . It is readily verified that the above is equivalent 
to 

2.4 THE FACTORIAL FUNCTIONS 

In the preceding section we discussed the difference operators V and A 
which correspond, in some sense, to differentiation. There is no counterpart 
to q or E in the analysis of functions of a continuous variable. In this section 
we consider the concept in discrete function analysis which is analogous to 
powers such as x 2 , x3 , etc. 

Define the backward factorial function of order k by 

x ( k)  s x(x - 1) 	(x - k 	1) 	 (2.4.1) 

where k is a positive integer. Thus x ( k )  is the product of k terms starting 
from x and counting down by unity. 



(2.4.7) 
• • • 
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Likewise, the forward factorial function of order k is defined as 

xtki = x(x + 1) ... (x + k - 1) 	 (2.4.2) 

again the product of k terms, but counted up by unity. 
For k = 0, we define 

x( ° )  = 1 

xr° 1 	1 
	 (2.4.3) 

In what follows we confine our remarks chiefly to x (k ) , the backward 
factorial function. However, the reader should bear in mind that to each 
statement involving x ( k), there is an analogous statement involving the for-
ward factorial function x [ k] . 

When x is a positive integer, but less than the integer k, then 

x (k)  = x(x - ) . . . 1 . 0 .(- 1)... (x - k + 1) 	 (2.4.4) 

and so for this case, x (k )  is zero. For the case where x is an integer equal to 
k, we obtain 

k ( k )  = k(k - 1) . 3.2.1 	 (2.4.5) 

which is known as k - factorial, and written k! 
When x is a variable, x (k) is a polynomial in x of degree k. We expand x ( k) 

for k = 0, 1, 2, ... to give 

X (C))  = 1 

X(1) = x 

X(2) = x2 	x 
	 (2.4.6) 

X(3) = x3  - 3x 2  + 2x, etc. 

which can be written as the matrix equation 

	

73c 00 	71 0 0 0 0 

X(1) 0 1 0 0 0 

X(2) 0 -1 1 0 0 

X(3) 0 2 -3 1 0 
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The matrix of this equation is called the Stirling matrix of the first kind, 
named for its discoverer. We symbolize it as S, and it is seen to give x ( ' ) 

 as a polynomial in x, i.e., 

X (i ) = 	
[S]=j 
	 (see Note) (2.4.8) 

j=0 

The matrix S can be obtained by the recursion (see e.g. [2.1] ) 

[S] 	= [S] - 1, - 1 	 1,1 — (i — 1) [S] 	 j 	1 	 (2.4.9) 

To start the recursion we use 

[s]0 0 = 1 
	

(2.4.10) 

	

= 0 = [S] o 	j ?_ 1 

Using this process we generate the Stirling first-kind matrix up to i, j = 10, 
displayed in Table 2.1. k  

	

A series of the form 	a x(i)  is called a Newton series, in distinction to 
1=0 

the power series 	A i x'. Any Newton series can now be written as a 
i=0 

power series as follows: 
k 1 a XCO 	 a k)/X (°)\ , i 	= (a 0 , a 1 ' 

1=0 	 X") 

k 

i= 0 
163 i 
	

(2.4.11) 

Note: The symbol [.s], 1  means the i, j element of the matrix S. 
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where 

(13 0 , /8 1 , • • • 9 /3k) 	(a 0 , a l , • • • , adS 

the S in this case being the Stirling first-khid matrix of order k + 1. 
The inverse relation to (2.4.7), namely 

(2.4.12) 

/1\ 	/1 	0 	0 	0 	0 /x( ° )\ 
x 0 	1 	0 	0 	0 	.. x(1)  
X 2 0 	1 	1 	0 	0 	.. x(2)  
x3  0 	1 	3 	1 	0 	• • x(3)  i 	

• (2.4.13) 

*/ 	• 	• 

defines the Stirling matrix of the second kind. 	We symbolize it as S -1  andit 
can be obtained either by inverting S, or else from the recursion (see [2.1] ), 

[S-11 0  = [S -1], _ + [S-11 , J - 1 	i - 1,1 j 	1 	(2.4.14) 

with boundary conditions 

= 1  

[S-1 1 04  = 0 = [S-1] 40  j 	1 
(2.4.15) 

Table 2.2 gives S -1  upto i, j = 10. 
We shall encounter two matrices in Chapter 4 which are closely related to 

S and S-1. They are the associate Stirling first- and second-kind matrices, S 
and S-1  which serve to relate the backward and forward differences of a 
polynomial to its derivatives. 

Resuming our discussion on the factorial function x (k), we have, as an 
analog to the equation 

dm  k X = k (al  X k rn  

dxm 

the relations 

Vrn x (k)  = k(m) (x - in) (k  rn)  

(2.4.16) 

(2.4.17) 
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and 

A rn  X (k)  = k (m) X (k  —112) 	 (2.4.18) 

where k and m are positive integers. Both are easily proved by induction. 
(See Ex. 2.8.) 

The factorial function can often be conveniently broken up. Thus for 
example 

X (m)  = X (r)  (X — r) (rn  

= X(r)  (X — r)(x - r - 1) (7" - 	1)  
(2.4.19) 

giving two possible forms. Note that in the latter, as r goes from zero to 
m - 1, the factor x - r scans through all of the factors of x (m ) . 

It is also sometimes useful to factor -1 from each term in x (m ) . Thus, 

x (m )  = x (x 	1) (x - 2) ... (x - m + 1) 

= (-1)rn  (-x + m - 1) (m )  

= (-1)' (-x)(-x + 1) ... (-x + m - 1) 	 (2.4.20) 

= (-1)rn  (-x) [rni 

showing how x (m )  and x[mlare related. 
Although we have defined x ( m )  only for m > 0, it is possible to give a 

consistent definition for m < 0 or when m is not an integer. However, these 
cases will not be used, and we mention them only for completeness. 

2.5 THE BINOMIAL COEFFICIENTS 

Let k be any integer, x any number. Then the binomial coefficient (k)
is defined as 

X(k) 
k > 0 

k! 

1 	k = 0 

0 	k < 0 

(2.5.1) 

If, in particular, x is a non-negative integer, say m, then we see that 

m! 
(2.5.2) 

k!(m - k)! 



and so 

If k > m, then m — k < 0 and so by (2.5.1) 

an k > m 	integer 
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(2.5.3) 

and (2.5.3) 

 

(2.5.4) 

The binomial coefficients ( m) can be conveniently displayed using the 
well-known Pascal's triangle, 

1 
1 

1 2 1 
1 3 3 1 

4 6 4 1 
1 5 10 10 1 

1 6 • 	• 15 20 15 6 1 
1 7 21 35 35 21 7 1 

1 8 28 56 70 56 28 8 1 
1 9 36 84 126 126 84 36 9 1 

1 10 45 120 210 252 210 120 45 10 1 

in which each number is the sum of the two above it, and numbers not shown 
to the right and left are zeros. Then, starting with m = 0, the M th  horizon- 
tal row is el  k ). 

Using the Gamma function, we can extend (:) to the case where k is not 
an integer. While this generalization will not be needed anywhere in this 
book, we mention it in passing for completeness. 

Perhaps one of the most useful relations involving the binomial coefficients 
is the recursion 

(x kll1) = (xk) (k 1) 	 (2.5.5) 

Its proof follows easily from a direct expansion using (2.5.1) (see. Ex. 2.9). 



k=0 

(1 + y) m  = 	(771) Yk  (2.5.11) 
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As a first application of (2.2.5) we are able to write 

and 

v.(
3ck = 

) (Ix? 1) 

A2c( 30 = (k -x  1) 

(2.5.6) 

(See Ex. 2.9) 	(2.5.7) 

Equation (2.5.5) is the cornerstone of the proof for the well-known 
binomial expansion theorem: 

03 

(1 + y) m = 	( in) yk 13'1 < 1  
k=0 

(2.5.8) 

The proof for m a positive integer is quite simple, and follows readily from 
(2.5.5) when the method of induction is applied. It is also a simple matter 
to extend the proof to cover negative integral exponents. Thus 

co 

(1 + y)= 	Yk 
	

> 0 
	

(2.5.9) 
k=0 

which means that for m any integer, positive or negative, 

(1 + y) m  

co 

= 	(k771) Yk  
k=o 

(2.5.10) 

When m is a positive integer, ( 10 is zero for k > m and so the series 
terminates to give 

From (2.5.10) we deduce that 

OD 

(1 — y)" 
k=0 

(- 1) k  (M) yk 
	

(2.5.12) 
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Using the binomial expansion we are able to express V and A in terms of 
q and E as follows. By (2.3.3), for m a positive integer 

pm = (1 — 

= 	(-1) k  (M) q k  

k=0 

and so 

V m  In  = Y (-1) k  (k) n  _ k  
k=0 

Likewise 

Om  = (E- 1) m  

Ern (1 — E -1 ) m  

= 	(-1) k  (hM) Ern k  
k=0 

giving 

m 

Qm  f = 	(-1) k  (k) fn  ÷ _ k  
k=0 

(2.5.13) 

(2.5.14) 

(2.5.15) 

(2.5.16) 

Returning to (2.4.17) we see that V!' reduces the degree of the polynomial 
x( k), from k to k — m. In particular, when m > k we see that 

Om x(k) = 0 
	m > h 	 (2.5.17) 

We have seen in Section 2.4, that any polynomialI f3 x' can be written as 
i-o 

= 	
i a.x ( z )  using 	Stirling matrix, and so for m > r (2.5.17) implies that • 

i 0 

(

1 p i  x) = 0 
=o 

(2.5.18) 



V al  x (r)  = r (n2)  (x — 17) (r az)  = 	(-1) k  (m) (2.5.22) (r) 

k= 0 
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The backward-difference operator V' thus annihilates all polynomials of 
degree m — 1 or less. Thus for example, if 

.-1 

In = 	0I  7Z 
	 (2.5.19) 

i=o 

then it follows that 

V rn  f n  = 0 
	

(2.5.20) 

and by an analogous argument, 

Am in  = 0 
	

(2.5.21) 

Using (2.5.14) and (2.4.17) we can now write, (for m > 0 an integer) 

to 

giving very useful alternate expressions for V' x ( *) . 
In the above paragraphs, powers of V were expanded in terms of q. We 

now reverse the procedure and obtain powers of q in terms of V. Thus 

fn-h = gh fn  

= (1 — V) 12  fn  

(2.5.23) 
co 

k=0 

	(hOvk f n  

This gives a method of interpolation. 
As an example, let f be given by a set of values for n = 0,1,2,3,4. We can 

then set up the table of successive backward differences of fn  : 
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n fn Vfn v 2 fa  03 
in V 4  fn  

0 1 

1 1.5 0.5 

2 2.25 0.75 0.25 

3 3.375 1.125 0.375 0.125 

4 5.0625 1.6875 0.5625 0.1875 0.0625 

- . • • . . 

- • • • • . 

• • - - • • 

Referring to the final line of the table, (2.5.23) gives 

f4-h = 5.0625 - 1.6875h + 0.5625 [h (h  - 
2 

 

 

- 0.1875
[h (h - 1)  (h - 2)] 

6 
(2.5.24) 

+0.0625 
[h(h - 1)(h - 2)  (h - 3)] 

24 

which is seen to be the Newton series counterpart to the power series 
expansion about the point 4. 

By truncating this equation at various points, we obtain polynomials in h 

of varying degrees, which pass through successively more values of f n . Thus, 

14-  h  = 5.0625 - 1.6875 h 	 (2.5.25) 

gives the first-degree polynomial interpolator passing through f 4  (h = 0) and 
13  (h = 1). The formula 

t .4 - h  = 5.0625 - 1.6875 h + 0.5625 [h  (h 1)1 	 (2.5.26) 
2 

is the quadratic passing through f 4 , f3 , and f2 , and so on. 
Although the above derivation was based on h being an integer, we extend 

it (without proof) to nonintegral h, giving for example, for h = 1/2 and a 
quadratic fit, 



32 INTRODUCTION TO SEQUENTIAL SMOOTHING . AND PREDICTION 

13  = 5.0625 — 1.6875 (1/2) + 0.5625 [1/2 (-1/2)1 
 2 	

= 4.1484 	(2.5.27) 

The function is actually 

n (3 n ) 

f   

and so 

134  = 4.1335 

(2.5.28) 

(2.5.29) 

showing that a quadratic interpolator in this case gives an error of about 
1/3 percent. 

By setting h = —1, say, we can use (2.5.24) as an extrapolator to predict 
what 15  will be. The prediction of course will be subject to error, depending 
on the goodness of fit. 

It might seem, as we take more and more terms in (2.5.24), that the 
approximation improves. While this is often true it is not always so, and it 
is possible for the errors to begin to diverge as the number of terms is 
increased beyond a certain value. This anomaly is known as the Runge 
phenomenon and the interested reader is referred to [2.3]. 

An analogous interpolation formula can be developed using t rather than 
V. (See Ex. 2.14.) 

We have touched only briefly on the concepts of numerical differentiation, 
numerical integration and interpolation. For an extremely good treatment 
of these topics the reader is referred to [2.2] . 

2.6 USEFUL IDENTITIESt  

We have shown that if fn  is a polynomial in n of degree m — 1 then 

V n  = 0 
	

(2.6.1) 

This means that by (2.5.14), if d is an integer less than m, 

m 

I (_1)k(171)(n — k)d = 0 
	

(2.6.2) 
k=0 

t The author is indebted to J. Riordan of Bell Telephone Laboratories for much of the material in 
this section. 
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Since this is true for any n, we see that the operator 

(_i) k 	q k 

k=0 

annihilates all polynomial sequences obtained from 

= n d 

when d is less than m. 
As an example let d = 2, and consider the sequence 

, 49, 64, 81, 100, ... 

Then, for 7n = 3, (2.6.2) gives 

(3) 49 — () 64 + ( 32) 81 — (33) 100 . 0 1  

(2.6.3) 

(2.6.4) 

By the symmetry of the binomial coefficients, we can reverse the order of the 
sequence. Moreover, all linear combinations of sequences of inadequate 
degree will also be annihilated. Thus, combining the first-degree sequence 

• , 1, 0, —1, —2, ... 

with the quadratic sequence 

• , 4, 9, 16, 25, ... 

gives 

• , 5, 9, 15, 23, ... 

and again (2.6.2) gives 

(g) 5 — ( 30 9 +(2)15 — ( 3) 23 . 0 
	

(2.6.5) 

We have defined (re ) in such a way that 

(z) 
	

(m
m 	

(2.6.6) 
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We call this equivalence an A - transformation. We also have the equivalence 

67)(pk) = Gm)(mk 
	 (2.6.7) 

Proof is by direct expansion of both sides (see Ex. 2.1.6). We call (2.6.7) a 
B- transformation. 

By alternately applying B and A-transformations we obtain the following 
chain of equivalences: 

(k) (p) (pm)(km :p9 

(m m-  P)(17: 1 

m fm - k +19) 
▪ kk - 	m-k 

• km - k + pi m - k 

• (m m- 1)( 1;) 

(2.6.8) 

Suppose on the other hand that we start with an A-transformation rather 
than a B, and again alternate thereafter. We obtain: 

(km) ep) = .1k) 	p) 

(ni _ k + 

m ym - k 
• m-k+pk p+  

(1

• 

;)(1: Pk) 

(m in- 	PO 

▪ (m m- k)(k k- 

giving 6 further equivalences to ( km)(ph). 

(2.6.9) 



= (In 
 

k 	+ (km 21) [ (linz -- 23) 1-  (nki  3)] 

2 
3)] 

(2.6.13) 

_ 2) (k — 31 
nz — 3\ 
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We consider next the results of successively iterating (2.5.5) in various 
ways. As a start, 

m  k 1/  (17: -- ) 

	

(In — 	[(m — 2 \ 	— 

	

k 	± 
\ k — 1J + — 2) 

(2.6.10) 

This can be terminated at any stage or else it can be continued until zeros 
set in, giving 

k 

(

I 	
k  1 v  

 v= o 

Alternatively, we may iterate (2.5.5) as follows 

( km) (m  k 	+ (k -- 

(m k— 2) 4.  (mk  21)] Rmk 	( 
j Ck 22 )1 

m k— 2) 2  ( km 21) + (km 22) 

Again 

(km) = 	—k 	± (kn 
--3 
 1)1 +2  [(Ilk 31) 4-  

Rnkz  --- 	± (717: 	= (in —k 3) 3  (ink -- 31 

This is seen to be 

(2.6.11) 

(2.6.12) 

3 

(z) = 	(3v)(7: ,3,) 
v =0 • 

(2.6.14) 
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and in general, it is easy to see that the iteration can be continued to give 

k 

(k) — 	(Vi)(71:1 
V=0 

(2.6.15) 

This is known as the Vandermonde convolution formula. Note that it is of 
the form 

(cbi  + d) Vbakc) 
	

(2.6.16) 

Note also that v, the variable of summation, is present in only the lower 
positions of the right of (2.6.15). 

By various transformations, many variants are possible. Thus setting 
m — j = µ in (2.6.15), we obtain 

k 

( k = 1 

t1 	

(vj)(k 
V=0 

(2.6.17) 

and so on. 
The above identities were essentially based on (2.5.5). We have not even 

begun to exhaust the powers of that equation, but for the present purpose 
our collection will be adequate. (See Ex. 2.19.) 

2.7 SUMMATION FORMULAE 

We are now able to develop a number of summation formulae which will 
be of frequent use. As a rather trivial start, we infer from (2.3.1) that 

n=a 

Vfn  = In  
b 

a 1 
b> a 	 (2.7.1) 

   

and (2.3.2) gives 

n=a 

Aft,  b > a (2.7.2) 



U n - 
n=a 

n 'Chin = (lin Un) 

n=a 

b 

a - 1 

b 	
- 

a - 1 

b 

I U n - 1 V n 
n= a 

= (Zi n n 

b 

V n Vlin 
n=a (2.7:8) 
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These, of course, are analogous to 

b 

d[f (x)] = f (x) 

a 

  

b 

a 
(2.7.3) 

  

However, note the important differences in the evaluation points (a - 1, 
b + 1) on the right of (2.7.1) and (2.7.2) respectively. 

Consider next the relation 

ll (m)  - 
n=a 

non + 1) 

 

b + 1 

b > a 	 (2.7.4) 
m + 1 

 

a 

     

Proof is either by induction or by a combination of (2.7.2) with (2.4.18) 
(see Ex. 2.20). We observe that this corresponds to 

f b 

41  
Xin  dX a  

xm +
1 

b 

a 
(2.7.5) -  

m + 1 

Again note the appearance -  of b + .1 rather than b on the right of (2.7.4). 
We consider the analog to integration by parts, namely 

f

a

b 

U dv = (uv) 

  

v du 
a 

a 

(2.7.6) 

 

Consider 

V(u. Un) = lin  V n  - un - 1 y r: - 1 

= Un V n - Un - 1 V n + Un - 1 V n - Un - 1 v n - 1 
	 (2.7.7) 

n
V U n + Un - 1 V  n 

Hence, using (2.7.1) we obtain two equivalent formulae for backward 
summation by parts: 
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In a like manner, we are able to obtain the rules for forward summation 
by parts: 

b 	 b 

Un + Ay n 	(Un n

) lb + 1 

a 	
Vn  Dun 

n=a 	 n= a 

b 
b + 1 

a 
	 Un + 1 Ay n 

n= a 

Au n = nn) 

n=a 

(2.7.9) 

(See Ex. 2.21.) The above four equations are sometimes known as Abel's 
transformations. 

We conclude this section with a brief discussion on the summation of 

nj . Consider first, by (2.7.4) 
n=0 

n( j )  = 

n=0 

n u + 1) 

 

L + 1 
(L 	1) (i  + 1)  

1 0 

(2.7.10) 
j + 1 

 

     

which we call C 1 . 

We now recall that, by the use of the Stirling matrix of 
the second kind, we can write 

k 

ll k = 	[c l1kjn
(1)  

j=0 

and so 

L 	k 

	

n k = 	 {s -likjn
(j) 

n=0 	n=0 j=0 

L 

	

= 	[s-ii 	I n (l) 
j=0 	 n=0 

(2.7.11) 

(2.7.12) 

j=0 

S-  1 
k j 	

(by (2.7.10)). 
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But C. can be expressed as a polynomial in L using the Stirling matrix of the 
first kind, i.e., 

(L + 1)" 
 1) 

C = j 	j + 1 

L + 1  L(i) 

 j + 1 

L+1  

Thus, by combining the preceding two equations, we obtain 

(2.7.13) 

111(  = (L 	1) 	[S- 1 ] ki  1 	[SL v ir y  
n=0 	 1=0 	+ 1 

7;c, 

 

(2.7.14) 

As an example, let k = 3. Then from Table 2.2 on p. '25, we see that 
the numbers [S -1] 3j  are 0, 1, 3, 1. Using these together with [S] ii  from 
Table 2.1, (2.7.14) gives 

n=0 
n 3  = 	+ 1)[0 + (L) +(—L+ L 2 ) + (21a — 3L 2  L3 )] 

4 

L 2  (L + 1) 3  

4 
(2.7.15) 

Proceeding in this manner we obtain the following. Define 

 

(2.7.16) 

Then 
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So  = L +1 

S 1  = 2 L(L+1) 

S2  = 1 L (L +1)(2L +1) 
6 

S 3  = 
4 L

2  (L+1) 2  

S4  = 
3
077, (L +1)(2L +1)(3L 2 +3L -1) 

iZ 
L2(L+I)2(2L2+2L-1) 

- 
42 

 L (L +1)(2L +1)(3L 4  +6L 3  -3L +1) 	(No L 2  term) 

24 L2(L+1)2(3L4+6L3-L2-4L+2) 

S8  = L (L +1)(2L +1)(5L 6 +15L s  +5L 4  -15L 3  -L 2  9L -3) 
90 

S9  = 20 L 2  (L +1) 2 (214 6  -1-6L 5  -I-L 4  -8L 3 	+6L -3) 

S10 = 	L(L+1)(2L+1)(31. 8 +12L 7 +8L 6 -18L 5  -10L 4 +24L 3  
bib 

+2L 2 -15L+5) 

The method used in the derivation of the above formulae should be 
compared to the approach in [2.4] . 

2.8 DIFFERENCE EQUATIONS 

We close this introductory chapter with a brief discussion on the theory of 
difference equations. As an example of the sort of equations we wish to 
solve, consider the linear recursion 

gn = 0g _1 + n 	 (2.8.1) 

By direct substitution we can easily verify that this is satisfied by 

0  
g = a0n 	 

	

(1 — 0) 2 	1 — 0 
(2.8.2) 

S5 
= 

S6  = 

S7  = 

(2.7.17) 

for any a. 
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Operationally the above recursion has the equivalent representation 

(1 — q8) gn  = n 	 (2.8.3) 

and is an example of a linear difference equation with constant coefficients. 
In general, such an equation has the operational form 

D(q)gn  = N(q)fn 	 (2.8.4) 

or 

N (q) 
f. gn  

D (q) 
(2.8.5) 

where D and N are polynomials in q (or E) and where, by assumption, those 
polynomials have constant coefficients. fa  is known as the forcing or 
driving function, and the unknown gn  is called the response, the output or 
the solution. 

The equation (2.8.5) is conveniently represented by Figure 2.1 

f n 	
R(q) 

Fig. 2.1 Difference-equation block diagram. 

in which the operator 

R(q) = N (q) 
	

(2.8.6) 	• 
D (q) 

acts on fn  to produce gn . 
Since R (q) is a linear operator (see Section 2.2) we see that if fn  is the 

sum of two functions, (On  and (f 2)n  say, then gn  will be given by 

gn  = (g 1)n  + (g2)n 	 (2.8.7) 

where 

(gl)n = R(q)(f1)n 

(g)n  = R(q)(12) n  
(2.8.8) 
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The solution can thus be obtained by studying each of the forcing functions 
individually and then adding the results. 

This usage of the linearity property of R (q) will prove useful in subsequent 
discussion when (f 1) will be a wanted function and (1 2).  an unwanted one. 
R (q) will be the filter whose purpose is to permit the former to pass through 
while at the same time reducing the latter. 

The solution to the general case of (2.8.4) is based, almost entirely, on 
the results of the special case 

(1 - qA) rn  gn  = 0 	 (2.8.9) 

We solve this as follows. 
Suppose that pn  is any function of n, and consider by (2.5.12), 

m 

(1 — gioni (A. ) 	I (-1) k  () A l(  le (A n  p n) 
k=0 

(— 	 p k n k 
k=0 

Thus by (2.5.14) 

(1 — qx)rn 	pn ) = An vmpn  

(2.8.10) 

(2.8.11) 

But, as we recall from (2.5.19) and (2.5.20), if p n  is any polynomial in n of 
degree m - 1 then V m p n = 0. We have thus shown that the difference equation 

(1 - qA) rn  gn  = 0 	 (2.8.12) 

has as its general solution 

Anpn 	 (2.8.13) 

where p n  is any polynomial in n, of degree one less than the multiplicity of 
the factor 1 - 0, in the operator of (2.8.12). 

The solution (2.8.13) contains m arbitrary constants. Thus, if m = 2, say, 
the difference equation 

(1 - qA) 2 gn  = 0 	 (2.8.14) 



DISCRETE FUNCTION ANALYSIS 43 

has as its general solution 

g = (a0  + nade 	 (2.8 15) 

which contains two unspecified constants. Given two independent initial 
conditions we can solve for ao  and a 1  and obtain the required particular 

solution. 
Consider next the case 

(1 - qt9) 3  (1 - qC) 2  gn  = 0 	 (2.8.16) 

We know from Section 2.2, that the factors of the q - operator can be com-
muted. Let the general solution to the difference equation 

(1 - qd") 2  gn  = 0 	 (2.8.17) 

be the function an , and let the general solution to 

(1 - q0 3  *en  = 0 	 (2.8.18) 

be called b n . Then applying the operator of (2.8.16): 

F1 - 0 3 (1 - q4) 2](an  + bn) = (1 - q0) 3 [(1 - qC) 2 an] 

+ (1 - qC) 2 [(1 - 0) 3  bi 
	

(2.8.19) 

= 0 

showing that the general solution for (2.8.16) is the sum of the solutions for 
(2.8.17) and (2.8.18). 

In general then, since any operator of the form 

D(q) = 1 + y 1  q + y 2  q 2  + • • • + y r qr 	 (2.8.20) 

can be factored into the product 

D(q) 	 qA 	 (See Note) 	(2.8.21) 

Note: We assume that (2.8.20) hasµ distinct roots X 1 , X2, 	, XA, and that these have 
multiplicities ml , m 2 , 	, mµ  respectively. 
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we see that the equation 

D(q)gn  = 0 

has as its solution 

gn  = an + bn + Cn + • • • 

where 

an = A l n  p l (n) 

b n = 2 nP2 (n) 

• 

(2.8.22) 

(2.8.23) 

(2.8.24) 

and where the On) are polynomials in n of degree one less than m 1 , the 
multiplicity of the factor (1 — qA i) in (2.8.21). There will be m 1  + m2  + • • • + 
m = r arbitrary constants in (2.8.20) and so r initial conditions are needed 
to generate a particular solution. 

The equation (2.8.22) is called a homogeneous, constant coefficient, 
linear difference equation, and is seen to arise from the general case 

gn  = R(q) f 	 (2.8.25) 

if at some instant f n  is set to, and thereafter maintained at, zero. The 
resultant function g is known as the solution to the homogeneous part. 
The degree of the denominator of R (q), namely D (q), is called the order of 
the difference equation.t 

Consider, as an example, the second order equation 

(1 + aq + bq2 ) gn 	N (q) fn 	 (2.8.26) 

g. = ag a - 1 	bg. - 2 + N ( q) 
	

(2.8.27) 

tWe exclude the case where D(q) is of the form q 2  (1 + 2q + 3q 2) say, and regard this as a 
quadratic, and not as a quartic in q. However, the reader can verify that the term q 2  leads to a 
polynomial of degree unity multiplied by zero to the nth, i.e., to zero. 
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and suppose that at some time (say n = 0) fn  is removed, leaving the 
homogeneous portion 

gn 	— agn _ — bgn _ 2 	n > 0 	 (2.8.28) 

If g_ i  and g_ 2  are both zero, then gn  will be zero for n Ze0. The system is 
said to be completely relaxed and remains that way until stimulated. On 
the other hand, if g_ 1  and g_ 2  are not both zero, then gn  will follow the 
form given by the particular solution of (2.8.28) with specified initial values 
on g_ 1  and g_ 2 . The ways in which the system behaves when the forcing 
function is removed are known as its natural modes. They are all solutions 
of (2.8.28) for various initial conditions. 

Setting 

gn  = An 	A 7E 0 
	 (2.8.29) 

in (2.8.28) gives (after permissible concellations) 

A 2  + aA + b = 0 
	 (2.8.30) 

which is known as the characteristic equation of the system. Its solutions 
are the values of A needed to set up the form (2.8.21). In general we note 
that the characteristic equation is obtained from the denominator of (2.8.6) 
by setting q = A7 1, i.e., 

D(q) l q.x- i  = 0 	 (2.8.31) 

and clearing powers to leave a polynomial in A. The values of A which solve 
the characteristic equation are called the eigenvalues of the system. The 
functions An p n  of (2.8.24) are called the eigenfunctions, and we see that 
the natural modes are simply sums of the eigenfunctions. 

Consider, next, the forcing function 

n 	
1 	

n = r (2.8.32) 
0, 

 
otherwise 

This function is called a unit impulse and can be written as the Kronecker 
delta 

n 	rir 	 (2.8.33) 

In particular, S mo  is unity at n = 0 and zero otherwise. 
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One natural mode of particular interest is called the impulse response and 
symbolized In . It arises when the system is initially completely relaxed 
(gn  = 0 for n < 0) and a forcing function consisting of a unit impulse is 
applied at n = 0. 

As an example, we consider the impulse response of the system 

1 — q f 
 g. = 	i  

1 — 2 q n 

which is the operation form of the system 

On = i gn -1 + fn — f n- 1 

(2.8.34) 

(2.8.35) 

The term fn  is taken to be 8 n0  and so fn  _ 1  is on  _ 1,0 . But, by its definition, 
n - 1,0 is unity when .n — 1 = 0 and zero otherwise, and so 

n- 1,0 	
an,1 
	 (2.8.36) 

Hence (2.8.35) can be written as 

g. = 	1 + .6n,0 	8n,1 
	 (2.8.37) 

By virtue of the linearity of this system, one can analyze the effects of the 
two impulses separately (c/f (2.8.8)). Thus we consider first the forced system 

(g1)n  

i (g 1). - 1 

+ 6 

n,0 	
n' 0 

0  n < 0 

(2.8.38) 

But this is now seen to be precisely equivalent to the homogeneous system 

( gdn 	(gdn 	= 
	n > 0 	 (2.8.39) 

with initial conditions 

(g1) 0  = 1 
	 (2.8.40) 

and so the solution to (2.8.38) is just a particular solution of this homo-
geneous equation. In fact, by (2.8.39) and (2.8.40) 
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(g1). = { 1  \r, 

n < 0 

n > 0 

(2.8.41) 

Repeating the argument for the second impulse in (2.8.37), we obtain as 
the other component of gn , 

(g2)„ = 

n < 1 

n > 1 

(2.8.42) 

The solution of (2.8.37) is then the sum of (g 1)11  and (g2)n , giving finally, as 
the impulse response, 

n <0 

I 
	 n = 0 	 (2.8.43) 

(2) 

	
n > 1 

We have thus verified that the impulse response is simply a certain sum of 
the natural modes, each with appropriate initial conditions. This result is 
easily seen to be true in general. 

The impulse response can now be used to give the solution for any 
forcing function whatever. First we note that if the response of a system 
to the impulse 8, 0  is I., then the response to 8.„,0  will be I.,. But 
8 

n - r, 0  
is the same as n,r . Thus 8 n,r will produce In - r . 

Next, we observe that any forcing function I n  can be written as the sum 

fn = fo 6no+ 6 	+ • • • + f a 	+ • • • 1 n,1 	 r n,r (2.8.44) 

and so the response tof f,  will be the sum of the responses to its individual 
components. This, we now know, will be simply 

gn = lo in 	f l in - 	• • + frin - 

+ • • • 
	 (2.8.45) 

co 

frin- r 
	 (2.8.46) 

r= 0 
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Finally, since I 	is identically zero for n - r negative, we see that the abover 
sum terminates when r = n, and so we obtain 

gn 

	E frin-, 
	 (2.8.47) 

r=0 

Equation (2.8.47) is a very fundamental result, and is called a convolution 
product in which the forcing function and the impulse response have been 
convolved to give the response g n . 

The impulse response I n  is governed solely by the operator R (q) in (2.8.25). 
It can thus be determined once and for all for a given system. Then, when a 
forcing function is given, the response is a convolution of that forcing function 
with the impulse response. In the final analysis every forced response is thus 
directly obtainable from the solution to the homogeneous part. (See Ex. 
2.25.) 

The convolution product (2.8.47) represents a particular solution to 
(2.8.25) for the case where gn  = 0 for n < 0. If to (2.8.47) we add the 
general solution of the homogeneous part, we see that we will have thereby 
obtained the general forced solution, capable of satisfying any set of initial 
conditions on gn  with any given forcing function fn . 

In some cases of practical interest we can obtain a closed form solution 
for gn  rather than the series given by the convolution sum. One method 
commonly used is known as the method of undetermined coefficients and 
an even more versatile method is known as the method of variation of para-
meters. The interested reader is referred to [2.5] for a discussion of both 
of the above methods. 

EXERCISES 

2.1 Consider the system 

gn gn - 1 =fn  with fn  = 0 for n < 0 
	

(I) 

a) Assuming that g_ 1  = 0, verify by iteration that 

gn = 	fn- k 
k=0 

b) Now write (I) as (1 - q) gn  = fn , and using (2.2.18) verify again 
that (II) is true. 
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2.2 Consider the system 

gn  — 1 gn _ 1  = f n  with f n = 0 for n< 0 	 (I) 

a) Assuming that g_ 1  = 0, verify by iteration that 

n 
g n  = 	f n  k  

k=0 

b) Now write (I) as (1 - 	g.  = in , and using (2.2. 18) verify again 
that (II) is true. 

2.3 Consider the system of equations 

n + 1 =a6 n 	 (I) 

+1 =J n  len + 1 ÷ 138n 

4 	2 (2n - 1) 
6 

ntl = 23/1` — 	-1 	n + 1 n 	(n + 1) n n-1  

where we wish to solve for a and 13. Write the first two equations as 

( ( 1 — q 	0 	ut + 1  

—1 	1 — q 	yl n  c 4.  1  

and verify that this gives 

an  + (1 — Op% 
(IV) 

 

1 — 2q + q 2  

Now equate (IV) to (III) obtaining 

a — 
2 

 (n + 1) n 

2  (2n  — 1)  

(n + 1) n 

However, the fact that a and /3 emerge as functions of n now means that 
our procedure is in error. Repeat the entire process but using an  and pn  
rather than a and /3 as the unknowns, thereby obtaining the correct 
answers 

a 

 

6 2 (2n + 1)  
Pn 

(n + 2) (n + 1) n 	(n + 2) (n + 1) 
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2.4 Starting from (2.3.1) verify that 

73  fn = v [7 (ofn)] = fn  — 3f. - 	3fn -2 — in-3 

Apply this to fn  = n 2 , fn E.-- n 3 . Form the backward and forward-
difference tables (see pp. 18 and 19) for fn  E n 2 , fn  = n 3  in the range 
—3 < n < 3 . 

2.5 Using Taylor's expansion show that if 0 < C < 1, and 0 < e < 1, then 

g[(n - 1 + e)r] = gRn — 	 + (4' + e - Dran — p)ri 

where 0 < µ < 1 and so infer that (2.3.18) follows from (2.3.17). 
2.6 Using the function 

fn  = sin( 7) 
8 2 

obtain (from tables) the values of I n  for 0 n 8. Now use the three 
integration methods (2.3.14), (2.3.15), (2.3.16) to approximate r/ 2 

sin x dx 

Compare the three results obtained with the true answer in the light 
of the error terms in (2.3.10) and (2.3.18). 

2.7 a) Verify that x ( k)  is a polynomial in x of degree k whose zeros are at 
x = 0, 1, 2, ... , k 1. Write out (-1) ( k)  and verify that it equals 
(-1)kk! 

b) Express x( 5)  as a power series in x by direct multiplication. Compare 
the resultant coefficients to the 5 th  row of Table 2.1. 

c) Verify that the matrices of (2.4.7) and (2.4.13) are inverses of one 
another. 

2.8 Prove, by induction on m, that 

vrn x (k) = 
k(m) 
	m) (k - 

and 

Am  (k)  = k(m) 
x(k 

 m) 

2.9 By direct expansion on both sides prove that 
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+k  1) 	+ 

Using this result, verify that 

a)V.(xk) - (xk 	b) Ox \k! 

2.10 Verify that 

a) xE m l = (-1) m  (-x) (m) , 	b) x(m)  = (-1) m  (-x)Em l. 

2.11 a) Verify that ( 53) = (2), (4) = (). 
5 b) Using the form ( 3k̀) = .f 

! 
), verify that ( 6) = 

k  

(-
11) 
	(-1)i 

2.12 Verify that (1 - x) 1  = 1 + x + x 2  ± • • • 

a) by applying the binomial theorem 
b) by direct division. _ 
What happens if we set x = 2? 

2.13 Verify (2.5.22) using m = 1, r = 2, and m = 2, r = 4. 
2.14 Starting from the form in  + h  = Eh in , use (2.3.3) to express E in terms 

of A and hence verify that 

co 

fn+h = 	ek) Alc in  
k=0 

Compare this to (2.5.23) and interpolate the function 

3  in  (2/ 
at the point n = 31/2 by forward differences as was done on p. 31 
using backward differences. 

2.15 Form the sequence of numbers n 2  - 2n + 4 for 0 n 5 and verify, 
by direct use of those numbers (c/f (2.6.4)) that (2.6.2) is true (use 
m = 1, 2, 3, 4). What is the counterpart of (2.6.2) is we start from 
Am  f = 0? 
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2.16 Verify (2.6.7) by direct expansion of both sides. 
2.17 Using various values for m and k, (e.g., m = 5, k = 3) verify (2.6.11). 
2.18 a) Using m = 6, k = 3, j = 3 verify (2.6.15). Sets = 3, j = 3, k = 3 and 

verify (2.6.17). 
b) Show that 

I 

(i,)(, )= v=0 

+ j\ _ 	+ j\ 
I 

Hint: Use Vandermonde convolution. 
2.19 Starting from (2.6.11) verify that 

(Z) = (m ie" 	+ • • • .= 
v + 0\iin - v - 

v 	k - v 
v=0 

Then by (2.5.5), verify that this now gives 

(k) = 	k- 	+ 2 (kin 	3 (mk -- 	4-  • • • 
k 

= 	(I/ v+ 1)(m k- v v- 2) 

V=0 

and in general, using (2.5.5) repeatedly, verify that 

(km) im j\ 	j - 1\ (m - 1 
k j ± k 	1 	I\ k - 1

j 
 ) 

(2 + j - Aim - 2 - j) 
2 	) k k 	1 	+ • • • 

i.e., that 

= 	(V 4.  
v -0 

1\ (nt — v — A 
I\ k — v 1 0 < j < m 

This form is similar but not identical to the Vandermonde convolution. 
2.20 Prove (2.7.4) by induction on b. Now prove it by combining (2.7.2) 

with (2.4.18). 
2.21 Prove (2.7.9). 
2.22 Using (2.7.17) find 

10 	 4 	 3 

E n 	n2 	/ n3 
n=0 	 n=0 	 n=0 

Verify each by direct expansion. 
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2.23 Solve the following 

a) g.  — g._ 1  = 0 	 (go  = 1) 

b) g. — 2g._ + g._ 2  = 0 	(go  = 1, g1  = 2) 

c) gn  — 	 = 0 	 (go  = 1) 

d) g.  + g._ 2  = 0 	 (go =b' 1 =  1) 

e) gn+  1  — 3g.  + 2g.  _ 1  = 0 	(go  = 1, g1  = 3/2) 

0 	+ 4g._ 1  = 0 
	

(go = gi = 1)  

Which of these systems dies out as n .0? Which builds up at an 
exponential rate as n Plot the eigenvalues of each equation on the 
complex plane. What can we infer about the location of the eigen-
values and the behavior of the corresponding system as--n .? Does 
the position of the eigenvalues in relation to the unit circle have any 
significance? 

2.24 Verify (2.8.42) and (2.8.43). 
2.25 Find the impulse response of the system 

gn 	 1 = fn 

Hence, use (2.8.47) to solve 

a) gn  — 	_ 1  = 1 	n > 0 

gn = 0 	n < 0 

b) gn
2 gn - 1 = n 	n > 0 

g. = 0 	n < 0 
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3 
THE DISCRETE 

ORTHOGONAL 

POLYNOMIALS 

3.1 INTRODUCTION 

Consider the set of polynomials cp (x ; 0), co(x ;1), (1)(x; 2), ... , ct,(x ; j), .. . 

where x is the polynomial argument and j is the degree, and let w (x) be a 
function of x which is nonnegative in a x < b. If these polynomials 
satisfy the condition 

b 

el
(p(X ; 9(X W (X) dX = 0 

a 

i # j 	 (3.1.1) 

then we say that these are the polynomials which are orthogonal over the 
range [a, b] with respect to the weight-function w (x). 

The reader is no doubt well aware of the orthogonal polynomials of 
Legendre and Laguerre, which satisfy 

tp(x ; 	(x ; dx = 0 
	

i• j 	 (3.1 2) 



1, 	0 < x < L 
w(x) 

0, 	otherwise 
(3.1.6) 
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and 

co 

co(x ; i)(p(x ; j)e— ax dx = 0 ij 

a > 0 

(3.1.3) 

respectively. These polynomials play a prominent role in the solution of 
certain differential equations, in electrical filter theory, and in general 
approximation theory. (See e.g. [3.1] .) 

Of much greater interest to us here are the corresponding polynomials 
which are orthogonal over a discrete set of equidistant points, defined by 

p(x;i,L)p(x;j,L) = 0 
	

i 	j 	 (3.1.4) 
x=0 • 

and 

co 

p (x ; i, 0) p(x ; j, 0) 0x = 0 
	

i 	j 	 (3.1.5) 
x=0 	 (01 < 1 

These are termed respectively, the discrete Legendre and Laguerre polyno-
mials. Note the triple arguments in each case. The first set, I p(x ; j, L)1, are 
polynomials in x, of degree j, orthogonal over the discrete range 0 x L 
with respect to the weight-function unity. On the other hand Ip(x; j, 0)1 is 
the set of polynomials in x, of degree j, orthogonal over the discrete range 
0 x oo with respect to the weight-function O.  It is important to bear 
in mind that while the orthogonality condition involves the argument x 
only at the integral values 0,1,2,. . ., the polynomials are themselves never-
theless continuous functions of x — polynomials in the normal sense. 

The discrete Legendre polynomials can be seen from (3.1.4) to have a 
weight-function equivalent to 

where L is a positive fixed integer. Thus w (x) is unity over a fixed interval 
and zero elsewhere. In Chapter 7, these polynomials will form the basis for 
the Fixed-Memory Polynomial Filters. 
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In- Chapter 9, on the other hand, we will show that the cycle counting 
number n can be used in place of L in (3.1.4). Then, as n increases through 
the integers, we obtain- successive sets of polynomials 'which are orthogonal 
over an expanding interval. From these we will construct the Expanding-
Memory Polynomial Filters. 

Finally, we see in (3.1.5) that the weight-function of the discrete Laguerre 
polynomials is an exponential function which fades out in a well behaved 
manner as x increases. These polynomials will form the basis for the Fading-
Memory Polynomial Filters of Chapter 13. 

We now develop the expressions for their general forms, for use in the 
later chapters mentioned above. 

3.2 THE DISCRETE LEGENDRE POLYNOMIALSt  

We derive first, the general form of the discrete Legendre polynomial 
p (x j, L). In order to do this, it will be necessary to draw on some of the 
results obtained in the previous chapter. dealing with discrete function 
analysis. 

Let p (x ; j, L) be a polynomial in x of degree j, with parameter L, having 
the property that 

p(x;i,L)p(x;j,L) = 0 
	

i 	j 	 (3.2.1) 
x=0 

One approach to obtaining the form of the polynomials so defined would 
be to use a Schmidt orthogonalization procedure. Thus, we would take 

p(x;O,L) = 1 
	

(3.2.2) 

and assume that 

p(x;1,L) = a + f3x 
	 (3.2.3) 

tin [3.1] , Hildebrand considers briefly the question of orthogonality over a discretized interval 
and derives the Gram polynomials, sometimes also called the Chebyshev polynomials (see e.g. [3.2, p. 
788] ). These polynomials are related to ours by a shift of the origin. We have extended Hildebrand's 
approach to obtain the discrete Legendre and Laguerre polynomials. 

For an alternate, and extremely elegant derivation of the discrete Legendre polynomials, the 
reader is referred to [3.3] . 

0 
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where a and /3 are constants to be determined. We now use these in (3.2.1) 
which then enables us to solve for p(x;1,L) to within a single constant. 
Proceeding in this way we can derive the form of as many of the polynomials 
as we have energy for, each to within an unspecified constant. 

The drawback of the above method is that the general form of the 
polynomials is not then obtained. A much more systematic approach is to 
proceed as follows. 

Suppose that f (x ; k) is any polynomial of degree k. Then it is evident that 
there exist constants /3, such that f(x;k) can be synthesized by the linear 
combination 

f(x;k) = 	f3 i p(x;i,L) 
	

(3.2.4) 
1= 0 

That being the case, it follows immediately by (3.2.1) that 

	

f(x;k)p(x;j,L) = 0 
	

0 	k < j 	 (3.2.5) 
x=0 

This will be used in place of (3.2.1) to obtain the required form of p(x; j, L). 
Since k cannot be negative and since k is less than j, we are by implication 
considering only j > 1. The case j = 0 is obviously solved by (3.2.2). 

We apply summation by parts (see p. 37) to (3.2.5), and to facilitate 
this we define a function g (x ; j, L) by the relation 

p(x;j,L) 	g(x;j,L) 
	

(3.2.6) 

where the V acts on the variable x according to the definition 

Vg(x;j,L) 	g(x;j,L) - g(x - 1; j,L) 
	

(3.2.7) 

(Note that g(x; j, L) is not envisaged as a "polynomial in x of degree j with 
parameter L" as is the case with p (x ; j, L). We have merely adopted an 
analogous symbolism in both cases for simplicity. In fact, as is evident 
from (3.2.6), g(x ; j, L) must be a polynomial in x of degree 2j.) 

Since any polynomial of degree less than j is annihilated by V 1 , we see 
that (3.2.6) only defines g(x;j,L) to within an arbitrary additive polynomial 
of degree j - 1. This will be of significance later. 
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Combining (3.2.6) and (3.2.5) we now have 

f(x;k)V jg(x;j,L) = 0 	j ?_ 1 	 (3.2.8) 
x=0 

and, making the associations f(x ; k) ti u. _ 1  and V' - g(x ; j, L) 	v., (2.7.8) 
then gives us 

0 = f(x + 1 ; k)Vi  - 1  g(x ; j, L) 

By iterating this procedure we obtain 

0 = f(x + 1;k)Vi 	ig(x;j,L) 

- E Vf (x + 1, k) 	- 
- 1 	 g(x ; j, L) (3.2.9) 

x= 0 

L 	 2 ; k) Vi - 2g
I L 
	+ • • • 

(3.2.10) 
+ (-1)i 	1  [V i  - f (x + j ; g(x; j, L) L 	(see Ex. 3.1), 

-1 

where the iteration terminates since, by assumption, 

VI  f(x;k) 	0 (3.2.1.1) 

' Let j = 1. Then we must have k = 0, and so (3.2.10) gives 

L 
f(x + 1;0) g(x;1,L) - 1 	

= 0 (3.2.12) 

Since this must hold for any polynomial f, of degree zero, we have 

g(L;1,L) 	= g(-1;1,L) (3.2.13) 

But by (3.2.6), g(x ;1, L) is defined in terms of p (x ; 1, L) to within an 

arbitrary additive constant. Hence we can take (3.2.13) to mean 

g(L ;1,L) = g(-1;1,L) -.= 0 	 (3.2.14) 

Repeating this argument for j = 2, 3, ... , and remembering that in each 
case (3.2.10) must hold for any polynomial f(x ; k) of degree j - 1 or less, 



g(x;j,L)1 	= g(x ; j,L)1 	= • • 
x=-1 	 x=-1 

g(x; j,L)1 x=L  =Vg(x;j, L) 
x=L 

l g(x;j,L) 

. = 	g (x ; j, L) 

x=L 

x=-1 

= 0 

= 0 
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we obtain as one possible set of boundary conditions on g (x ; j, L) that 

(3.2.15) 

Moreover, by (3.2.6) 

V""g(x;j,L) = 0 
	

(3.2.16) 

This difference equation and the 2j chosen boundary conditions of (3.2.15) 
can be solved to give g(x ; j, L) to within a constant multiplier. By trial and 
error, or otherwise (see Ex. 3.2), we obtain the following polynomial in x 

of degree 2j: 

(j+v)  g(x;j,L) = a(j,L) 	(-1)11\0\ ( x + fi 	 (3.2.17) v) v=0 	(L 	j) (1+  v)  

where the mutliplier a(j, L) is as yet unspecified. 
It then follows from (3.2.6) that 

p(x;j,L) = V 1g(x;j,L) 

j\ + v\ X (v)  
= a(j,L) 	j(i)  

\v/ v 	
L

(v) (L + j) (i) 

The constant a(j,L) is arbitrary. By setting 

a(j,L) = (L  

(3.2.18) 

(see Ex. 3.3). 

(3.2.19) 

we obtain 

p (x ; J,L) = 	(-1) v (i ) (i + 	x ( u)  
\V/ \ V / 

7)=0 	 L ( u ) 

(3.2.20) 

This is the discrete Legendre polynomial of degree j. The first five polyno-
mials (j = 0, 1, 	, 4) are: 
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p(x;O,L) = 1 

p(x; 1,L) 	- 2 2-c- 

p(x;2,L) = 1 - 6 x  +6 x(x-1) 
 

p (x ; 	L) = 1.- 

p(x ; 4, L) = 1- 

12 

20 

L 

2-̀ 
L 

L (L - 1) 

- 1) + 30 

(3.2.21) 

20  x (x - 1)(x - 2) 

L (L - 1) 

x  (x - 1) + 90 

L (L - 1) (L - 2) 

140  x (x - 1) (x  - 2) 

L 	L (L - 1) 	L (L - 1) (L - 2) 

+70  x (x - 1) (x -  2) (x - 3)  

L(L - 1) (L - 2) (L - 3) 

Note that p (x ; j, L) is only defined for j L, and so the set f p (x ; j, L) has-
precisely L + 1 members, namely p(x; 0, L) . . . p(x; L, L). This is irtmarked 
contrast with the "continuous" Legendre polynomials defined by (3.1.2) 
which form a set having an infinite number of members. 

The reader should investigate the location of the zeros of g(x; j, L) by 
examining (2.2.15). It will then emerge that (3.2.6) is a peifect analogy to 
Rodriguez' theorem [3.2, p. 785] as related to the continuous Legendre 
polynomials which satisfy (3.1.2). This duality between the discrete and 
continuous polynomials is very evident throughout, and is a consequence of 
the many dualities, established in Chapter 2, between the calculi of continuous 
and discrete functions. 

We require one further basic result, namely c (j, L) defined by 

[c(j,L)]2  = 	[p(x;j,L)] 2 
	

(3.2.22) 
x=0 

In order to obtain this we proceed as follows. Let (3.2.20) be written as the 
Newton series 

p(x; j,L) = E a (v, L) x(v)  
v=o 

(3.2.23) 
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Then (3.2.22) becomes 

[c(j,L)] 2  = 	p(x;j,L) 	a(v,L) x(v)  
x=o 	v=0 

= a(j, L)- 	x (np (x ; j, 
x=0 

= a(j,L) 	x (j) V ig(x;j,L) 
x=0 

(by (3.2.5)) 

(by (3.2.6)) 

(3.2.24) 

which we sum by parts to give 

[c(j,L)1 2  = (-1)1  j! a(j,L) 	g(x;j, L) 
R=0 

Now by (3.2.20), the coefficient of x ( i )  is 

a(j,L) = (-1)l  (2j) 1  .  

Lo) 

and from (3.2.17) and (3.2.19), 

(3.2.25) 
(see Ex. 3.4). 

(3.2.26) 

g(x;j,L) = 
x=o x=0 

I 

(-1) v 	(x 
	j) 

v=0 	v  (L + (3.2.27) 

= (L j j) t v=0 +
+ 

v

i 
+
+ 

1

1 

(see Ex. 3.5). 

It is shown in Ex. 3.6 that 

(--i)v(j) 	1  	= (2; 1)(1 
11 = 0 	v  j + v + 1 

(3.2.28) 

Hence 



THE DISCRETE ORTHOGONAL POLYNOMIALS 	63 

(L + j + 1) (" 1)  

x =0 	 j ! (2j + 1)(21 ) 
Thus using (3.2.26) and (3.2.29) in (3.2.25), we obtain finally 

[c(j,L)] 2  _ (L + + 1)
(1+1) 

(2j + 1)L ( J )  

For future reference, the first five values of [c(j, L)] 2  are: 

(3.2.29) 

(3.2.30) 

[c (0,L )] 2  = L + 1 

[c(1, L)] 2  

[c (2, L)] 2  

[C(3, L)1 2 

 [c(4, L)]2  

(L + 2) (L + 1) 

3L 

(L + 3) (L + 2) (L + 1)  

5L (L — 1) 

(L + 4) (L + 3) (L + 2) (L + 1) 

2L (L — 1) (L — 2) 

(L + (L + 4) (L + 3) (L + (L + 1) 

9L (L — 1) (L — 2) (L — 3) 

(3.2.31) 

Equations (3.2.20) and (3.2.30) are the two fundamental equations for 
the discrete Legendre polynomials. We now turn our attention to the 
derivation of the general form of the discfete Laguerre polynomials. 

3.3 THE DISCRETE LAGUERRE POLYNOMIALSt  

Let p (x ; j, 0) be a polynomial in x of degree j, with parameter 0, such that 

co 

p (x ; 	p (x ; j, 0) O x  = 0 
	

j 	i 	 (3.3.1) 
X =0 

where 1 0 1 < 1. Summation is over the positive integers although x itself is .a 

tThe interested reader is referred to [3.4] for a more complete discussion on these polynomials. 
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continuous variable. We term these polynomials the discrete Laguerre 
polynomials and their form and properties will be seen to be very similar 
to the continuous Laguerre polynomials satisfying (3.1.3). These polyno-
mials will constitute the basis on which we build the Fading-Memory 
Polynomial Filters in Chapter 13, and it is the purpose of this section to 
derive the general expression for p (x ; j, 0) as well as for the quantity 

rx=
[p(x;j,0)]2 O x  

0 

Following the same arguments as those given in the previous section, we 
see quite readily that (3.3.1) is equivalent to the statement 

co 

Ef(x;i4p(x;ime. 0 	 (3.3.2) 
x=o 

where f(x ; k) is any polynomial of degree k < j.t We now obtain the form 
of p (x ; j,0) from (3.3.2) by the use of summation by parts. 

To facilitate this, we first define the function g (x ; j, 0) by the equation 

O xp(x;j,()) = A Ig(x;j,0) (3.3.3) 

where A is the forward-difference operator which operates on the variable x 
by a definition which is analogous to (3.2.7) where the backward-difference 
operator V was defined. Setting (3.3.3) into (3.3.2), we obtain 

f(x;k)A ig(x;j09) = 0 
	> 0 	 (3.3.4) 

x=0 

We now make the associations f(x;k) ti  u., 1  and Al  lg (x ; j, 0) ti v., and 
by applying summation by partst repeatedly to (3.3.4), we obtain (see 
Ex. 3.7) 

0 = f(x - 1;k) 	l g(x ; 	- Af(x - 2 ;k) 	2g(x ; j,0) 
co 

+ • • • 

  

+ (-1) l  -1 [Ai  if(x - j; k)] g(x ; j, 
co 	 (3 3.5) 

0 

Since (3.3.5) must hold for any polynomial f (x ; k) where 0 _5_ k < j, we use 

tWe are thus considering only the cases j > 1. 
$See (2.7.9). 



the same arguments 
this case, 

g(x;j,0) 

g(x;j,0) 

Moreover by (3.3.3), 

Ai  +1  [0-  

as we made 

Ag(x;j,0) x= co 

Ag(x;j,0) 
x=o 

0-x  O jg (x ; j, 

A l  g (x ; j, 0)1 	= 0 

THE DISCRETE ORTHOGONAL POLYNOMIALS 

to justify (3.2.15) in Section 

• • 	= 	Aj-1g(x;j,0) 
X = CO 

• = 	g(x; j,0)1 
x = 0 

0) is a polynomial of degree 
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3.2 to give, in 

= 0 
X = CO 

(3.3.6) 

= 0 x= o 

j, and so 

(3.3.7) 

This boundary value problem defines one of the possible generators for 
the discrete Laguerre polynomials. The difference equation (3.3.7) plus the 
choice of the boundary conditions . of (3.3.6) gives us, either formally or by 
inspection (see Ex. 3.8), 

g(x;j,0) = 0'0 

If we now apply (3.3.3) to (3.3.8) we obtain 

p(x; j, 0) = 0—x  A i  0' 01 

= 	D - v (V) ev 

v=0 

(3.3.8) 

(3.3.9) 

(see 2.5.16). 

Using the method outlined in Ex. 3.9, (3.3.9) reduces to the more convenient 
form 

p(x;j,0) = Oj 	(-1) 110(1 	e\zi  (x\ 
v=0 	0 	kv) 

(3.3.10) 

and this is the required expression for the discrete Laguerre polynomial of 
degree j. 

We list the first five polynomials: 



p(x;2,e) 	= 0 2 [1 - 

p(x;3,0) = 03 1 [ 

- 

p(x;4,0) = 04  1- [ 

- 0  ) x 2(1- 
 e 

-01  x(x -  
0 / 	2! 

3(1 - 0) 
 x + 3

(1 - 0)2  x (x - 1) 
0 	0 1 	2! 

x(x -1)(x - 2) 
3! 

4 (1  - 0) x 
0 

)

2 x(x - 1)  
2! 
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p(x;1,0) 	= 01 [ 
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0 

_ 4 (1 - Oy x(x - 1)(x  - 2) 
3! 

- 0)4  x(x - 1)(x - 2)(x  - 3)  
0 	 4! 

(3.3.11) 

This set of polynomials is seen to have an infinite number of elements in 
contrast to those of the previous section, which form a finite set for any 
given value of L. 

We close this chapter with the derivation of the important quantity 

[c(Le)]2 = E[p(x;Lo)]2er 
	

(3.3.12) 
x= 0 

Following the approach used in the derivation of the corresponding quantity 
for the discrete Legendre polynomials in the preceding section, we arrive at 

co 

[C(j, On 2  = (-1) iji. a (j, 	g(X ; j, 
	 (3.3.13) 

x= 0 
	

(see Ex. 3.10) 

where a (j, 0) is the coefficient of x (1)  in (3.3.10). This is seen to be 

(-1)'(1- a(i,e) _ (-1)j  

j! 
(3.3.14) 
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Following the method outlined in Ex. 3.11, we also obtain 

I ex; j,0) = 	 
x=o 	 (1 	+1  

and so fmally by (3.3.13), (3.3.14) and (3.3.15) 

[C(.1,6)1 2  - 	 
1 - 0 

(3.3.15) 

(3.3.16) 

EXERCISES 

3.1 Verify (3.2.9) and (3.2.10). 
3.2 Given that (c/f (3.2.17) and (3.2.19)) 

g(x ; j, 	= (-1) v  (i) 
 (x 
	j)(j  1))  

v=0 	v  (L + j)(i  + v)  

verify that 

V ig(x ; i,L) = L + j 	(_ Dv(j\(j  + v) (i) (x +  j  -  
\v/ v=o 	 (L fi u  v)  

Now verify that 

Vig(x;j,L) = 0 	for x = L, -1 

and i = 0, 1, 	j - 1 

Hint: (L + j) (i  v)  = 	+ j) (i)(L + j - i) (" v i) . 

Also verify that 

V" + 1  g(x ; j,L) 	0 

3.3 From the results of Ex. 3.2, verify that (c/f (3.2.18)) 

Vig(x;j i L) 	
v=0 	L(v) 
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3.4 Show, using summation by parts, that (c/f (3.2.25)) 

X(i)
Vig(x ; j, L) = 	j! 	g(x;j,L) 

x=o 	 x=o 

3.5 Show that 

L  cx p(' 	L + j + 1 

xfo (L + j) (i  + 	+ v + 1 

Hence verify that (3.2.27) is correct. 
3.6 Let 

fi lm) 	(-1)210(  m  
V 	v) 

V=0 

Then show that 

f i (m) = f _ 1  (m) 	m  f _ (m + 1) 
m + 1 

Hint: ( i) 	— v 	v 

Now verify that 

fo (m) = 1 = 	1  
(m +

O J 

and so, using the above recursion, infer that 

f i (m) = 	 
1 

Now deduce that 

(_nvo 1  

v=0 	v J±,+1 
- (2j + 1)(2J  
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3.7 Verify (3.3.5). 
3.8 Given that (c/f (3.3.8)) 

g(x;j,O) = Ox (X) 

use (2.5.16) to verify that 

Ai  ex; j,0) = 	
(.4) i-v0 61.+v x + vl 

v=0 

Now deduce that for I 0 < 1, i 5_ j - 1, 

	

lira 0'g (x-; j, 	= 

	

A ig(0 ; j, 	= 
	= 0, 1, 	- 1 	 (c/f (3.3.6)) 

Also verify that (c/f (3.3.7)) 

A i+1 [0-x A ig(x;j,0)] = 0 

3.9 Given that (c/f (3.3.9)) 

p(x;j,O) = 	(-1) l tOOT + 
t=o 

apply the Vandermonde convolution formula (see (2.6.17)) 

= E (, x 1)(ft) p.=0 

to obtain 

p(x;j,0) = 	x  )(-1) 1-11 	(-1) t-  000 t  
P. µ— o 	 t=o 
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Now manipulate the term (see (2.6.8) or (2.6.9)) 

to obtain 

j 	

— 

j 

x 
p(x;j,0) = 	(-1)1 

—AL j  )01.4 	(-1) 1-4 (j 	11)60-1-` 
- 	

. 
- 	t=1.4 	C  

and so finally, make use of the binomial expansion theorem to obtain 

v  p(x;j,0) = ei 	(-1)v  ( j )( 0)  (c) 
0 v=o 

3.10 Verify (3.3.13) from (3.3.12). 
3.11 Define 

CO (77 ). 
x=0 I 

Then show, using summation by parts,t that 

S.= 	
0 

 

	

1 — 	
I-1 

Verify that 

1  
S° 1 — 0 

and hence that 

s. 	ei  
(1 - 

See (2.7.9) and (2.5.7). 

j_>1 

S 
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Finally infer that (c/f (3.3.15)) 

co 

0 1  

g(x;j,0) = 
01 " (1 -  

where g(x ; j, 0) is the discrete Laguerre polynomial generator of (3.3.8). 

REFERENCES 

1. Hildebrand, F. B., "Introduction to Numerical Analysis," McGraw-Hill 
Book Company, 1956, Chapter 7. 

2. Abramowitz, M., and Stegun, I. A., "Handbook of Mathematical-Func-
tions," National Bureau of Standards, Applied Math. Series No. 55, 
June, 1964. 

3. Milne, W. E., "Numerical Calculus," Princeton University Press, 1949, 
Chapter 9. 

4. Gottlieb, M. J., "Concerning Some Polynomials Orthogonal on a Finite 
or Enumerable Set of Points," Am. J. Math., 60, 453-458, 1938. 



4 
STATE—VECTORS 

AND 

TRANSITION 

MATRICES 

4.1 INTRODUCTION 

The first step in implementing a smoothing algorithm is to select a model 
which we believe adequately describes the process which we are observing. 
This model is defined in the form of a differential equation. 

As a simple example it may be decided that the process can be adequately 
described by a second degree polynomial, and so the model is taken to be 

d3x(t)  - o 
dt3  

Alternatively, as a result of investigating the physics of the true process, some 
extremely complicated nonlinear differential equation may be arrived at, 
to be used as the model. 

It is the purpose of this chapter to investigate the methods whereby a 
chosen model is actually implemented for use in the smoothing algorithms 
which we propose to develop in the later chapters. 
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C m  x ( t + 4') = xn 	— + • • • + 	Dmx 
2! n  

0 
(4.2.3) 
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4.2 THE DERIVATIVE POLYNOMIAL MODEL 

Perhaps the simplest way in which to model a process is to assume that it 
can be adequately described, at least locally, by a polynomial of appropriate 
degree. The efficacy of polynomials as models is based on their well-known 
ability to approximate any continuous function -  over a finite interval to any 
degree of precision. (We refer to the celebrated Weierstrass approximation 
theorem, for a statement and proof of which see e.g. [4.1] .) 

As will be seen later, by virtue of their extreme simplicity, polynomials 
give rise to extremely compact smoothing algorithms. Moreover they can 
generally be used for smoothing over short enough intervals with very little 
actual knowledge of the true process. It is thus not surprising then, that 
they are in widespread use in smoothing and prediction work. We accord-
ingly commence our study of models with the polynomial. 

Assume that we have a process under observation, which we have decided 
to characterize as a polynomial. Let x(t) be a polynomial of degree m and 
let D symbolize differentiation. Thus we abbreviate as follows: 

Dix = —di x(t) 

  

t = tn  
(4.2.1) 

  

We consider first the situation where the sampling instants t o , t 1 , . . . , to  are 
unequally spaced. 

As j goes from 0 to m and n progresses through its successive values, 
(4.2.1) gives rise to a sequence of vectors of the form 

X(t) (4.2.2) 

each of which completely defines the polynomial x(t). Thus, given the 
vector of numbers X ( t n) , we can form 

which is seen simply to be the polynomial x (t), expanded about the point 
t = tn . Thus for any n, the vector X n  of (4.2.2) provides us with all we need 
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to know about the state of the assumed form of the process. It is accordingly 
referred to as a state-vector of the chosen model.t 

By the use of expansions similar to (4.2.3) we can write 

DiX(t n 	4- ) = 	D IX 	0 < i < m 	 (4.2.4) 
J. ;  (j - i)! 	n  

Define the matrix 0(C) whose i, j th  element is 

[ (1) (C)] ,i  0 < j < m 	 (4.2.5) 

where by definition 1/(j - i)! is zero when j < i. Then (4.2.4) is equivalent 
to 	• 

+ 4-) cox(t) 

As an example, let m = 2. Then (4.2.6) becomes$ 

x\ 	(1 	C 	
4.2\ /A 

2! 
i 	= 	1 	C 	i 

Vcit.  + t  \ 
	

1/ Vit. 

(4.2.6) 

(4.2.7) 

which is simply a matrix Taylor's expansion of x(t) and its derivatives about 
t = t n . 

Equation (4.2.6) is of great value in that it provides us with a method for 
computing the value of the state-vector at any instant, given its value at any 
other instant. It is known as a transition equation for the chosen model, and 
(1) (C) as the transition matrix. 

When the sampling instants tr, are equally spaced, a simplification is 
possible. Let the separation between sampling instants be r seconds. Then 
t = nr, and if we set C = hr say, 

X(t n 	C) = x (nr + hr) -= X n + h 	 (4.2.8) 

t As will be seen, more than one choice of state-vector for a given model is possible. 
$Whenever matrices appear as in (4.2.7) with missing elements, then those elements are zeros. 
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In this case (4.2.4) becomes 

xn + h 

m „ 
(hr)' 	Di x  

= 	( j — i)! 	n  
0 < i m 	 (4.2.9) 

and the definition for (1)(‘) is replaced by 

(hr) j  [41(hr)] 	= 
" 	( j — i)! 

0 	i, j'‹ m 	 (4.2.10) 

giving the transition equation 

Xn -F h = 	Xn 
	 (4.2A1) 

It is now possible, and frequently convenient, to move r out of the transi-
tion matrix and into the state-vector. We do this by writing (4.2.9) as 

x n + 

giving 

rl 
— Dixn i! 

Defining the 

Z • 
n 

i! 	I  • 	
r 

h 
= — 

h 
= /rn  Ohi 	Di  Xn 

j! 

state-vector 

x 

rz 

r  2 
—x 
2! 

n 
(4.2.12) 

(4.2.13) 

(4.2.14) 

n 

\— x 
m! 

Dm 



76 	INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

and the transition matrix (I)(h) by 

[1(h)]11 	()hi 1 
	

0 < j < m 	 (4.2.15) 

enables us to write (4.2.13) as 

Z n+h = (1) (h)Z n 

where we see from (4.2.15) that Ch) is now independent of r. 
As an example, for h = 1, m = 2, (4.2.16) gives 

	

I x 	11 	1 	1\  x\ 

	

rac 	 1 	2 	ric 

2 7.2 
\

2! 
3e1 

n+1 	

\
\ 	n 

(4.2.16) 

(4.2.17) 

Closer examination of 1(h) of (4.2.15) for h = 1, shows that it is simply 
Pascal's triangle (p. 27) arranged so as to form an upper-triangular matrix. 

The elements of the state-vector Z n defined in (4.2.14) are seen to be 
equal to the elements of X. of (4.2.2) to within scalar multipliers which 
depend on r. In fact 

X n = D (r)Z n 
	 (4.2.18) 

where D(r) is a diagonal matrix defined by 

[D(r)] 	11 8. ri . 0 < , j < m 	 (4.2.19) 

being the Kronecker delta. Thus given Z. and r we can easily compute the 
values of x n  and its derivatives by the use of (4.2.18). 

Although we have used the symbol (I) on three separate occasions, namely 
(4.2.5), (4.2.10) and (4.2.15), the matrices are of course not identical..  
However, they do have the common property of precisely stating that the 
model in question is a polynomial. We accordingly refer to them (and 
certain others to follow) as polynomial transition matrices. 
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They share a number of properties in common. In the first place they all 
satisfy 

0(0) = 1 	 (4.2.20) 

which follows immediately, either from their definitions or else from their 
associated transition relations. 

From (4.2.16) we see that 

Z n = [0(h)]-1  Zn h 
	 (4.2.21) 

where the inverse is obviously defined, since by inspection c(h) has a 
determinant equal to unity and is thus nonsingular.t Using (4.2.16) again, 
we set n to n — h and then h to —h giving 

Z n = C-h)Zn-Fh 
	 (4.2.22) 

which, when compared with the preceding equation, shows that 

[(I)(h)J -1 	(I)(—h) 
	

(4.2.23) 

This relation clearly holds for any polynomial transition matrix since it is 
based entirely on (4.2.16) in which (1) itself was not specified. 

As we shall see presently, both (4.2.23) as well as (4.2.20) are special 
cases of the more general relation 

[0(h)] k  = (I)(kh) 	 (4.2.24) 

satisfied by the transition matrices of any system which satisfies a constant-
coefficient linear differential equation. • Since polynomials are certainly 
within this class, they too have transition matrices satisfying (4.2.24). We 
shall return to the proof of (4.2.24) later. 

We pause for an example. Setting h = 1 in (4.2.15), we see by (4.2.23) that 
for m = 3 say 

1 1\ 1  1 —1 1 

12 3 1 —2 3 (4.2.25) 
1 3 1 -3 

1/ 1 / 

tThe fact that these matrices are nonsingular is a property shared by transition matrices in general. 



78 	INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

showing that Pascal's triangle does indeed possess some delightful properties. 
.• 

The transition matrices (1)(h) are used in filtering algorithms as manipula-
tors of the validity instant.t Thus, suppose by some means we arrive at an 
algorithm of the form 

Z* ,n = WY(n) n (4.2.26) 

where W is a matrix of weights, Y (n)  is a vector of observations defined by 

 

(4.2.27) Y (n) 

 

• 

    

- Li 

and where z* ,n  is an estimate of Z n in (4.2.14), which is valid at time t n 
based on observations up to t n , i.e., an updated estimate (see p. 8). 

Assume that we now need a 1-step prediction of Z n , and let the separation 
between observations be r seconds. Then the required prediction can be 
obtained from (4.2.26) by operating on its output with the transition matrix 
as follows: 

Z* 	= (1) Z *  n + 1,n 	 n,n (4.2.28) 

The matrix (1) is defined in (4.2.15). 
Alternatively we can obtain the 1-step prediction directly by the use of 

Z + 1 n Z 	=•41)(1)WY (n) n 
	, (4.2.29) 

where W and Y (n)  are defined as before. This can now be rewritten as 

Zn 1,n = w'r (n) n  

where 

W' 	(1)( 1)W 

(4.2.30) 

(4.2.31) 

showing how the transition matrix for the chosen model can be absorbed in 
the weight matrix of the algorithm. 

ti.e., the first of the dual subscripts of an estimate vector, e.g., X p*  , go 
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This use of the transition matrix to move us along a trajectory will occur 
very frequently, and it can be generalized quite readily to give us predictions 
and retrodictions to any desired point. It is the explicit way in which we 
implement the model which we have chosen. Whether the observations are 
equally spaced or not, if the model chosen is a polynomial, the developments 
of this section should provide us with an appropriate state-vector/transition 
matrix pair which mathematically realizes that choice. 

The reader is referred to Examples 4.1 throUgh 4.5 which pertain to this 
section. 

4.3 THE DIFFERENCE VECTORS 

In the previous section we showed how the choice of a polynomial model 
could be mathematically realized by state-vector/transition matrix pairs of 
various kinds. However, in all three cases considered, the state-vectors 
shared the common property of being based on derivatives of the polynomial. 
In this section, we again assume a polynomial model but specified instead by 
a state-vector of backward-differences rather than derivatives. This approach 
will prove to be extremely useful when, at a later stage, we apply the 
orthogonal polynomials of the previous chapter to the synthesis of filtering 
algorithms. 

Accordingly, let x(t) be a polynomial of degree m, and assume equally 
spaced sampling instants. Letting q be the backward-shifting operator 
defined in Section 2.2, we have 

xn + h = qx n 
	 (4.3.1) 

Now, q = 1 — V and so 

V i  X
n + h = \7i  

= V 1(1 — 0) -11xn 	
(4.3.2) 

m-i 

= 	(-1) 7 1  ( h)\71  Xn 	
(See (1.5-1 

v=0 

where the sum terminates at v = m i since, by assumption, x (t) is a 
polynomial of degree m. Setting v = j — i, this becomes (see Ex. 4.6) 

— — 	x  
Xn + h 	 j 	 n 

(4.3.3) 



80 	INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

which is clearly a transition relation of the form 

Un + h  = (h) U 
	

(4.3.4) 

with state-vector 

 

(4.3.5) Un Ea 

   

     

and transition matrix defined by 

[(1)(h)1„ •=7- (h 
	

0 < 	j 	m 	 (4.3.6) 

Note that the intersample time r does not appear anywhere in (4.3.4). 
(See Ex. 4.7.) 

It follows from (4.3.4) that for this matrix 

(I) (0) = I 
(4.3.7) 

[(1)(h) 1 -1  = (I) (—h) 

showing, of course, that 1(h) is nonsingular for any h. We shall prove later 
that 

[CIO' = (I)(kh) 	 (4.3.8) 

which subsumes the two preceding equations. 
As an example, we form OW from (4.3.6) to obtain (for m = 3), 

(4.3.9) 
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Upon closer examination, all of the four equations implicit above are seen 
to be simply reorganizations of 

xn + 1 = 4xn  - 6xn 1 	4xn - 2 — xn - 3 

	 (4.3.10) 

or equivalently 

vo x n = 
	 (4.3.11) 

which, of course, defines x n  as a cubic. 
As a second example we use (4.3.8) with k = -1 and h = 1 to give, (for 

772 = 3), 

/1 

 

(4.3.12) 

  

4.4 THE LINK MATRICES 

While the state-vectors consisting of backward or forward differences of 
xn , as discussed in the preceding section, will prove to be extremely useful in 
the derivation of filtering algorithms, they are not too convenient for ex-
pressing final answers. One seldom requires smoothed differences and we 
almost always prefer smoothed derivatives as the final filter outputs. How-
ever, as we now show, the derivatives of a polynomial can be obtained by 
forming appropriate linear combinations of its differences using the Stirling 
matrices discussed in Chapter 2. 

As before, let x n  be a sampled polynomial of degree m. Then 

I7Xn = xn - 1 

+ (-1)
rn  T2   

= x — 	
m  (rD) 

+ — x — n    
n 	2 1  n 	

n 
 

[ 1 rD  ± (rD) 2  
• • 1 x 

2! 	
It 

= e-  D  X n 

(4.4.1) 
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This gives the operator relationship (valid for polynomials), 

q 	e-TD 
	

(4.4.2) 

We make use of this as follows 

V i  Xn = (1 — q) ixn 

= (1 — e-TD) ixn 

V=0 
(-1) v  ( i)e'xn 
	 (4.4.3) 

= 	[ 	(-1) 1  (vi) (— V)i (rD)j 

	

j=0 v=0 	 J 1  
n X 

Dividing through by i! gives 

	

v x = E [s- 	(rD)l  x 

	

j=0 	
i1 	 n 

where the matrix S -1  is defined by 

[s- '1, i  - 1 	(-1) v  
v= o 

(4.4.4) 

(4.4.5) 

We now define the state-vectors 

  

x 

rx 

T 2 12 

— X 

2! 

 

   

   

v n =7- 

1 
— V X 
2! 

it (4.4.6) 

     

     

     

     

X  n 

Tm  

M. 
Dm  x 



0 0 

ri 0 1 1 2 

r 2 

—x 0 0 1 3  

2!  

r3 if 0 0 0 
3! I 	

\ 

(4.4.11) 

n 
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and we then see that (4.4.4) can be written 

n 
= 	1  Z n 	 (4.4.7) 

Assuming for the moment that S -1  is nonsingular, we thus obtain 

Z n = SV 	 (4.4.8) 

which gives the vector of derivatives (to within the scale factor ri/j! ) in 
terms of the backward differences (scaled by 1/i!). 

By direct computation on (4.4.5) (see Ex. 4.8) we obtain the first few 
elements of S -1  as 

0 0 01 
S-1  = 

0 1 -1 1 (4.4.9) 
0 0 1 -3 

0 0 1/ 

which is clearly nonsingular. Starting with the bottom row, we can easily 
verify that its inverse is 

/1 0 0 0\ 

0 1 1 
S 

0 0 1 3 

\O 0 0 ll 

and so by (4.4.8), for m = 3 (i.e., a cubic), 

(4.4.10) 



n 

x 

rz 

r2 .. 
— X 
2! 

n 
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Equation (4.4.8) thus provides the link between the derivative and the 
backward-difference state-vectors of a polynomial. We accordingly call S 
a link matrix. (See Ex. 4.9.) 

Comparing S of the above example to S, the Stirling matrix of the first 
kind (Table 2.1 on p. 23), we see that the elements of S can be obtained 
by transposing the matrix S and removing all minus signs. For this reason 
we have called S the associate Stirling matrix of the first kind and we 
display it in Table 4.1 up to i, j = 10.t 

The matrix 	can be obtained analogously from 	the Stirling matrix 
of the second kind (Table 2.2 on p. 25), by transposing that table and 
negating the odd superdiagonals. This gives S-1 , the associate Stirling matrix 
of the second kind, as displayed in Table 4.2. t By using the matrix S 
together with appropriate scale factors, we are thus able to obtain derivative 
state-vectors from the backward-difference state-vectors. We can, of course, 
also use the transition matrices of the previous sections in combination 
with the link matrices, as demonstrated in the following example. 

In subsequent work we shall obtain an algorithm which gives us On n , 
the updated estimate (0-step prediction) of the backward-difference state-
vector of (4.4.6). In order to then obtain a 1-step prediction of the 
derivative state-vector + 1 , n Z* 	of that equation, we will use n  

Z* 	= Irn (1) SIT *  n+1,n 	 n, n (4.4.12) 

where S is the associate Stirling matrix of the first kind and (I)(1) is defined 
in (4.2.15). 

The reader can follow the derivation which led to (4.4.8) and satisfy 
himself that the forward-difference and derivative state-vectors, namely 

(4.4.13) 

n 

tWe give a recursion formula for generating S and S' 1  inthe notes at the end of this chapter. 
t Observe from Tables 4.1, 4.2 that both S and S-1  are nonsingular, regardless of their order, by 

virtue of the fact that they are upper-triangular with l's on the diagonal. 
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are likewise related by 

Z n = S T V n 
	 (4.4.14) 

where S T is simply the transpose of the Stirling matrix of the first kind 
(see p. 23). 

4.5 THE LAGRANGE ESTIMATOR 

One of the classical problems in numerical analysis is the construction of 
the polynomial which passes through a set of equally spaced ordinates. One 
method in wide use is that due to Lagrange and results in expressions for 
the polynomial and its derivatives as linear combinations of the ordinates 
through which the polynomial is to pass. We present here a method for 
performing Lagrange interpolation which involves considerably less effort 
than the classical approach (see e.g. [4.2] ), while at the same time serving as 
a vehicle for the ideas being developed in this chapter. It also leads directly 
to a programmable algorithm. 

Suppose we have a process x(t), not necessarily a polynomial, which is 
sampled without errors at equispaced instants r seconds apart. This gives us 
a train of observations - 

y 0  = x (0), y 1  = x (r) , . . . , y n  = x (nr) 

Assume that we are located in time just after t = nr but before (n + 1) r, and 
that we wish to obtain predictions of what x (t) and its derivatives will be at 
(n + 1 ) r. 

We decide to do this by passing a polynomial of degree L through the 
most recent L + 1 observations 

3'n-L' Yn - L + 	• • Yn 

and then to obtain estimates of the required 1-step predictions by the 
evaluation of this polynomial and its derivatives at (n + 1) r. 

Assume that n is fixed, i.e., we freeze the further passage of time so that, 
for the moment, no additional observations are made. Then the polynomial 
passing through the 3 points y n  2  , Yn  _ 1, yn  is shown in Figure 4.1 where 
for definiteness we are considering the quadratic case (L = 2). 

We symbolize the required polynomial by [p* (r)]., where the star symbo-
lizes estimation and the continuous variable r is the polynomial argument, 
with the r-origin, as shown in the figure, being taken at the beginning of the 
interval containing the observations of interest. The subscript n in [p* (r)]n  is 
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Time axis 

	  r-axi s 
0 	 1 	 2 

Fig. 4.1 The interpolation polynomial [p*(r)] a . 

to remind us that this polynomial is based on the set of observations whose 
most recent member is y n  . It thereby serves to differentiate between this 
interpolating polynomial and its predecessors and successors, which may or 
may not be the same polynomial as [p* (r)] n . 

Since, by assumption, [p* (0] n  is to pass through y n-2' yn-1' yn' we must 
have 

[p* (2)] n  = yn  

[p* (1)] n  = yn  _ 1 	 (4.5.1) 

[p* (0)] n  = yn  _ 2  

We now evaluate successive backward differencest of [la* (r)] n  at r = 2, by 
the use of (4.5.1), i.e., 

/7°p* (2)\ 	/31 n  

p* (2) 	= y n 	yn -1 

\ p* (2)/n 	\yn  — 2yn  _ 1  + yn 

tWith respect to r. 
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and defining the vector V% by 

/___1  Vol,* (2)\ 
0! 

V *  n,n 
(4.5.3) 

we write (4.5.2) as 

1 

0! 

V*  n,n 

1° 1 	—2 

yn 

Yn- 1 

yn- 2 

0 

1 	0 
1! 

0 
2! 

0 (4.5.4) 

We call the vector of observations in the above equation Y (n) , i.e., we define 

yn 

Y = .(n)  Yn - 1 

Y n - 21 

(4.5.5) 

(Note that the subscript of Y (n)  is parenthesized to show that it is not a 
sampling instant but rather the ordered set of observations whose most 
recent is y n .) Then (4.5.4) can be written 

V n n * = F-1BY (n) , 

where F-1  is the inverse of the matrix 

/0! 0 	0 

F 	0 	1! 0 

\O 	2!, 

(4.5.6) 

(4.5.7) 



90 	INTRODUCTION TO SEQUENTIAL SMOOTHING. AND PREDICTION 

i.e., F is the diagonal matrix of factorials, and where 

1 	0 	0\ 

B ._.-- 	1 	—1 	0 

1 	-2 	1/ 

(4.5. 8) 

is a weight matrix easily constructed using the binomial coefficients. 
We set out to obtain the 1-step prediction of the derivative state-vector, 

and this is now easily derived as follows. Let 

r2 
/ 

\2! b, n 

Then by (4.4.12) 

Z * 	= (1)(1) SV *  n + 1,n 	 n 

and, taking into account (4.5.6), we thus have 

+ 1,n Z 	= (I) (1) SF-113Y (n) n  

Finally the derivatives themselves, namely 

Z *  n,n 
(4.5.9) 

(4.5.10) 

(4.5.11) 

X *  n + 1,n (4.5.12) 

may be obtained using (4.2.18), i.e. 

+ 1,n 	(DM X* 	= D (7) 	SF- 1BY (n) 	 (4.5.13) n  

This expression, while perhaps appearing to be a bit formidable, is 
actually easily reduced to 

X*n + 1,n = WY(n) 
	 (4.5.14) 



0 

1' 
3 
2 

1/ 

\ 

1 2 

1 

W 

3 —3 

§- —4 
2 

1 —2 

o o 
1 

(4.5.15) 

1 

0 

0 

/1 

1 

\1 

—1 

—2 V 
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in which form it is readily implemented in a computer. For the quadratic 
case the reader can easily verify that (4.5.13) gives us, (assuming r = 1) 

W is called the weight matrix since it provides the numbers by which the 
observations Y (n)  are weighted in (4.5.14) to give X: Ln . 

We can easily generalize as follows. Let 

[E]. = t-1) ji) 	0 	i,j 	L 	
(4.5.16) 

	

[FE. 	j! 

	

I j 	
8 ij 

0 < i,j < L 

(Note that F-1  and not F is used in (4.5.13).) The matrix S can be obtained 
for any L up to 10 from Table 4.1 on p. 85. F(h) is defined in (4.2.15) 
and D(r) in (4.2.19). Then 

X + h,n = D (r)(1)(h)SF-1 BY (n) n  (4.5.17) 

gives the h-step prediction of the derivative state-vector based on estimation 
by polynomial interpolation. 

The weight matrix of (4.5.17) namely 

W(h,r) = D(r)(I)(h)SF-1 B 	 (4.5.18) 

can be evaluated once and for all when 	and L are fixed, thereby 
yielding the L + 1 algorithms-contained in 

rn + h,n = w(h,r)Y (n) 
	 (4.5.19) 

in their final computational form. 
Of course we now unfreeze n and permit it to cycle through successive 

values, thereby obtaining successive estimates of the h -step prediction of the 
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derivatives of the process producing the observations. As the numbers which 
form Y

(n) n are obtained and fed to the algorithm, so the vectors e + n  are 
produced and constitute the output of the algorithm. The scheme is 
readily implemented on a digital computer and can be seen to be a simple, 
real-time way of obtaining estimates based on the interpolating polynomial. 
(See Ex. 4.10.) 

4.6 CONSTANT-COEFFICIENT LINEAR DIFFERENTIAL 
EQUATIONS 

Until now, we have considered only one form of model, namely the 
polynomial. Instead of viewing a polynomial in its functional form 

(4.6.1) 

we could also view it in the equivalent form 

-"x(t) = 0 	 (4.6.2) 

This differential equation generates, as its solutions, the entire class of 
polynomials of degree m as given by (4.6.1). 

Suppose, instead of (4.6.2) we consider the somewhat more general 
linear, constant-coefficient, differential equation 

(Dm + + yin  Dm + • • • + y 1  D + yo )x(t) = 0 	 (4.6.3) 

where the y i  are constants. Thus (4.6.2) is a special case of (4.6.3). For 
definiteness we let m = 2, and consider 

(D3  + y2  D 2  + y i  D + yo ) x(t) = 0 	 (4.6.4) 

Define as the state-vector 

ix(t)\ 

X( t) 	i(t) 
	 (4.6.5) 

VW) 

Then using (4.6.4) to obtain *i* in terms of x, x and Y, we see that 



—d X (t) = 
dt 

x = 0 (i t 
	

(4.6.6) 0 

I t 	1 Y 0  — Y 1 

i.e., (4.6.4) can be stated as 
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—d X (t) = C X (t) 
	

(4.6.7) 
dt 

(4.6.8) 

As a final generalization, we can consider the transformation 

X (t) = G X (t) 	 (4.6.9) 

where G is a 3 x 3 nonsingular constant matrix. Then (4.6.7) becomes 

X(t) = AX(t) 	 (4.6.10) 
dt 

where 

A =7- GCG-1 	 (4.6.11) 

and since G is arbitrary, A is any 3 x 3 matrix of constants. 
Now, it is well known from the elementary theory of differential equations, 

that the solutions of (4.6.4) are of the form 

x(t) = 	pi (t)exit 	 (4.6.12) 
j=1 

where p j  (t) is a polynomial in t and A i  is a zero of the characteristic equation 
of (4.6.4) namely 

where 

0 1 0 \ 

C = 	0 

( 

0 1 

--Y0 -Y1 -11 2/ 

+ y2  A 2  + y i  A + y o  = 0 	 (4.6.13) 
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and where k equals the number of distinct roots of this equation. The 
degree of the polynomial p i (t) is one less than the multiplicity with which 
A. j  occurs as a root of (4.6.13). 

Since (4.6.10) is simply a restatement of (4.6.4), it follows that the 
solution to (4.6.10) is likewise of the form 

X(t) = 	pi (t)e
X•t 	 (4.6.14) 

j=0 

where the coefficients of ) 1 (t) depend on initial conditions. 
Wheny2  = y i  = yo  = 0, (4.6.13) becomes 

A 3  = 0 	 (4.6.15) 

which means that we have a single root, namely zero, of triple multiplicity. 
In this case (4.6.14) takes on the form 

x(t) = a o  + a l t + a 2 t 2 	 (4.6.16) 

which is, of course, the general polynomial of degree 2. 
We see then that in general, the following three equations are equivalent 

(Dril 4" 1  + 	Dm 	- • • + y 1 D + yo ) x (t) = 0 	 (4.6.17) 

d X(t) = AX(t) 	 (4.6.18) 
dt 

x(t) = 	p i (t) ex i t 	 (4. 6.19) 
j = 0 

and that the polynomial model considered previously is simply just a special 
case of this more general model, comprised of products of polynomials and 
exponentials. 

In practice, the polynomials (not multiplied by exponentials) are probably 
the only really useful subset of these functions. This accounts for the 
detailed treatment given to the polynomial transition matrices in the earlier 
sections of the chapter. However, the subsequent developments of the 
present section are a necessary preamble to the extensions which we intend 
to make later, and for that reason we continue our analysis further. 
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We now examine the solutions of (4.6.18) in more detail. First we write 
the vector Taylor's series 

2 
X(t 	= Pt) ± CDX(t) + 	+ • • • 

2! 
(4.6.20) 

co e r) 37(#)  
v=c, v! 

But by (4.6.18) 

Dv X(t) = A' X(t) 
	

(4.6.21) 

and so (4.6.20) can be written 

X (t + C) = 	
(CA)v 

 X(t) 
	

(4.6.22) 
V=0 14  

It is shown in texts on matrix theory (see e.g. [4.3, p. 335 et seq] ) that 
the infinite sum of matrices above converges to a well-defined matrix G (CA) 

for any A and C, with the property that 

G(Ci A)G(C 2 A) = G [(CI  + C2 ) A] 

[G (Ci A)] k  = G (kC1 A ) 
	

(4.6.23) 

G(CA) = G(CA)A 
c1C 

Since this is reminiscent of the scalar exponential function we accordingly 
write 

CO 

G(WA) 	exp(CA) 	( CA)v  
v=o vl 

(4.6.24) 
(See Note), 

and (4.6.22) becomes 

X(t + 	= exp(CA)X(t) 	 (4.6.25) 

Note: The matrix exponentialexp ( A) does not share all of the properties of the scalar exp ( a). 
Thus, e.g., exp (A) exp (B) 	exp (A + B) unless A and B commute. 
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Thus, given the state-vector valid at time t, (4.6.25) gives the value of the 
state-vector at any other time. This equation is in fact a transition relation, 
and so we write it as 

X(t n  + 	= (I)(C)X(t.) 
	

(4.6.26) 

where 

(I)(C) 	exp(CA) 
	

(4.6.27) 

For now the function exp (64) can be thought of by its power-series, i.e. 

exp (CA) = I + CA + 
2 	 3 

A 2  + 2- A 3  + • • • 
	 (4.6.28) 

	

2! 	3! 

although there are more powerful ways possible to actually evaluate it, as 
we shall presently show. 

For the case of the polynomial model we now see that we can obtain each 
of the transition matrices of the preceding sections by the use of (4.6.27). 
(See Ex. 4.11 and 4.12.) Thus for any of the polynomial transition matrices 
already derived, there exists an associated matrix A such that (4.6.27) is 
satisfied. 

It follows immediately from (4.6.27) and (4.6.23) that 

(4.6.29) 

thereby proving (4.2.24) and (4.3.8). We can also deduce from (4.6.28) 
that (1)(0) = I. Moreover, setting h = in (4.6.29) shows that (I)(C) is 
nonsingular for any (and any A). 

Returning to (4.6.26) we have 

X(C) = (I)(C)X(0) 	 (4.6.30) 

and so, by differentiation of both sides, 

(1)(C) X (0) = —d X (4') 
	 (4.6.31) 

dC 

(We use the symbol (d/dC) (I)(0 to mean the matrix obtained by differentiating 
each element of (NCO Combining the above equation with (4.6.18), we 
obtain 
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(1)(C) X(0) = AX(C) 
dC 

= 	(C) X (0) 

and so, since X (0) is arbitrary, we must have that 

(4.6.32) 
(by (4.6.30)) 

—d (1)(C) = Aszto(C) 	 (4.6.33) 
dC 

Thus both the state-vector X(t) and the transition matrix 0(C) satisfy the 
same differential equation. (See Ex. 4.13.) 

Finally, consider the associated differential equation 

—d T(C) = -'A(C)A 
	

(4.6.34) 
dC 

Its solution is 

VC) = 	exp(-CA) 	 (4.6.35) 

which can be verified as follows. By direct differentiation, (4.6.35) gives 

—d  INC) = -T(0) exp(-CA)A 
dC 

= -VOA 
(4.6.36) 

(by (4.6.23)) 

which is the same as (4.6.34), and so (4.6.35) is in fact the solution. 
Suppose we now take, as initial conditions for (4.6.34), 

W(0) = I 

Then (4.6.35) shows that 

111 (C) = exp(-0) = [4:1)(0] -1  

(4.6.3 7) 

(4.6.38) 

i.e., (4.6.34) is the differential equation for the inverse of OW. (See Ex. 
4.13.) It is thus possible, if required, to obtain (1)(C) and its inverse W(C) 
from the matrix A, by numerical integration of the system of differential 
equations 

—d CC) = AO(C) 
dC 

(4.6.39) 



dC 
(4.6.40) d (C) = 	(C)A 
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with initial conditions 

O(0) = I = 	(0) 	 (4.6.41) 

We shall return briefly to this question of numerical integration in the next 
section. 

Consider the following simple example. Given the matrix 

- C 	c 
G(C) = 	

-C 	1+ C 
	 (4.6.42) 

we wish to determine whether or not it is a transition matrix. 
If it is, then by (4.6.27), there must be a matrix A so that 

G(4") = exp(CA) 	 (4.6.43) 

i.e., we must be able to show that, for some A, 

= I + 	+ 4: 2—A 2  + 	+ 
. 3! 2 

• • • (4.6.44) 

We can determine the probable form of A by writing (4.6.42) as 

	

1 0 	-1 1 
G(C) = 	+ 

	

(0 1 	-1 1 
(4.6.45) 

which appears to be a truncated version of (4.6.44). From (4.6.45) the 
matrix A must be 

A (4.6.46) 

and - since for this matrix, A 2  and all higher powers are null, we see that G (C) 
does indeed satisfy (4.6.44). Hence it is in fact a transition matrix. 

We also verify that (4.6.39) and (4.6.41) hold true for G(C). Thus, from 
(4.6.42) 

c1C 	( —1 

dG (C)  
(4.6.47) 
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and from (4.6 46), 

AG (e) = (-1  

—1 (4.6.48) 

  

Thus 

  

dG(C)  - AG (C) 

and clearly also 

G(0) = I 

showing that G(C) does indeed satisfy (4.6.39) and (4.6.41). 
The reader can now verify, by the same argument, that 

cos e 	sine G(e) 
— sin e cos e 

is a transition matrix, whereas 

(4.6.49) 

(4.6.50) 

(4.6.51) 

(4.6.52) 

is not. 

4.7 TIME-VARYING LINEAR DIFFERENTIAL EQUATIONS 

The next step in the generalization of the choice of models is to assume 
that the process satisfies a linear differential equation with time-varying 
coefficients, i.e. 

— X(t) = A (t) X (t) 
	

(4.7.1) 
dt 

(The preceding discussion in which A(t) was a matrix of constants is, of 
course, subsumed by this more general model.) 
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We attempt to solve (4.7.1) using a vector Taylor's series as we did in 
(4.6.20). Thus we form the series 

X(t) = X(0) + t[DX(t) + —t2 [D2X(t) t=o] t=0]
+ • • • 

• (4.7.2) 
CD 

= 	FD VX W 
.1 

I 	1 
V=0 V! 

t=o  L 

In this case, however, the time-varying nature of the coefficient matrix A(t) 
complicates matters considerably. Thus, by (4.7.1) 

DX = AX 

D 2 X = D (AX) = AX + AX = (A + A 2 ) X 	
(4.7.3) 

D 3  X = (A .  + AA + AA) X + (A + A 2 ) AX 

= 	+ AA + 2AA + A 3 )X 

and so the simple result obtained in (4.6.22) now fails to materialize. 
However, under fairly relaxed conditions on A(t) (see e.g. [4.6] ), by 

virtue of the linearity of (4.7.1) there also exists a linear relationship 
between X (t) and its initial value X (0). Thus, it can be shown that there 
exists a matrix P(t) so that X ( t) of (4.7.1) satisfies 

X(t) = P(t)X(0) 	 (4.7.4) 

and that the matrix P(t) is nonsingular. 
The above equation is suggestive of a transition relation, but on comparing 

it to (4.6.25), the essential difference between the time-varying and constant-
coefficient models becomes very clear; in the present case the matrix P (t) 
does not have the simple exponential form which it had previously. An 
immediate result is that, in general, 

P(ht) 	 (4.7.5) 

equality holding only for the transition matrices which stem from constant-
coefficient models (c/f (4.6.29)). 

In order to examine further the properties of the transition matrices 
associated with time-varying linear systems, we first manipulate (4.7.4) into 
a more useful form. Thus (4.7.4) gives us the equations 

Mtn  C) = P(tn  C)X(0) 

X(tn) = P(t )X(0) 
(4.7.6) 
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and so, by combining them, we obtain 

X(t n 	C) = P(t n  + C)[P(td] -i  X(t n) 	 (4.7.7) 

in which we have used the fact that P (tn) is nonsingular. 
Define 

(I)(t n  + C, tn) 	P(tn  + C)[P(t n)] -1 	 (4. 7. 8) 

(The double argument of (1) means that each of its elements is a function of 
two variables.) Then (4.7.7) can be written 

X(t n + C) = (I) (t n + C,t n)X(t n) 	 (4.7.9) 

which is a transition relation in the more usual form. 
This equation displays the time-varying nature of the process very clearly, 

since it shows that the transition matrix relating X(t n) and X (t n  + C) depends 
not only on the separation interval C, as it did formerly, but also on tn , the 
time at which the transition is occurring. (See Ex. 4.14 and 4.15.) We note 
that (4.7.9) can be written 

X(c) 	(I)(t rn , tn)X(t n ) 
	

(4.7.10) 

and that the matrix to satisfies 

(tn , tn) = 	 (4.7.11) 

The matrix Ct n + C, t n) as defined by (4.7.8) is clearly not easily obtained 
from that equation, and we now consider how one does in fact generate 

n 
+ C, t n) given the matrix A (t) of (4.7.1). To do this, we examine the 

differential equation which (I) satisfies, and based on our experience with the 
constant-coefficient case, we suspect that it is of the same form as (4.7.1). 

In forming (4.7.6), we set t = tn  + C. Thus, differentiation with respect to 
t and C are equivalent. Differentiating (4.7.9) gives 

_a oct + c,ta)x(ta) 	a xct 
n 	 a 

(94.  

Then by (4.7.1) and (4.7.9) 

as (Dun  + C,ta)x(t a) = Acta  + opta  + C)  
= A(t n + C) (1) (t n + C,t n)X(t n) 

(4. 7.12) 

(4.7.13) 
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and since Mt n) can be made to assume an infinity of values depending on 
X (0), we must have 

_a ctn + t, t n) = Mt n + C) (D(tn + C, t n) 
at 

(4.7.14) 

(I) and X do in fact both satisfy the same differential equation. 
We can obtain (I) by numerical integration of (4.7.14), using any chosen 

integration technique. One simple integration procedure can be obtained as 
follows. By Taylor's theorem 

(1)(t n 	h, t ) 	(I)(tn ,tn ) + h —a ct + 	t )1 	+ 0(h2)(9‘,. 	n 	n =0 

The term 0 (h 2 ) is actually 

0(h2) —h2 _32 ct +) n L=e 	o < e < h 
2! a2 	n  

(4.7.15) 

(4.7.16) 

and so goes to zero like h 2 . Neglecting this error term and taking account 
of (4.7.11) and (4.7.14), we obtain 

430 (t n + ht ) = I + hA(tn) 
	

(4.7.17) 

This represents the initial step of a numerical integration algorithm for 
4:1) (t n + C, t n). 

First we note that if t  is sufficiently small, we simply set h = C and 
obtain Ct n + C, t n) by a single application of (4.7.17). The "smallness" of 

is gauged by whether or not we are prepared to ignore the 0 (h 2 ) term of 
(4.7.15) when h = C. If this error is unacceptably large then we break 4" up 
into equal fractions, say h = C/m where m is an integer. We now use 
(4.7.17) followed by repeated applications of the same idea namely 

(I)(t n  + kh,tn) = (I)[tn  + (k 	1)h,tn] + h--(9  (I)(t + 4. , t 
at

n  

which, by the use of (4.7.14), reduces to 

(I)(tn  + kh,tn) = 3 1+ hA[tn  + (k — 1) hl (Kt n  + (k — 1)h, t n] 

k = 1, 2, 3, . . . , m 

(4.7.18) 

(4.7.19) 
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The integer M. is chosen so that the errors, which at each stage are 0 (h 2 ), 
collectively give rise to an acceptably small error after them cycles of the 
integration algorithm. Depending upon how much computation time we 
are prepared to use, this integration method can be made to yield (13 ,  (tn  + C, tn) 
to any required degree of accuracy. Alternatively, we can use higher order 
numerical integration schemes (see e.g. [4.2] or [4.5]) to give (1)(t n  + C, tn) 
with improved accuracy but at the cost of more computation on each 
integration cycle. 

In the case of the constant-coefficient model, the possibility of obtaining 
(1) by numerical integration (see p. 97) may have seemed somewhat 
gratuitous, since one expects that the direct evaluation of exp (tA) might be 
simpler. However, this is not in general true, since in order to derive exp ( tA) 
the eigenvalues of A are required, and obtaining them poses a nontrivial 
problem. With certain exceptions numerical integration is, in fact, the most 
readily available way for actually obtaining the transition matrix of a model 
from its differential equation, whether constant-coefficient or time-varying. 

Finally we consider the inverse of 41 )(tn  + C, tn) a matrix _which we shall 
make use of in a later development. By (4.7.6) and (4.7.8) we can write 

X(t) = P(t n)[P(t n  Or X(t n  4- ) 

= (Mtn' t n C)X(tn C) 
	 (4.7.20) 

and so 

[ (Mt n C, t n)r i  = Ct n , t n C) 	 (4.7.21) 

or 

[(1)(t-„, t )1 -1  = (1)( , tn) 
	

(4.7.22) 

We can thus obtain the inverse of (13. by simply interchanging its two 
functional arguments. 

However, in practice we seldom expect to know the actual functional 
form of (1), and so again we must rely on numerical integration. Thus, 
consider the differential equation 

a 111 (tn  + C, tn ) 	— 111 (tn  + C, tn)A(t n  (94.  

(4.7.23) 
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and form the product IN. Then by differentiation and making use of 
(4.7.14) and (4.7.23) we see that 

a —T + 4-, t,,A)(t 	= 	un 	tn) Aft. + C)(131(t n  + C, 
n 

+ ‘11 (tn  + C,t.)A(tn  + C)0(tn  + C,t.) 

= 0 (4.7.24) 

This means that T(t n C, t ri) (I) (t n C, n) is independent of C and so we can 
write 

111 (tn  + C, tn) Ct. + C, tn) = B(t.) 
	

(4.7.25) 

We now impose the initial conditions 

n' n
) = I 
	

(4.7.26) 

and setting C = 0 in (4.7.25) shows that B(tn ) is in fact the identity matrix, 
and hence that 111  is the inverse of (1). 

This provides us with a way of obtaining (Ir by numerical integration. 
Thus by using (4.7.23) together with (4.7.26), we can follow the numerical 
integration scheme of (4.7.19) thereby obtaining the inverse of (I)(t. + 4*, t.). 

In conclusion, we observe that what is true for to  is true for t generally, and 
so we summarize the theory developed in the present section by the follow-
ing system of equations: 

—
d

X(t) = A(t) X(t) 
dt 

X( t + C) = (I)(t + 	t) X ( t) 

a 	+ c,t) = Act + C)43.(t + c,t) 
(34 

[ 1( t + 	= 'V( t + C, 	= (I)( t, t + 

a T(t + c,t) = —T(t + c,t)mt + C) 
ac 

00, 	= I = 	(t, t) 

(Mt + 	t + ii.)(1)(t + 	t + 13) = (DU + C, t + [3) 

the last result following readily by a double application of (4.7.28). 

(4.7.27) 

(4.7.28) 

(4.7.29) 

(4.7.30) 

(4.7.31) 

(4.7.32) 

(4.7.33) 
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4,8 NONLINEAR SYSTEMS 

We come now to the final generalization in choosing the model, namely 
to the case of the nonlinear differential equation 

—d X(t) = F[X(t),t] 
	

(4.8.1) 
dt 

where X is the state-vector at time t and F is a vector of nonlinear functions 
of the variables of which X is comprised and possibly of t as well. To make our 
subsequent discussion more explicit, we shall actually follow an example 
through in this section, accompanying each of the theoretical statements 
with a corresponding further development of the example. 

Example: 

Consider a body moving under the action of gravity through the atmosphere. 
To a good approximation the magnitude of the drag force exerted by the 
atmosphere on the body is given by 

d 	2 = —pv2  a (4.8.2) 

where p is the atmospheric density, v is the speed of the body and a is 
assumed to be a known constant. 

Define the x o  , x 1 , x2  coordinate system so that its origin is at some point 
on the Earth's surface, x o  is North, x l is West and x2  is Up. We assume the 
Earth's surface to be essentially flat. It is well known that to a good 
approximation, the atmospheric density obeys the exponential law 

P = Po e 
 
-kx2 	 (4.8.3) 

which is consistent with the assumption of an isothermal atmosphere (k and 
p c)  are taken to be constants). 

The total force acting on the body is the sum of drag and gravity forces, 
the former along the velocity vector, the latter along x 2 . We resolve the 
drag-force into its components in the x o  , x 1  , x2  system by noting that the 
velocity vector is 

V = vV 	 (4.8.4) 
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where v is its length and 1) is the unit vector along V. Thus (4.8.2) can be 
written in vector form as 

Fd 	2 = —1 Pa  v2V 

A A 	A 
Now, letting i, j, and k be unit vectors along the x o , x 1  , and 
respectively, we have 

A 	/ 	A 
V = 'Go 	

.■ 
+ X 2  k 

and so 
A 

A 	Xo  / + X J ± X 2 k 
V — 	  

V 

Hence 

A 	A 	A) 
F

d 	2 —1 pav 	i + 

giving, as the differential equations of motion 

tit; = 	pavio 

 —2 pavz l  mar l = 

m3e2  = 	— mg 

(4.8.5) 

X 2 axes 

(4.8.6) 

(4.8.7) 

(4.8.8) 

(4.8.9) 

The term g is taken to be a constant although it is really a function of x 2 , a 
refinement which is easily introduced. 

We define the state-vector as 

(4.8.10) 
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Then forming g by the use of (4.8.9) and (4.8.3), we obtain 

IF ^I 
z l  

X3 

X
5 

(4.8.11) 
aS 

k— Po e- x2 (x 32 + x42  +  x52) 2 x 3 
2m 

-Poa 

2m 

-Po a  

\ 2m 

e
-kx2 

(x32  + x42  + X5
2)2 X4 

e
-kx 2  (x 32  + x4

2 + X5
2)2 X5 g/ 

x2 

x3 

x4 

\acs  

which is of the form (4.8.1). 
The treatment of such nonlinear systems will be essentially as follows. 

For a given set of initial conditions, X(0), we can numerically integrate 
(4.8.1), thereby obtaining the associated subsequent history of X (t) known 
as a nominal trajectory. We assume that we have such a trajectory,t based 
on some assumed initial conditions, but that the true initial conditions were 
in fact slightly different, by an unknown amount. Let the true trajectory, 
X (t) , differ from the nominal trajectory by an amount 8X (t), i.e. 

X(t) = X(t) + 8X(t) 	 (4.8.12) 

Then 6X(t) is a vector of time dependent functions which are, by assumption, 
small in relation to the corresponding elements in X (t). Differentiation of 
(4.8.12) gives us 

—X(t) =-c1-X
-

(t) + —
d

6X(t) 
dt 	dt 	dt 

(4.8.13) 

f At a later stage (in Chapter 8) we will describe explicitly how nominal trajectories are obtained. 



ko 

fouo + 4":2 1 + 	= 10 + c 
Xo 	axo  
x1 

afo 
+ 77 

ax, 
310 

ro 
x1 
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and using (4.8.1) we obtain 

—d —X(t) + —d SX(t) = F[Tat) + 8X (t)] 
	

(See Note) 	(4.8.14) 
dt 	dt 

Consider say the first equation of (4.8.14), namely 

d _  
dt 	dt 

xo (t) + —d 8x 0  (t) = fo [5c" 0 (0 + 8x0  (t), 7c 1 (t) + Sx i (t)] (4.8.15) 

where we assume, for simplicity, that X is a 2-vector. Let t be temporarily 
fixed. Then the right-hand side of (4.8:15) is of -the form 

fouo + 	+ n) 

which, by a double application of Taylor's theorem, gives 

1 ( (92 f0 
a  2 

24-77 	I 0 	2 a2f)  _ 4-2 + 
21 	ax 02 	aX 0 aX 1 	ax 12 

 

20+ 
+v (4.8.16) 

 

where 0 < < 4", 0 v < 
If we drop the final term, as we shall henceforth do, then we see that we 

are committing an error of the form 

aC 2 4, b67 	2 

and if 	and n  are themselves sufficiently small, this term is very small. 
However, we should always bear this error term in mind, particularly if 77  

and 4" are of questionably large size. More will be said about this at a 
later stage. 

Note: We have not shown that F may also depend explicitly on t, as we did in (4.8.1), but this is 
implied both here and henceforth. Omitting t as a possible functional argument has no effect on the 
discussion to be presented. 



ax o  
(4.8.20) 

f_d  6x 0(t 
dt 

—d  8x i (t) 
dt 	I 

ax, 

afi 	afl  

axo  I xow 
21(t) 
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Returning to (4.8.15) we are now able to see that, to first order, 

d 	 of 
x 0(t) + —

d 3x () = fo(5Evii) 	0 
dt 	dt 	 ax o  

so  
77 1 

• 8x 0  + 310— 
ax, 

    

(4.8.17) 

and in a like manner 

of 
—d 

(t) + —
d 8x (t) 	fi (5-c o ,Fc i) 

dt 1 	dt 1 	 axo  

'Cl 

af 
• 6x 0  + 

axi  
. 8x i  

x o  
xl 	

(4.8.18) 

  

But by assumption 

—d X (t) = P[7(t)] 
dt 

(4.8.19) 

which means that (4.8.17) and (4.8.18) can be written 

and in general we see that, to -first order, 8X(t) satisfies the time -varying 
linear differential equation 

—d 8X(t) = A[X(t)]8X(t) 
dt 

(4.B.21) 

where the matrix A[PO] is defined by 
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di (X) 
[A [X (t)fi . ._ 	 

nx.  
j X = 17( 

(4.8.22) 

  

Example: 

In order to make the above development more specific, we pause briefly 
to derive the A matrix for the system of equations (4.8.11). Thus, differ-
entiating each term with respect to each variable gives the matrix A [Te(t)], as 
follows: 

I 
0100 	 1 	 0 	 0 
	 -I 	  

—0 11-0-1. 	0 	 0 	 1 	 0 

I 0 
I 0 	0 	 0 	 0 	 1 

1 	 7 --1 	_ 	-1 
i I -ki, ,i, o 1 o cke-k572 -Ux-3 -ce

- k 
i.2 52 

 + 32 
ce

...1672(3 7i) 
-ce 

ti  A[X(t)] - 	I.  

-n2 „- 
-kx2 	 ' "4 	 -k 1E2(4 X5) 0 0 cke 	ux4  -ce

-k C4) 
-ce 	 -ce 

(4.8.23) 

:) 
-kk-2 	

+R 
0 0 oke 	ux

s 
-ce-ki2(3x5) 	-ce 	— 	-ce 	 

r, 

Po 
Note: c 	- 	d = (R. 

3 
 2 ÷ x4 	x5 

 2 	2)1/2 	_ 2m° an 	
. By x2  we mean -Z2  (t) etc 

• 

Once the functions io(t), ;(t), . . . , 5 (t) are obtained by numerical integra-
tion of (4.8.11) starting from Y(0), they can be inserted into A [5C (t)] thereby 
providing a square matrix of numbers. Alternatively if Dt.) has been obtained 
previously, we can integrate (4.8.11) forward starting from X ( t n) to obtain 
7e(t n -I- 0 These numbers, if inserted into A, then provide us with 
A[X—  (t n  + C)] and we see that, in general, A is simply a time-varying matrix 
whose elements, instead of being given explicitly as functions of t, are given 
as functions of 0(t), , Fc 5 ( t) which are themselves defined by a differential 
equation rather than explicity. 

Returning now to (4.8.21) we compare it to (4.7.1) and, as a result, 
are able to see immediately that all of the theory of the preceding section 
on time-varying linear differential equations now applies, where the state-
vector X (t) of (4.7.1) is now 8X (t) in (4.8.21), and the time-varying coefficient 
matrix is A [X( t)] rather than just A (t). 
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Thus the transition equation for 8X (t) will be (c/f (4.7.9)) 

8X(t n  + 	= (I)(tn  + 	to  ;R-)8X(t n) 	 (4.8.24) 

where (1) is, as before, a matrix of functions of two variables as well as 
depending on the assumed reference trajectory X (t) about which' 8X (t) is the 
perturbation. 

The transition matrix (1), and its inverse 111, satisfy (c/f (4.7.14) and 
(4.7.23)) 

o(tn  + c,tn; Te) = A[g<tn  + C)]ctn  + c,tn; To 	(4.8.25) ac   

a T(t + 	;70 = -- 111 (t + 	t ;YOMTC - (t + C)] 	(4.8.26) 

with initial conditions 

(D(t ,t •5C) = 	= 111 (t ,t • 5T) n n 1 	 n n 1  (4.8.27) 

These can be integrated by the numerical schemes discussed in the previous 
section (or, of course, by any other scheme the user may wish to employ) 
to provide (I)(t n  + C, t.;X) and its inverse. 

In this way we are able to reduce a model based on a nonlinear differential 
equation to a problem involving a time-varying linear differential equation. 
The reader is reminded that the linearization is based on the assumption that 
a nominal trajectory is available, and that the perturbation vector SX(t) is 
sufficiently small, so that terms involving products and squares of the 
components of that vector can be safely ignored. How that nominal tra-
jectory is actually obtained will be discussed later. We now consider a 
simple example in order to reinforce the above ideas. 

Example: 

Returning to (4.8.2), we assume one-dimensional motion along the x 
axis. Then (4.8.2) gives us the differential equation 

3e(t) = k[i(t)] 2 	 (4.8.28) 

where we assume that k is a known constant. This is a nonlinear differential 
equation in the state-variables x (t) and z (t). 
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First we reorganize (4.8.28) into the vector form of (4.8.1). Thus 

—d  x(t) = i(t) 
dt 

and by (4.8.28), 

—d i(t) = k[i(t)]2 
 dt 

which means that we can write 

d
x(t)\ 	fo ix(t), i(t)] 

dt i(t) 	fi {x(t), i(t)] 

where 

fo [x(t), i(t)] = i(t) 

and 

[x(t), i(t)] = k [lc (0] 2  

(4.8.29) 

(4.8.30) 

(4.8.31) 

(4.8.32) 

(4.8.33) 

The latter two equations define the nonlinear functions of the state-
variables x(t) and i (t), which make up the vector F[X(t)] of (4.8.1). 

We now linearize the above system about a nominal trajectory. Thus, 
letting 

X(t) 	
C

.

U)) 
(4.8.34) 

Fc(t) 

be that trajectory, and assuming that 

x(t) 	= 	z(t) + ax(t) (4.8.35) 

i(t) 	= 	z(t) + Si(t) 

we rewrite (4.8.31) as 

i(t) + 6x(t) 	( t) + d  ( t) 

(4.8.36) 

(4.8.37) 
dt 	1(t) + 6.1c(t) 	k 	( t) + (t)] 2  
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Expanding this equation now gives us 

d  ()7(t) + d  8x (t) 

dt 5:c-  (0 ) 	dt Bic(t)/ 

( "c(t) 	Si (t) 	 0 	.) 
+ 	 + 

h[ft(t)] 2) 	(21j(t)82(t)) 	(k[ai(t)] 21 

and so we have, precisely, that 

d  8x (t)(0 	1 	(8x (t) 	0 

dt8i(t) 	0 	21j(t))8i(t)) 	lz[8i(t)] 2) 

(4.8.38) 

(4.8.39) 

This is the nonlinear differential equation governing the evolution of the 
perturbation vector 3X (t) 	Dx(t), Si(t)j 71 

The linearized differential equation is obtained from (4.8.39) by dropping 
the higher order terms. Thus. we obtain the approximate system 

d
ox(t)\ 	0 	1 	8x (t) 

dt(8i(t)) 	(0 	2kz (t) 	82 (t) 

which can now be written in the form 

—d 8X(t) = AETC(t)18X(t) 
dt 

where 

	

0 	1 
A[Y(t)] 	( 0  

216c.- (t) 

(4.8.40) 

(4.8.41) 

(4.8.42) 

In this particular case A happens .to depend on only one element of X. 
The matrix A [X(t)] above could also have been obtained by the use of 

(4.8.22). Thus, applying that equation to (4.8.32) and (4.8.33) gives us 

aoo [3c(0] = afo 
ax(t) 

= 0 	 (4.8.43) 
X = X 
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al° a01 [X(t)] = ai(t)  
x = x 

= 1 (4.8.44) 

    

Of, 
ct io 	( 	= ax (t)  

x = x 
= 0 	 (4.8.45) 

   

i tX(t)]  

   

= 20(t) 	 (4.8.46) 
at (t) 

 

x = x 

     

which is in precise agreement with (4.8.42). 
We conclude this example by integrating (4.8.25) to obtain the transition 

matrix. For our numerical integration algorithm we use the very simple 
rule (c/f (4.7.17)) 

(1)(t n  + 	t n ; X) = 	hA[X(t n)] 	 (4.8.47) 

This gives us, by the use of (4.8.42) above, 

(1)(t 	11, 0-0 = 
n 
 + t n 	

(1 0) 	(0 

1“-c(t) 
+ h 

0 1 	0 	2 

1 

(1 

\O 1 + 2hk 5c (t)) 

(4.8.48) 

which is a very elementary, but very often used method of approximating 
(1). Given the numerical values of the state-variables g (tn ) and 31c (t n ) we see 
that (13,  above can be readily reduced to a 2 x 2 matrix of numbers. Of course 

)the values of i(t and - (t n ) would have to be obtained by numerically 
integrating the differential equations given in (4.8.29) and (4.8.30), using 
some selected integration algorithm and a set of initial conditions. The 
latter defines the trajectory3C(t). •• 

The reader is strongly urged to work Examples 4.20 through 4.22 where 
we consider further illustrations of the material discussed in this section. 

We now close this chapter by considering the following very important 
interpretation of the transition matrix in the nonlinear case. Suppose that 
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we define the matrix K whose i, j th  term is 

. ct + 
Rat + t ; xil 	n 
L n 	n 	jij 

.(t ) n 

where X is governed by the differential equation 

—d X(t) = F[X(t)] 
dt 

Then it can easily be shown that K satisfies the differential equation 

(4.8.49) 

(4.8.50) 

—a  K(t n  + C,tn ;D = Arg(tn  + 0]K(tn  + C, ;Y) 	 (4.8.51) a 4.  

with initial conditions 

IC(t n , tn 07) = I 

and where the matrix A in -(4.8.51) is obtained from (4.8.50) by 

a f.(X) 
[A[X(t)110 - 	 

ax 
X = 1(0 

(4.8.52) 

(4.8.53) 

But this means that K is equal to the matrix CI, as defined by (4.8.25) and 
(4.8.27). We have thus arrived at an alternate expression for the transition 
matrix, namely 

 

ax i  (tn  + C) 

   

[(1)  ( 11 	7 	; X)] 	-  
4i 

  

(4.8.54) 
ax i (tn ) 

 

x = x 

     

The above result is an exact equation and there are no higher order terms 
being neglected. It states that the sensitivity matrix of )7(t) at time t o  + C, 
to its value at time tn , is precisely equal to the transition matrix. Equation 
(4.8.54) has a very useful practical application in that it permits us to 
obtain closed-form approximations, of any desired degree of accuracy, for 
the transition matrix, without the need for numerical integration and without 
the need to obtain the matrix A [X(t n)] of (4.8.22). This is a definite 
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extension to the techniques that we have developed, and the reader is 
strongly urged to study Examples 4.16 through 4.19 where we prove 
(4.8.54) and then show how it can be applied. The results of Ex. 4.19 
should be compared to (4.8.48) above. 

NOTES 

A recursion algorithm for the matrix S shown in Table 4.1 on p. 85 can 
be obtained from [4.5, p. 18] as 

= [S],
- 1,i - 1 + (j — 1) [Sl i,  

with 

[S10,0 = 1 and [S] o.i  = 0 = [S] 10  for 	j 	1 

As an example, let i = 5, j = 8. Then the above recursion becomes 

[S]58  = [S]4,7  + 7[S]57  

Table 4.1 shows that 

[S] 4,7  + 7[S]57  = 735 + 1225 

giving 

[S] 58  = 1960 

The corresponding recursion for S -1 (Table 4.2 on p. 86) is 

[S-1] 1 = [S-1 ] 1  _ 	1  — 	_ 

[S-q00  = 1, 	[S-1 ] 0 ,i  = 0 = N- 90  , 	for i, j 	1 

These two recursions should be compared to the recursion for S and S -1 
 given in (2.4.9) and (2.4.14) on pages 22 and 24 respectively. 

EXERCISES 

4.1 a) Given that x(t) = t2 , verify that for r = 2 seconds: x n  = 4n 2:, i n  = 4n, 
aGn  = 2, Vx n = 8n — 4, V2 x n = 8. 	Also verify that rin = VX n 
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(1/2!) V 2 X n , and that (r 2 /2!) zn = (1/2!)V 2 xn . Are these consistent 
with (4.4.11)? 

b) Given that x (t) = sin (77/2) t, verify that for r = 0.1 seconds: 

nrr 	7r 	nrr 	77 2 	na  

	

x n = S111 
20 

, Xn 

	2 	20 
= — cos 	

Xn 	4 	20 
= — — sin 	, 

Vx =1 — cos ) sin —nu  + (sin —u  )(cos —nu). 

	

20 	20 	20 	20 

Also verify that lim (1/r)Vx n  = (7/2) cos (77/2) t = i(t). 
-3.0 

4.2 a) Given that x. = n 2 , what is x(t) when r = 1, r = 0.1, r = 2? What 
is in' 51n for each of these cases? 

b) Given that xn  = sin(n7r/16), what is in , iin  when r = 0.2, 2? 
4.3 For the matrices (I) of (4.2.5) and (4.2.15) verify (4.2.23) when thc 

matrices are 4 x 4. Using k = 2, verify (4.2.24) for the same matrices. 
4.4 Let x(t) = t3. Form the state-vector X (0) (x, z , z, Ve) tT_ 0 . Now 

using (4.2.6), verify that X(C) = (1)(C) X(0) where (1)(4) is defined by 
(4.2.5). Verify that X (2) = (1) (1) X (1). 

4.5 a) Let (t) = t 3  and t .= 2 seconds, and set up the vector X n  of (4.2.2). 
b) Now form Z. defined by (4.2.14), and verify that for (I) of (4.2.15), 

(1)(1)Z 1  = Z2  and ((M; = Z h. 
c) Next use (4.2.18) to obtain X2  D (r) Z2  and X h  EE D (r) Z h  and 

compare these to X2  and X h  obtained from part a) above. 
4.6 Verify that (4.3.3) follows from (4.3.2). Obtain the alternate result 

Vix h 	in 	- 	
=i 	 - )\71  xn  . 

4.7 Using x(t) = t 3  , set t = nr with r = 2 and obtain the vector U 

n
, VX n , V 2 X n , V 3 Xny . Now verify that (4.3.6) gives 

	

h 
	h 2  + h 	h3  + 3h2  + 2h 

2 	 6 

	

1 
	

h 	 h 2  + h 

(1)(h) = 
	 2 

1 

1 

Set n = 0 and verify (4.3.4). Repeat with n = 1. 



118.- INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

r = 2. 
4.10 a) Obtain the Lagrange interpolator matrix W of (4.5.14) for a 1-step 

predictor, assuming a cubic polynomial and r = 2. Apply it to the 
function x(t) = t 3 , and verify that it does in fact gives the 1-step 
predictions of x and its derivatives. 

b) Using x. = sin (n/8)(77/2), form the observation vector Y oT)  
xn  _ 1 , x. _ 2 , X 3) T  for n = 3, by the use of 5-figure tables. 

Now apply the first two rows of the Lagrange matrix from (a) 
above to Y(3)  and obtain x4 , x4 . Compare these to table values 
for sin(77/4) and (77/32) cos (77/4). 

c) Repeat b) above using n = 4. 
Note: 	x. = sin[nr(1/87)(77/2)] and so x(t) = sin [(77/16r) 

(t) = (rr/16r) cos [(rr/16r) t] giving in  = (7/16r) cos (n/8)(77/2). 
4.11 a) Write the differential equation for polynomials of degree 2 in the 

vector-matrix form of (4.6.7) using the state-vector of (4.6.5). Now 
form 1(C) = exp (CA) as defined by (4.6.28). Verify that X (t + C) = 
0(C) X (t). Compare 0(C) to (4.2.5). 

b) Repeat, but using the state-vector Z. of (4.2.14) instead. Obtain 
0(h) where h = Cr, and thus verify (4.2.15), (4.2.16) and (4.2.24). 

4.12 Define the state-vector V. - 	VXn , (V2 /2!)xn]T (c/f (4.4.6)). Now 
use (4.4.8) to write Z (t) 	[x(t), ri (t), (r 2 /2) I ( t)] T  in terms of V (t). 

Assuming that x (t) is a quadratic, write the differential equation for 
Z(t) in the form of (4.6.18), and hence (using Table 4.1 to obtain S), 
write the differential equation for V (t) in the form (d/ dt) V (t) = AV (t). 

Now form exp (CA) and reconcile it with 41(h) of (4.3.6) where C = hr. 

4.13 a) For the matrix 0(C) of (4.2.5) form (d/dt) 1 (t). Now, using the 
associated A matrix for this 0 (see Ex. 4.11), verify that (4.6.33) 
holds. 

b) Similarly verify (4.6.34) where IP( t) is the inverse of (I) (t) above. 
(Use (4.2.23) to express ' (t) in terms of OW.) 

4.14 Consider the linear constant-coefficient differential equation 

1(t) = x(t) 

a) Verify that its solutions are 

4.8 Obtain (4.4.9) by direct computation on (4.4.5). 
4.9 Using the vector U n  of Ex. 4.7, set up the vector V. defined in (4.4.6). 

Now use (4.4.8) to find 4. of (4.4.6), and using r = 2, obtain 

n
, n , xn , nY. Compare this to Xn of (4.2.2) for x (t) = t3  with 

Thus 
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e t 	e -t 	x(0) 

e t _ e -t 	i(0) 

0 1 
b) Verify that (I) can be written as (d/dt) X ( t) = AX (t) where A 

1 0 
c) Write (II) in the form X (t) = P (t) X (0) and find [P(t)]-1. Now form 

+ C, t) = P(t + C)[P (O] '. Verify that 1 is independent of t, 
and so we can write it as 0 (C). 

d) Find exp (CA) and compare it to 0(C) of c) above. 
4.15 Consider the following linear time-varying differential equation 

(1 — 	31(0 + (1 + 4t2 ) i(t) — (2 — 2t + 4t2 ) x(t) = 0 	 (I) 

a) Verify that its solutions are x(t) = e t2  X (0) + e t  ic (0). 
b) Verify that (I) can be written in the form (d/dt)X(t) = A (t) X(t), 

where X ( t) 	[x ( t), ( t)] 7.  and 

/ 	0 	 1 

A(t) 

 

2 — 2t + 4t2  —(1 + 4t2 ) 

1 — 2f 

   

  

1 	2t 

c) Verify from a) above that we can write X (0 = P (t) X(0) where 

) e t2 	e t  

P (t) 
2 

(2t et 	et 

d) Find [P(t)]-1  and hence form 0 (t + C, t) = P (t + C)[P (O]- '. 
e) Finally verify that .X (t '+ C) = (I)(t + C, t) X (t). 

4.16 For the linear system (d/dt) X (t) = A (t) X (t), show that if we define the 
matrix whose i, PI terms is ax i  (tn  + C)/axj (t.), then this matrix is 
precisely the associated transition matrix 0( tn tn), i.e., 
L0(tn  + C, 	= ax i (tn  + C)/axj (t.). 

4.17 a) Consider the nonlinear system 

i(t) = f[x(t)] 

(where f and x are both scalars) and let the trajectory passing through 
g(tn ) be 

Fc(tn 	4") = g[Fc(tn),41 	 (II) 
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where g depends on the form of f in (I) above. Define the functions 

1352(t 	C) 
k(t 	C, t;51) = 	n  

, ai(t ) 

and 

aip(t 
(t 	=  	 , (IV) 

331 (t n) 

Now show that k satisfies the differential equation 

_a k(t
/1 	

4*  + , t n ; 37)  = tn 	k(tn 	n ; x) 

with initial conditions k(t n , to  ; 5a) = 1. Hence infer that (III) is the 
(scalar) transition matrix for the linearized system using 31 (tn ) as 
the nominal trajectory. 

b) Verify that the above is true in general for the vector system 
(d/dt) X (t) = F [X (0] . 
Comment: We see then that for any differential equation, whether 
linear or nonlinear we have precisely 

i ctn 
(tn) 

4.18 (This example follows Ex. 4.17 for a specific differential equation.) 
a) For the nonlinear system (d/dt) x (t) = f[x(t)] , where f [x (6] 	[x (t)] 2  , 

show that the solutions are x (t) = 1/(c — t), where c is an arbitrary 
constant. Hence prove that 

FC(t n 	C) = 
) n  

1 — C3c(tn ) 

b) Verify that for (I) above 

831 (tn 	C) 	1 
a5e(t n ) 	[1 — ‘-(tri )J2 

[

0(t C,t ;56] — n n 
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c) Let the function (II) be called k (t n 	to  ;Fc), and define 

dip 
a [i(tn)] = 	 

85C- (t 11) 

where I [i( c)] is given in a) above. Verify that a [Fc ( t 	= 2x (t), 
and that k satisfies the equation 

—a k(t n 	tn ; Fe) = a[R (tn 	C)] k (t n 	tn ; 5e) 
34' 

with initial conditions k(t n , t n ;TC) = 1. Hence (II) is, in fact, the 
transition matrix, i.e. 

a)T(tn 	C) 
90 On  + C, to  ; 3c) 

dx (t n) 

4.19 Consider the differential equation 

z(t) = k[ic(t)] 2 	 (I) 

(This could arise, for example, when a body is moving through a viscous 
medium whose drag is proportional to the speed squared.) 
a) Using a two-term Taylor series, verify that 

5c- (t + i(tn ) 	 C):a(t 
n  ) 
	 kP.C(t 

n  2!  

5-"c (tn) + ck ond 2  
Now apply the results of Ex. (4.17b) to obtain an explicit approxi-
mation for the transition matrix by forming 

0( tn 	tn  ; TC) = 

(

a (t n  + C) aFC(t n  + 4. ) 

ag(t n) tht (t n) 

	

1:1i(t n  + 	 act + 

	

a3c (tn ) 	 ayc 

Compare the result to (4.8.48). 
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b) Repeat using a three-term Taylor series. 
Comment: The above method avoids the need for numerical 
integration in obtaining the transition matrix. 

4.20 Verify, for the differential equation of Ex. 4.18a), that the trajectory 
whose value is unity at t = 1 is given by x(t) = 1/(2 — 
a) Integrate dx/dt = x 2  numerically,t using a step-size h = 0.1, starting 

with 1(1) = 1 and continue to 1(1.5). Use the integration algorithm 
aC(tn 	 Fc(tn) 	hfe(t n). 

b) Repeat a) above, but use Heun's Method for the integration, viz. 

13 (t n h) = FC(tn) + hx (tn) 

h) = 5C- (tn ) 	hi3(t n  h) 

5c- (tn h) = 
2 -1"-P (t n y(t. + 

Note: i3 (t. + h) =[B(tn  + 

c) Compare the trajectories obtained from a) and b) above, with the 
exact trajectory, z (t) = 1/(2 — t). 

4.21 a) Assume that 

[x o] 2 	 (I) 

and that x(1) = 1.1. Use the methods of Section 4.8 to linearize 
the above differential equation about the nominal trajectory i(t) 
where i (1) = 1. Hence verify that 

d 
8x (t) = 	(ffi8x(t) 

dt 

is the resultant linearized system. 
b) The nominal trajectory 1 (t) has been obtained by numerical inte-

gration in Ex. 4.20b). Using those values for (t), integrate (II) 

above using the algorithm Ox (t. + h) = 8x(tn) h —d  [8x (t )]. 
Start 

dt 
with ax (1) = 0.1 and continue to t = 1.5 with step-size h = 0.1. 

c) Add 8x(t) obtained above to 1 (t), and so obtain the trajectory x(t) 
passing through 1.1 at t = 1. Verify that the exact solution to 

(t) = [x(t)]2with initial condition x (1) = 1.1, is x (t) = 1/(1.9091 — t), 

and compare this to 8x (t) + 37(t) obtained numerically above. 

ti.e., with the aid of a desk-calculator or a computer. 
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4.22 a) For the linearized system (c/f Ex. 4.21) 

—d Sx(t) = [a(t)]ax(t) 
	

(I) 
dt 

verify that the transition relation is 

Sx(tn  + 	= (p(t. + 	tn  ;56)8x(tn ) 

where (p is obtainable by integrating the differential equation 

d
(19(t

n 
 + C,tn ;"3-C.) = [2TC (t n 	C SOU n 	t o ;37) 

d 

with initial conditions co 	t. ;Fc) = 1. 
b) Integrate (III) numerically, using the values for R(t) as obtained from 

Ex. (4.20b). Use step size h = 0.1 and start at (p (1, 1 ;5E) = 1, pro-
ceeding to (p(1.5,1 ; by the algorithm given in (4.7.19). 

c) Apply the values of (p obtained in b) to (II) of a), to give 
8x(1), 3x(1.1), 	, 8x (1.5). Compare the procedure and the results 
to Ex. 4.21. 
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5 
STATISTICAL 

BACKGROUND 

5.1 INTRODUCTION 

The approach which we adopt in this book to the problem of smoothing 
and prediction is, briefly, as follows. A process, modelled by a given differ-
ential equation, is being observed in the presence of additive errors. The 
purpose of the algorithms which we propose to develop is to select a 
trajectory from the model equations which best fits the observations, in 
some specified sense. 

The component of the observations which is truly related to the process 
will be referred to as the signal, and the additive error components will be 
called the observation errors or the input errors. The processes with which 
we shall concern ourselves are deterministic whereas the errors will be re-
garded as random variables. 

In this chapter we review the statistical concepts needed to examine the 
errors both before and after smoothing. The background of the reader is 
assumed to be equivalent, at least, to the first four chapters of [5.1] or to 
the first four chapters of [5.2] . For a background in matrix theory, as 
required for this chapter, the reader is referred to [5 3] . 
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(y.) ;  = x + (yr) ;  
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5.2 CONCEPTS FROM PROBABILITY THEORY 

Suppose at time t = to  we use a device, called a transducer, to make a 
single observation on a real-valued process. We obtain 

yn  = xn  Vn 	 (5.2.1) 

where x n is the value of the process at t = tn , n is the error introduced by 
the transducer, and y n  is the resultant observation in the presence of that 
error. In what follows, we use the terms observation error and input error 
interchangeably in reference to v n  , and the component in (5.2.1) related to 
the process (in this case x n  ) will be called the signal. 

If we were to observe the process at some fixed time t o  by simultaneously 
using a large ensemble of identicalt transducers (see Fig. 5.1), we would 
obtain a set of y n  's differing only in their respective v n  's. 

'The word "identical," as used here, implies only that the transducers are macroscopically 
identical. Thus, while each measures the process in precisely the same way, the individual corruptions 
added by the respective instruments are permitted to differ. 

Transducer 
No. 1 

(yr,) = x n  + (v,,)1 

 

Transducer 

No. 2 
(Y.)2 = x n  + (v.)2 

 

   

    

    

    

 

Transducer 

No. 3 

(y„) 3  = xn  + (v.) 3  

 

   

    

    

Fig. 5.1 Simultaneous observations of a process by an ensemble of 
identical transducer& 
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Since we are restricting ourselves to the domain of real numbers, v n  is 
seen to be a real random variable which can range in value (from transducer 
to transducer at time t. ) over the continuous range +0.. Exam-
ination of this set of observations 1y4, would show that, for a given real 
number A, a certain fraction of the v.'s satisfy 

vn  < 
	

(5.2:2) 

That fraction is assumed to tend to a limit as the number of transducers 
used increases, and we obtain, as that limit, a well-defined function of A, 
called the probability distribution function of the random variable v.. We 
symbolize it as Pv  (A), by which we mean: 

P vn (A) 	The probability that y r,. $_ 

We define the probability density function of v n  as pv (A) where n   

(5.2.3) 

P (X) 
	(e) de 	 (5.2.4) 

It then follows immediately that p v  (A) is an integrable function of A related 
to Pvn(A) by 

p v  (A) = 	P„ (A) 	 (5.2.5) 
n 

i.e. the density function is simply the derivative of the distribution function. 
The ensemble expectation of any function of the random variable v n  is 

defined by 

co 

E 1f(vd1 - 	f (A) p v  (A) dA 
	

(5.2.6) 
-co 

and in particular, when f n) is vn  itself, then 

	

Ap vn(A) dA. 	 (5.2.7) 
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The expectation of avn , where a is a constant, is obtained from (5.2.7) as 

Eav4 = aElv4 
	

(5.2.8) 

In a like manner, by (5.2.6), 

t op 

A. 2 pv (A.) dA n   (5.2.9) 

and from this it follows immediately that 

EI(xvn)1 = a 2 E1v. 21 

The variance of the random variable v n  is defined as 

Var (vn) 	a2(vn ) E(n  — E 0 . 1 
We say that the random variable v n  is zero-mean if 

E1v4 = 0 

It thus follows that if v n  is zero-mean, then 

(5.2.10) 

(5.2.11) 

(5.2.12) 

a2 (vn) = E 5 vn 2 	 (5.2.13) 

We shall be dealing almost exclusively with zero-mean random variables and 
so a2 (vn) will be used interchangeably with E iv n 2 1, the reader being asked 
to recall that Eli), is zero by assumption. 

Until now we have concerned ourselves with only a single random variable 
v n , which was introduced by examination of the errors in the ensemble of 
observations ly n  made at t = tn . We now turn our attention to a second 

ensemble, 3 yk  1, made at t = t k , where k n. 



PT,r21 v
k (Al 11) 
	

aAap, 
(A

' 
 ft) 

vn,vk  (5.2.17) 
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The errors in y k  are symbolized as v k  and as with vn , they can be seen to 
form a random variable in the range 5_ vk  < +.. vk  has a probability 
distribution function P, k(A) and a density function p u  (A). P and p of v k  

may or may not have the same functional form as they did for v n . 
We now perform the following experiment. Assume that t o  < tk . By 

using a single transducer, we obtain first a sample value of v n  and then of 
v k , thereby providing the ordered pair of numbers (v n , vk). By the simul-
taneous use of a large number of such transducers, we can obtain many such 
ordered pairs 

n Vk) 	(V' v n ky2' ' • • 1  

where the outer subscript, in each case, is identified with the transducer 
providing the pair. (See Figure 5.1.) 

We now examine this ensemble of ordered pairs and determine the 
fraction of the overall set of pairs which satisfies, simultaneously, 

V 	 V _5_ fL 	 real) 
n k " 

(5.2.14) 

As the number of transducers increases, this fraction is assumed to tend to a 
limit which depends on A and We call it the bivariate or joint distribution 
function of the random variables v n  and v k , and symbolize it by 

 P 	(A 	
The fraction of the pairs (v n , v kl which 

v n ,y/c ' 11)  -- satisfy v n 
< A and vk  < IL 

(5.2.15) 

We define the joint probability density function of v n  and v k  as I),12, vk ( A 11)  

where 

Pv,  ,k(A,p) = 	P un, uk(e, id de C171 
	 (5.2.16) 

-co -co 

and so it follows immediately that 



E n v 

1OD ao 

CO f 
Aypvn ,vk(A, IL) dXdp (5.2.19) 
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Define the bivariate ensemble expectation of the function f (v n , v k ) by 

E3f(v ro v k) 

	r r 
 

f (A, Op n, k(A. clXdp 
	 (5.2.18) 

One such f (v n , v k) is the product v. V k . Thus 

The covariance of V n and v k is defined by 

COV 	v 1  - Elv.0(vk  - Eivk0 	 (5.2.20) 

For zero-mean random variables v n  and vk , we see immediately that 

Cov(v.,v id = E vn vk 	 (5.2.21) 

The E operator has the very important linearity property. Thus, since 
by definition 

CO 	 CO 

Elaf n) + 13g( 	= 	[af 	+ g (1.)] p 	k(A, dAdiL 

(5.2.22) 

It follows that (see Ex. 5.2 

E)af(v n) + g 	= a E 1f (v) + P E 1g (v) 	 (5.2.23) 

E is thus a linear operator. We now apply this linearity property of E 

to vectors and matrices of random variables. 
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Let N be given by 

vo 
v 1  

N (5.2.24) 

i.e. N is a vector of m + 1 random variables. Then we define E 	as 

Evc1\ 

E l f 
• 

• (5.2.25) 

   

Consider the matrix NN T. By the formal rule for matrix multiplication 

/ 2 v0 	V 0 V 1 • • • V0 Vrn 

NNT = (5.2.26) 

V 1 um 
• • • Vin

2 

v0  v 1 	v 1
2 • • • V V 1 m 

Then we define E)NN1 as 

Eivol 	E Iv o  vj • • • E iv o vrA 

E vo v 1 	E1v 12 1 	• • E •11 v.1- 

• 
EINN1 = (5.2.27) 

\E Ivo  v E 	• • 	E 1 v^2  

 

 

Suppose now that U is a linear transformation on N, i.e., that 

U = WN 	 (5.2.28) 

where W is a matrix of constants, not necessarily square. We are interested 
in the first and second order statistics of U in terms of the statistics of N. 
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Consider firstElUt. By the linearity of the E operator, it follows immedi-
ately that 

E {U} = WE INI 	 (5.2.29) 

Consider next the pair of linear transformations 

U = GN 

V = HN 
(5.2.30) 

where U and V are not necessarily vectors of the same order. Then 

UVT = GN(HN) T  

GNN THT 

= G(NN T )HT 

(5.2.31) 

Once again, the linearity of the E operator gives us 

ElUV1 = E3G(NNT)H T 

 = G E NN1HT 

As an example, let G and H both be a matrix with a single row, say CT . 
Then 

U = V = CTN 	 (5.2.33) 

and so, by (5.2.32) 

E TNN TC = C T  E3NNT C 
	

(5.2.34) 

More generally, letting G = H = W say, the above discussion demonstrates 
that when 

U = WN 

then EIU1 and E1UU/ are given in terms of E {N} and E 

E {U} = E{WN} = WE {N} 

(5.2.35) 

 

 

(5 2.36) 

(5.2.32) 
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and 

EIUU1 = E3lif(NN T )W 1 = WEINNI WT 

The above two equations will be applied very frequently. 
As an example, let 

(uuo) (2 —1 	1) /i/ c  

3 —1 —1 v 

V2/ 

Then 

— Eiv i t + E.1v 2) 

3Eiv o t — 	— 0. 2 1 

(5.2.37) 

(5.2.38) 

(5.2.39) 

If v o , v 1  and v 2  are all zero-mean, then clearly so are both u 0  and u 1 . 
Let this be the case, and suppose we are given that 

E)1■IN/ = 

Then by (5.2.38) 

E1UU1 

( 

	

/1 	1 

	

1 	2 

1 

and (5.2.37) 

(

Eluol Eluo 

  Eluo uj E1ul2  

	

2 	—1 	1 	/1 

	

3 	—1 	—1 	1 

) 

V 

	

)

7 	1 

1 

2 

1 

1 

1 

3 

2 

—1 

1 

3\ 

—1 

—1/ 

(5.2.40) 

(5.2.41) 



STATISTICAL BACKGROUND 133 

Finally, we examine the notions of correlation and statistical indepen-
dence.t By definition, two random variables v n  and v k  are said to be 
statistically independent if 

pv 
nt 

 v 
k 

 (A, ti) = 	n (A) /3, k(ID 	 (5.2.42) 

i.e. if their joint density function equals the product of their univariate 
density functions. On the other hand v n  and v k  are said to be uncorrelated 
if 

vn  vk l 	E vrj 	 (5.2.43) 

Independence is a much stronger property and, as is well known, 
"independent" implies "uncorrelated," but the reverse is not in general true. 
(See Ex. 5.3 and 5.4.) 

In practice, attempts to estimate the statistical properties of random 
variables from empirical data lead naturally to the estimation of expectations 
rather than of distribution (or density) functions.- Expectations are, 
practically speaking, much , easier to estimate than are distribution functions, 
this for the most part being because the expectation operator is a functional 
and so it leads in every case to a single real number as the sought for 
answer. On the other hand, distributions and densities are functions, and 
to estimate them from empirical data leads, at best, to a functional approxi-
mation process, and not to the true functions themselves. It thus turns out 
that in practice the notion of correlation is more frequently used. Two 
random variables v n  and vk  can be observed and empirical data can be 
gathered by drawing typical values. The expectations Elvj, E3v4 E3v:r, 

Elv kl and Elv n v i  can then be estimated, the accuracy of the estimates 
depending on the size of the samples. 

Defining the vector N as in (5.2.24) we call the matrix 

E I(N — E 	— E {N })7 	 (5.2.44) 

tThe attention of the reader is directed to the fact that the term "independence" can be used 
in two distinct ways. First there is the statistical sense used above and defined by (5.2.42). Second 
there is the linear sense, i.e. the quantities f and g are said to be linearly independent if a f + )3g = 0 
only when a = 0 = /3. Thus two random variables can be linearly independent and yet not stati-
stically independent. 
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the covariance matrix of N. It will frequently be the case that the elements 
of N are zero-mean, i.e., that 

E{N} = 0 	 (5.2.45) 

where 0 symbolizes the null-vector of appropriate order. We see then that 
for two zero-mean random variables v n  and vk , their covariance matrix is 

NN1 
( 

 Eiv 	 ) it2 	Eivn v A. 
Elvn v 11 	Efr kl (5.2.46) 

which by (5.2.13) means that for two zero-mean random variables we have, 
equivalently, 

E)NN1 

(

02 n) Ely 

n
V a

2(v ) 

(5.2.47) 

5.3 PROPERTIES OF COVARIANCE MATRICES 

For definiteness, we consider three random variables v 0 , v 1  and v2 , all of 
which are zero-mean and we define the vector 

N 
(5.3.1) 

Then the covariance matrix of N, namely E 3 NN T  , is a real symmetric matrix. 
We investigate its properties. 

Let C be any non-null vector of constants. Then by (5.2.34) we have that 

C T  E1NN1C = E1CTNN T CI 
= E 1(C T N) (C T N) 

= El(C TN)1 
(5.3.2) 
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But C TN is itself a scalar random variable, and clearly El(CTN1 is non-

negative. We have thus shown that for any non-null vector C, 

CTEINNTV 0 	 (5.3.3) 

which proves that the matrix E3 NNT is either positive definite or positive 
semidefinite.t We call a matrix which belongs to either of these two classes, 
a nonnegative definite matrix. Every covariance matrix is thus nonnegative 
definite. 

In general, covariance matrices are positive definite. In examining -the 
situation where a covariance matrix is positive semidefinite, we find that the 
following holds true. 

Let N be a vector of m zero-mean random variables. Then the following 
two statements are equivalent. 1 

A. E1NN T  has a rank-defect of k.§ 

B. Precisely k of the random variables in N are linear combinations of 
the remaining m - k. 

The proof that B implies A is straightforward and is left as an exercise for 
the reader. As a demonstration of the fact that A implies B, we present the 
following numerical example. The reader can readily construct a general 
proof from our procedure. 

Suppose that N has the covariance matrix 

1 	
1 -1 	2 

1 	2 -2 	3 

-1 -2 	2 -3 

\ 2 3 -3 5/ 

We diagonalize this matrix by congruence, using the method of Gaussian 
elimination discussed in Ex. 5.11. Thus, let 

EINN1 = (5.3.4) 

B (5.3.5) 

tWhenever the term positive semidefmite is used, we imply that the matrix in question is singular. 
each implies the other. 

§ i.e., its rank is m — k. 
411 We assume N to be zero -mean. 
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Then it is readily verified that 

/1 

BEINNTIBT = 
1 

(5.3.6) 

0/ 

which shows that El NNT is positive semidefinite with rank 2 and rank- 

defect 2. We thus suspect that two elements of N are linearly dependent on 
the other two which are independent of one another. This is now verified. 

Define the vector U by the transformation 

U = BN 	 (5.3.7) 

where B is given in (5.3.5). Then 

11 0  = V0 
	 (5.3.8) 

ul = -V0  + v l 
	 (5.3.9) 

U 2  = V 1  + V2 
	 (5.3.10) 

U3  = -1/ 0  - 211 1  - V2  + 113 
	 (5.3.11) 

Since N is zero-mean, so is U. Moreover,, by (5.2.37) 

E)U11/ = BE3NNTBT 
	

(5.3.12) 

which is displayed in (5.3.6). Thus u 2  and u3  have zero variance, and being 
zero-mean, they are themselves zero with probability one. Hence from 
(5.3.10) and (5.3.11) 

	

V1 4.  V2 	0 

-1/ 0  - 2v 1  - V2  + V3  = 0 

and so, solving for v 2  and 2i 3  gives us, 

= 

	

V0 	1)1 

(5.3.13) 

(5.3.14) 

This shows that v 2  and v3  are indeed linearly dependent on v o  and v i . 
It remains only to show that the latter are linearly independent of each 
other. 
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From (5.3.12) and (5.3.6) we see that 

u 	(u0 , u ) E  {(0) 0 ,  1 1 

0 

01) (5.3.15) 

which is a positive definite matrix. Thus for all nonzero constants c o 
 and c1 , 

( co , c 1 ) 

	

(u0) ( uo , 1(1 
> 0 

We now follow the reasoning employed in (5.3.2) and we thus obtain 

E1(co  uo  +c 1 > 0 	 (5.3.16) 

and so it must also be true that the sum c o  uo  + 	cannot be identi- 
cally zero, if c o  and c 1  are nonzero. We have thus shown that u o  and 
u i  are linearly independent of each other. Finally then, by (5.3.8) and 
(5.3.9), vo  and v I  are also linearly independent of each other. 	** 

In the above example, we saw that if E 3 NNT has a rank-defect of 2 and 
a rank of 2, then two of the elements in N are linear combinations of the 
other two, and the latter are not linearly related to each other. We now 
summarize as follows: Let El NN T  be the mxm covariance matrix of N, 

a vector of m zero-mean random variables. Then 

a) E 3 NN 1 is symmetric nonnegative definite. 

b) If k of the random variables in N are identically zero or are a linear 

combination of the remaining m - k, then E3 NNT is positive semidefinite 

with rank m - k and vice versa. 
c) If k = 0, i.e. if none of the random variables in N is linearly related 

to the others, then E 3NNT is positive definite and vice versa. 

In general, the latter will be the case in our subsequent discussion, and so, 
unless stated otherwise, a covariance matrix will always be positive definite. 
However, on specific occasions we will encounter situations where this is 
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not the case, such as for example, when a perfect measurement is obtained, 
or when measurements with correlation coefficient unity are introduced. 
However, these cases will be exceptional and will be clearly pointed out. 
The reader is referred to Example 5.6. 

5.4 THE COVARIANCE MATRIX OF THE INPUT ERRORS 

Suppose that at time to  we make a vector of observations on a process. 
As an example we might choose to observe x(t) and ±(t) say, and in each 
case a zero-mean additive error is assumed to be present. Thus, letting 

Yii (1 and N  - v
o 

yi 	 = 
.1.

n  

be the vector of observations and errors respectively, we have 

= X(t n ) 	(1/012 

(Y1), = ±(t n) + (11
)n 

	 (5.4.1) 

The covariance matrix of Nn will be written R n , and since we are assuming 
zero-mean observation errors throughout, 

R. = EINn N til 	 (5.4.2) 

Thus, 

R n = 

(

E i(v o): E)(v o v i.V. 
El(v i v 0V E Rv i)n  

(5.4.3) 

The numerical algorithms which we intend to develop will form 
estimates of the process based on sets of such vectors of observations, made 

'The correlation coefficient of two zero-mean random variables v i  and vi  is defined by 

E{ v j } 

[0.2 (1, i) 0.2 (v p il / 	2 
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over the sequence of L + 1 successive instants 

tn - L ' t o - L +1' " ' to - 1 ,  tn 

Accordingly we define the total observation vector 

Y  n 

Y n -1 

Y fro 
(5.4.4) 

• 

\Y  n - 

Y n - i being the vector of observations made at time tn - j . Associated with 
Y (n) is the total error vector 

N (n) 

[N n  

Nn-1 

_ 

(5.4.5) 

N n - being the vector of errors in Y n - We have assumed that the random 
variables forming Is I (n)  are all zero-mean, and we designate its covariance 
matrix as R (n). Thus we define the total covariance matrix 

R = E 	N T 
 (n) • — 	(n) (n) (5.4.6) 

We pause briefly to comment on notation. The upper-case italic letters 
Y n , Nn  and R are used to signify observations, errors and their covariance 
matrix respectively, obtained at time tn . The subscript shows the single 
instant at which they prevail, and is an essential piece of data along with the 
actual components of the vectors or matrix. On the other hand, the sans 
serif italic upper-case letters Y (n) , N (n)  and 12 (n)  will be used to represent what 
we call the total observation and error vectors, and covariance matrix, 
formed by a concatenation of the Y n's and N.'s. The parenthesized 
subscript in Y in) , N 00  and R (n)  signifies that the n th  is the most recent 



(E)Nn Nni 

V 0 

 E 	_ N nT 

E 1Nn NnT  _ 

)

El Nn _ i NnT _ i  
(5.4.7) 
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observation of the sequence. The reader should be particularly aware of this 
distinction, and whenever Y n , Nn  or R . are used, a single observation instant 
is implied, whereas Y N R (n) carry with them a sequence of observation 
instants. 

We now examine the properties of R (n) . For simplicity assume that we 
form Y (n) from observations at times to  and to - 1 ,and assume that we are 
observing two quantities in each case. (See e.g. (5.4.1).) Then 

R (n)  = E 	0  (n) 01 

Nn 
= E 

Nn- i 

(

N TI NT 
n n- 

and since, in this 'case, 

N 
i n n - 1 

(5.4.8) 

we see that 

El (v0)n(vo)n-1, 

E)(711)n(vOn-i 

E 3(v0)n(v1)n-1 

E ) (v1)n(v1)n-1 

    

R = 

E  3(v0)n-i(v0)n E l(vOn-1(v i)rj 

E  (v 0 n-1 (I)  0),J E  (7  n- 1(7)4 

O'2 RvOn-j 

El(vi  v0)._ 1 1. 

E3 \v° 

cr2 Rv On-d 

(5.4.9) 
Thus R (n)  is seen to be a real symmetric matrix and by the arguments given 
in the previous section it will be nonnegative definite. If none of the 
random variables (vo)n,  (v), 6)n  _ or e l) _ is a linear combination of 

n  
the others, as will usually be the case in practice, then R o)  will be positive 
definite. As can be seen from (5.4.9), the on-diagonal blocks of R (n) contain 
only a single time-subscript whereas the off-diagonal ones contain two. 
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We address ourselves to three essential properties of R (n)  in addition to its 
nQnnegative definiteness: 

1. Firstly, the random processes giving rise to the error vectors 
.. • , N n  _L, Nn —L +1' • • • ,1\1,2 _ 1 ,1\1n , • • • may or may not be stationary, i.e., 
their statistics may or may not be changing with time. In the event that 
the second order statistics of these vectors are changing with time, then this 
information will be clearly conveyed by the successive total covariance 
matrices. Thus, we are not limited to stationary input-error statistics. 

2. Secondly, the matrices Ell\ln _,I\InT _ for i j may or may not all 
be null. These matrices form the off-diagonal blocks in R0 . In the event 
that the observation errors made at any one time are uncorrelated with 
those made at any other time, then they will all be null. However, if some 
correlating action along the time-axis is present (e.g. electronic circuitry 
containing capacitors or inductors), then some or all of the off-diagonal 
blocks will be nonnull. If they are all null, we say that the errors are stage-
wise uncorrelated and in such a case, all total covariance matrices obtained 
from that observation scheme will be block-diagonal with a single time-
subscript in each block. 

3. Finally, consider the covariance matrices ... , R n _ p R n , ... which 
form the on-diagonal blocks of the total covariance matrices. The individual 
components of the error vector 

(1) Nn  
11

1 n 

(5.4.10) 

may or may not be correlated with one another. (Note the single-time-
subscript in (5.4.10).) If they are not, then its covariance matrix li n  will 
be a diagonal matrix. If this is true for all such vectors N making up 1■1 (n)  
of (5.4.5) then the errors are said to be locally uncorrelated. 

Thus for example, if all of the total covariance matrices obtained from 
some observation scheme have the form 

R 	a 2 1 (n) 

72 2  
a 2 

 

  

(.5.4.11) 

 

■ 
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where a is a constant, then clearly 
a) the second order statistics are stationary, 
b) the errors are stage-wise uncorrelated, 
c) the errors are locally uncorrelated. 

On the other hand, if R (n)  has the form (assuming two observation instants 
in Y (n) and two measurements in each of Y n and Y 	) n - 1 

on on 

O n  20n  

On - 1 	on - 1 

O n  - l  20' 

R (n) = 
(5.4.12) 

where .0 is a real constant, then the errors are 
a) nonstationary, 
b) stage-wise uncorrelated, 
c) locally correlated. 
Since each of the three properties discussed above can be disjointly 

present or absent in any one case, there are clearly eight possibilities in 
all. While they can obviously all occur in practice, and our filtering 
algorithms will naturally be able to handle any of them, two cases will 
occur most frequently in our discussion. These are first, the case shown in 
(5.4.11) and second, the case of stage-wise uncorrelated errors of which 
(5.4.12) is a simple example. 

= 

5.5 THE COVARIANCE MATRIX OF THE OUTPUT ERRORS 

The filters which we will develop will be of the formt 

X 	(n) n+ h,n = WY 	 (5.5.1) 

where 	 + h, n X* 	is a prediction of what the process state-vector will be at time n  
to + h based on observations up to time t a , W is a matrix, and Y (n)  is the total 
observation vector on which the estimate is based. 

For definiteness let X *  n + h,n be a 3-vector and let the row-vectors of the 
matrix W be called W O ' W 1' W2 " Then from (5.5.1) 

( *x  + h,n = W O 11 (n) 

(x *  
1)n + h,n 

x
* n + h,n 

W 1 Y (n) 

= W 2 Y (n) 

(5.5.2) 

t See e.g. (4.5.14). 
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We now demonstrate that the rows of W will, in general, be linearly indepen-
dent. This is so for the following reason. Suppose, to the contrary, that 
they were linearly related so that for example 

W2 = aWo  /3W 1 	 (5.5.3) 

where a and are a pair of constants. Then it would be easier to compute 

(x*, 	from the relation 
+ h,n 

* X „ 	= a (X *, 	+ (x 
1 
 ) 

+ h,n 	 h,n 	 n + h,n 
(5.5.4) 

rather than by the use of the final equation in (5.5.2). The matrix W would 
in fact have in it a redundant row, namely W 2  , which we need never use. 
Thus, without loss of generality, the rows of W can be assumed to be 
linearly independent row-vectors. Hence, W will have rank equal to the 
number of its rows. We refer to this condition as full row -rank. 

We now examine Y (n) of (5.5.1). We know that each of its components is 
a sum of a term due to the process, plus an additive observation error (see 
(5.4.1)). (We have referred to the former as the signal and to the latter as 
the input errors.) What is true, term by term for each component of Y (n)  , 
must be true for the entire vector. Suppose we now remove the signal. Then 
all that remains of Y (n) is the total error vector N (n) of (5.4.5), and by (5.5.1) 
we now see that the filter gives 

X
n + h,n 
* 	= WN (n) 
	 (5.5.5) 

This shows how the observation errors are acted on by, the algorithm. We 
call the above the random output-error vector, and to make matters com-
pletely explicit we designate it as 

N * 	WN 
n + h,n 	(a) (5.5.6) 

The symbol N *n hm  should be read as "the random errors in X*,, h,n" , and 
the presence of the star and the subscripts are intended to link it very 
clearly to the vector X: + hm

• 

When the signal is not removed from Y (n)  then by (5.5.1) we see that X: + h,a  
will have two components, one due to the signal in Y (n)  and the other given 
by (5.5.6), which is due solely to the input errors in Y (n) . At a later stage we 
will analyze the part of X: + hm  which is related to the signal and we will find 
that errors may be present in it too. Those errors will be called the 
systematic or bias errors. 
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We now examine the statistics of the random output-error vector 1\1 *,, 
By assumption, the input errors are zero-mean, i.e., 

EiNj = 0 
	

(5.5.7) 

Hence, making use of (5.2.36) we see from (5.5.6) that El 	h,n f = 0  and 
so the random output errors will then also be zero-mean. 

The covariance matrix of the random output-error vector N *n  hm  is 
designated as S*n  h,n , i.e. 

,S* 	E1N * 	N*  n + h,n 	n + h,r2 n + h,n (5.5.8) 

We can express S: h,n  in terms of the covariance matrix of the observation 
errors as follows. By (5.5.6) 

S* + h,n 	E 1WN (WN, 7 )1 n  

= WEIN (n) No)1W T  

and so by (5.4.6) 

S * 	WR 02) WT n + h,n 

(5.5.9) 

(5.5.10) 

This equation forms a complementary pair with (5.5.1). In the earlier 
equation we saw how the filter, as exemplified by W, acts on the observation 
vector Y (n) to produce the estimate. In (5.5.10), on the other hand, we see 
how the filter acts on the covariance matrix of the observation errors to 
produce the covariance matrix of the errors in the estimate. 

Assume now that we set up the filter which gives us updated estimates. 
We write (5.5.1) as 

n X * = W(0) Yo) n, 

and for an h-step prediction 

XW (h) Y (n) n + h,n 

(5.5.11) 

(5.5.12) 

the functional argument of W being intended to show explicitly the amount 
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of prediction being performed. Let 1 be the transition matrix for the 
process under consideration, assumed for simplicity to be a constant-coeffi-
cient linear differential equation. Then the assertion that X:, and X*. + h,n  
both define the same trajectory can be stated precisely by the equation 

X * (h) X *  n + h,n = 0 n,n (5.5.13) 

Combining this with the previous two equations thus gives 

W(h) Y (n)  = (h) W(0) Y oo 	 (5.5.14) 

and clearly, since Y o)  is arbitrary, we see then that W (h) must satisfy 

W (h) 	41) (h) W (0) 
	

(5.5.15) 

This is in close analogy to (5.5.13) and is a direct consequence of the fact 
that the process is being modeled by a differential equation whose transition 
matrix is 0(h).  

Now the random output errors in n X *  and X:4. h,n   are, respectively, 

and 

N* 	W (0) N n,n 	 (n) (5.5.16) 

n + h,n 	W (h) N (n) 	 (5.5.17) 

Making use of (5.5.15) then shows that 

— (1)(h)N* 	 (5.5.18) n + h,n 	 n,n 

Thus, just as the prediction X: + h,r1  can be obtained from X:„ by the use of 
1(h) in (5.5.13), so the random errors in the prediction are related to those 
in the updated estimate by (5.5.18). 

We examine the covariance matrices of N*  n + h,n and N*,, n . By (5.5.18), 

E1 	+ h,n N *n T+  + h,n 

E 14) (h) NL,FD (h) N *n  

= (1) (h) E 	CD(h) T  n,n n,n 

(5.5.19) 
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i.e., S*n + h,n 	n and s* n  are related by the congruence transformation , 

S*+ h,n 	n  ) (h) S* n  (h) T 
	

(5.5.20) 

Thus the transition matrix 1'(h) is seen to have the ability to move the 
validity instant of the estimate, if used as in (5.5.13), or of the covariance 
matrix, if used as in (5.5.20). (Observe that in both cases only the first 
subscript of X*. or S*  n h,n  is affected by (1). The 'second subscript 
signifies that the most recent observations used in forming the estimate 
were obtained at tn , and nothing can modify that short of changing the 
vectorY (n)  in (5.5.1). 

We pause briefly to examine (5.5.13) and (5.5.20) in somewhat further 
detail. This pair of equations will appear frequently in our subsequent 
discussion, and the reader will soon become accustomed to seeing filtering 
algorithms headed by the pair of equations (or their equivalent) 

X* 	= (1:1 (h) X*  n + h,n 	n,n 

S n+h,n 	n = 4:1)  (h) s* ,n 0 (h)T 

Now, it is clear that given the model differential equations 

—d X(t) = AX(t) 
dt 

(5.5.21) 

(5.5.22) 

(5.5.23) 

(assuming a linear constant-coefficient system) and given, as a set of initial 
conditions, 

n 
X* n,n (5.5.24) 

a unique trajectory is implied. Moreover, it is also clear that we can move 
ourselves back and forth along that trajectory, by the use of backward or 
forward integration of (5.5.23) subject to (5.5.24). What equation (5.5.21) 
states is that, in addition to employing numerical integration, we can also 
accomplish precisely the same result by an appropriate linear transformation. 
Thus n n X *  and X* + h,n define one and the same trajectory and are merely  
restatements of it. Given either, we can obtain the other by the use of 
(5.5.21) or by the integration of (5.5.23). 

tIn Ex. 5.9 we define the congruence transformation and examine some of its more important 
properties. 
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We must further bear in mind that the two vectors appearing in (5.5.21) 
are state-vectors of an estimated trajectory, and that estimation was based 
on a given set of data obtained up to tn , as stated by the second of their dual 
subscripts. The symbol appearing in that position obviously cannot change 
as we move back and forth along the trajectory to which X:, and X: + h,n  
belong, and this is in evidence in (5.5.21). In summary then, (5.5.21) 
connects two state-vectors of one and the same estimated trajectory based 
on a single given set of data 

In (5.5.22) we see how 	
+ h,n n 	n 

S* and S * 	are related. Thus, given that the  
errors in 	 n n 	 n X* have as their covariance matrix S* , a very natural question to 
ask is how those errors propagate if we integrate the differential equation 
using X*,,„ as initial conditions. The answer is given in (5.5.18), and (5.5.22) 
shows how the second-order statistics propagate. We accordingly think of 
(5.5.21) as the state-prediction equation, and of (5.5.22) as the error-
statistics propagation equation. Of course, if we were only interested in 
moving the state-vector down the trajectory, it would be computationally 
easier to simply integrate the differential equations, and the transition matrix 
would not be needed. However, when we are interested in how the errors 
propagate, then the transition matrix is essential and must be obtained.t 
(Note that integrating the differential equations of the transition matrix 
is a much larger operation than integrating the differential equations of 
the state-vector.) 

When the equations of motion are nonlinear, the problem is slightly more 
complicated. Given X:, we can now no longer form X: + h,n  by a relation 
of the form of (5.5.21), since there is no transition equation for a nonlinear 
process. Instead, we simply integrate the model equations 

X (t) = F[X(t)] 
dt 

using as initial conditions 

X(t ) = X *  n 	n,n 

(5.5.25) 

(5.5.26) 

The truncation errors caused by the chosen numerical integration procedure 
can, in theory at any rate, be made as small as we please, and so X: + h,n  can 
be obtained with any degree of precision. Movement along the unique 
trajectory specified by (5.5.25) and (5.5.26) can thus be implemented. In 
the case of nonlinear systems, prediction or retrodiction is always carried 
out in this manner. 

tSee Sections 4.7 and 4.8. 
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(5.5.31) 
X = X ( t) 
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The error propagation problem is not solved quite so simply. Thus, 
assuming. that XIn  were known to have as its covariance matrix S*nn  , the 
problem of determining precisely how those statistics propagate if we 
integrate (5.5.25) is, in general, very complex. In fact we usually require 
the entire density function of the errors, i.e. all of their statistics and not 
only their second-order ones. Even then, in all but the simplest cases, the 
situation is usually intractable. 

However, if we are prepared to accept an approximate solution, we can 
obtain an answer quite readily. Thus, given that 

d X(t) = F[X(t)] 
	

(5.5.27) 
dt 

suppose that the true trajectory X(t) were perturbed by a small amount to 
X (t) + E [X (t)] where E [X (t)] means "errors in X (t)." The vector X (t) + e [X (t)] 
can be thought of as the estimate XL, i.e., 

X(tn) + E[X(tn)] 	 (5.5.28) 

Thus E [X ( t)] is actually the vector of errors in 	
n 	 n X*  namely N * ,n  . As a  

result of the perturbation, (5.5.27) gives us (c/f (4.8.14)) 

d X(t) + —d e[X(t)] = F EX(t) + E[X(t)]] 
dt 	dt 

and so (c/f (4.8.21)) we have, to first order accuracy, 

d e [X (t)] = A [X (t)] e[X(t)] 
dt 

(5.5.29) 

(5.5.30) 

where 

Thus (5.5.30) gives us an approximation to the differential equation 
giverning the evolution of the errors inX(t), subject to (5.5.27). 
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We of course now recognize that the approximation we have obtained 
is a time-varying linear differential equation, and so we can write (c/f 
(4.8.24)) 

e[X(t n  + C)] = (Mtn  + C, tn  ; X) E[X(t n)] 	 (5.5.32) 

This is exact relative to (5.5.30) but is of course only accurate to first 
order, relative to (5.5.27). Then the law by which the second-order 
statistics of E [X (t)) will propagate is given from (5.5.32) as (c/f (5.5.10)) 

St 	(1) (t n 	, tn ;X)S* 	0(t n tn + t,t n 	 t n , tn 

where, of course, we define et  , to  by 

t n , tn 	Eic[X(tn)]c[X(tn)]T 

"L=.- EIN*rim N:721 

+ 	t n ;X) T 	(5.5.33) 

(5.5.34) 

The transition matrix is- thus required, and it is obtainable either by the 
method of integrating (4.8.25), i.e. 

a4. 
(I)(tn  + C, tn  ; 	= A[X(t n  + Cdto(tn  + C, 	; 	 (5.5.35) 

subject to 

(1)(tn , t n ;X) = I 
	

(5.5.36) 

or else directly from (4.8.54), namely 

8X.(t 
ED(t n  + 	tn ; 	— 	I 

n 

8X.(t ) 	
(5.5.37) 

n 

Equation (5.5.33) is accurate only to second order terms involving 
components of e[X(t n)]. If c[X(t n)] involves only small numbers, i.e., if 
the errors in X: 71  are small relative to X(t n), then (5.5.33) shows, to good 
precision, how the second-order statistics of the errors in X:n  will propagate. 
However, if those errors are not small relative to X(t n ) then (5.5.33) may 
in fact be a very poor approximation to the true value of et t,  tn  given n  
S tn, tn . 
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As the nominal trajectory in the above procedure, we can now use the 
state-vector Xn , since, after all, (5.5.28) could also be written as 

Xn =n,n — E (X n) 	 (5.5.38) 

i.e. we can also think of the true trajectory X n  as being a perturbed version 
of the estimated trajectory X. In this case we would write (5.5.35) as 

a 10 (t
n 	

t + 	to X*) = A (X* + C,t )(1)(tn + 	to ; X * ) 
094. 	

ri 	n  

where, by (5.5.31) 

(5.5.39) 

[A (rt n ‘,t  
n 	. ' 	j 

af,(x) 

  

(5.5.40) 
aXi  

 

= X tri 	to 

     

The vector X*tr, 	to  is obtained by integrating (5.5.27) from to to t + 
using X:, as initial conditions. Thus in the nonlinear case, to integrate the 
differential equations of the transition matrix, we must also integrate the 
state-equations. We note that if we are only moving the state-vector along 
the trajectory then we accomplish this without the transition matrix in 
both the linear and nonlinear case, by simply integrating the state-equations. 
However, if we also wish to study the error propagation, then the transition 
matrix is required. 

Finally we examine the rank of the covariance matrices of the output 
errors. By (5.5.10) 

5*  FE E( N*  N*  r 	n,n 

= W (0)R (n) W(0) T  

(5.5.41) 

and since R (n)  is symmetric, so then is S. Moreover, we have already 
demonstrated that, without loss of generality, W (0) can be assumed always 
to have full row-rank. Thus from (5.5.41) it follows that if R (n)  is positive 
definite, then so is en, (see Ex. 5.7). 

From (5.5.20) we recall that 5*  n + h,n is a congruence transformation on 
S ,n 

 

S . Hence, if the latter is positive definite, then so is the former.t Thus n 
for any amount of prediction or retrodiction, the covariance matrix of the 
output errors will be positive definite if the covariance matrix of the input 
errors is positive definite. 

Positive definiteness is preserved under congruence. (See Ex. 5.9.) 
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The reader is also referred to Examples 5.8 through 5.12 which contain 
much useful information related to covariance matrices and congruence 
transformations. 

We consider a simple example. Let en+ hm  be a 2-vector with the 
transition matrix 

1 	r) 
11(r) = 	 (5.5.42) 

(0 1 

and let the filtering algorithm be 

n X *  = W(0) Yoz) 	 (5.5.43) n, 

where 

10 (3 1 —1 

1 7 4 1 
W(0) = — 	 (5.5.44) 

we wish to find W(1). 
Clearly, 

ri{n + 1,n 
	sto (1) XL 

= (1)(1)W(0) Y o2)  

= W(1) Y (n) 

Hence [c/f (5.5.15)] 

W(1) = (11(1)W(0) 

( 
L-  0
1 1 5 0 -5 

. _ 
10 3 1 -1 -3 

(5.5.45) 

(5.5.46) 

Thus if W(0) of (5.5.44) gives an updated estimate, then W (1) of (5.5.46) 
will give the 1-step prediction down the same trajectory. 

Assume next that R (n)  = I where I is 4 x 4. Then by (5.5.44) and (5 5.10) 

en n  = W (0) R(n) W (0) T  

70 30 ( 

100 30 20) 

(5.5.47) 
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Likewise, by (5.5.46) and (5.5.10), 

s* 	= W (1) R 02) W (1) T  n + 1,n 
(5.5.48) 

1 	(150 50 

- 100 	50 20 

Moreover, by (5.5.20) 

= 	(1) (1) S* 	) S: + 1,n 	 n,n (1) T  
(5.5.49) 

1 	(150 50 

100 	50 20 

which obviously agrees with (5.5.48). 
Note that W(0) of (5.5.44) has two independent rows and hence it has 

rank 2, i.e. full row-rank. Thus en, and en  + i „ should be positive definite 
and from (5.5.47) and (5.5.48) this is in fact the case. In general, 

S * 	= 	(h) SIn (1)  (h) 2.  n h,n 

1 70 + 60h + 20h 2 	30 + 20h) 

100 ( 30 + 20h 	20 

(5.5.50) 

and, as is easily verified, this is positive definite for all h. 
The smallest diagonal elements in en  + h,n  are obtained when h = — 3/2, as 

we see by setting 

—
d (70 + 60h + 20h2 ) = 0 

	
(5.5.51) 

dh 

Thus, at h = -3/2, 

S* 	
1 (25 0) 

n - 3 /2 n 100 0 	20 
(5.5.52) 

and so for the case of 3/2-second retrodiction, the errors in the estimate 
have the smallest variances and are uncorrelated. 
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5.6 THE GAUSSIAN AND CHI-SQUARED DENSITY FUNCTIONS 

In the discussion to come on various smoothing algorithms, we will 
constantly be interested in the statistics of the random output errors, given 
the statistics of the observation errors. It will be assumed that the latter have 
zero mean and that they have covariance matrices with bounded elements, 
all of which are known. • One of the primary tasks in the analysis of the 
filtering schemes will then be to develop expressions which give the 
covariance matrix of the random output errors as a function of the co-
variance matrix of the input errors. 

Concerning the form of the probability density functions for the observa-
tion errors, however, we will make no restrictions whatever. All we will 
require is that they be zero-mean and have finite second-order statistics, 
which are known. Within these limits, any density function will be ac-
ceptable, and the derivation of the algorithms or the analysis of their 
properties will be completely unrelated to the particular forms which those 
density functions might assume. 

Now, it is a known fact that one particular density function occurs very 
frequently in practice, and this is the normal or Gaussian probability density 
function. It is the purpose of this section to consider that function briefly, 
and to itemize some of its salient properties. We also examine briefly the 
Chi-squared density function and consider some extremely valuable applica-
tions of the latter to our present discussion. Our approach will be very 
elementary, and for further detail the reader is referred to [5.2] , [5.4] or 
[5.5] . 

A random variable v with expectation b and variance r is said to be 
normal or Gaussian if its density function has the form 

A v (C) = 	1 „ exp 
(27Tr) 11 ` (5.6.1) 

This is the very familiar bell-shaped curve that occurs so frequently in 
probability and statistics. 'If v has zero mean and unity variance, then we 
obtain what is called the standard normal distribution 

pp (C) = 	1„  exp )-1C 
(20' 1  2  

(5.6.2) 

Assume now that N is a vector of m Gaussian random variables with mean 
B and positive-definite covariance matrix R. Then its multivariate density 



) ( ) 
(z 0  - bo , z 1 - b ) r oo 	7.01 	zo 	bo  

r10 	r 11 	z - b 1 	b1 
= k2 
	

(5.6.5) 
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function is given by 

1 

P N  ( Z) 	(27011112 (det R) 112  2
- B) T  R -1 (Z - B)]  

(5.6.3) 

We see that if N is .multivariate normal, then its density function, and hence 
all of its statistics, are completely determined by its expectation B and 
covariance matrix R . 1. (See Ex. 5.14.) 

One important property of Gaussian random variables is that any linear 
combination of them is again Gaussian. This fact is of direct interest to us 
for the following reason. As pointed in the preceding section, all of our 
smoothing algorithms will essentially be in the form of a linear transforma-
tion on the observations, and from (5.5.6) we thus see that each element of 
the output-error vector N* + h 02  is a linear combination of the input errors in 
N (n). It thus follows that if the input errors are Gaussian with mean zero and 
covariance matrix R 02)1  then the output errors are also Gaussian with mean 
zero. From (5.5.10) we obtain the covariance matrix of the output errors 
as WR (n) W T  and so the statistics of the output errors are, in this case, 
completely known. 

We now examine a further very important aspect of the Gaussian density 
function. Thus, suppose that we equate (5.6.3) to a constant. Then clearly 
we are considering contours or surfaces in the Z-space, made up of all the 
points which give rise to a certain value of pN  (Z). These contours are of 
great interest in performing system analyses, and we now examine their 
shapes. 

To within a constant (i.e. -1/2), the exponent of the multivariate Gaussian 
density function of (5.6.3) is the quadratic form 

f(Z) 	(Z - B) T  R -1 (Z - 	 (5.6.4) 

Thus, if we equate p N 	of that equation to a constant, then we are also 
equating the above scalar f(Z) to a constant. Consider first the bivariate 
case. Setting 1(Z) to a constant, say k 2, gives us the equation 

tThis is also true even if R is singular. In this case the density function for N can be given in terms 
of its characteristic function. (See e.g. [5.2, p. 130] .) 
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and as is well known, if the matrix R is positive definite, then this defines a 
family of ellipses with respect to z o  and z 1 , which are possibly rotated, 
depending on R, and whose centers are displaced by the vector B from the 
system origin. In this way we see that if the bivariate normal density 
function is set equal to a constant, then the sample values of the random 
variables v o  and v 1  will be constrained to lie on ellipses whose properties 
are given completely by R, B and k 2. In higher dimensions, the analogy goes 
over to families of hyper-ellipsoids in the hyper-spaces of four and five 
dimensions, etc. 

An examination of the covariance matrix of a Gaussian density function 
can thus be an extremely fruitful undertaking, if viewed in this light. It 
gives us the general shape of the constant probability contours for the 
errors, telling us for example whether they are flat and pancake-like, cigar-
shaped or spherical. To perform this study, the Z-space is best transformed 
to the coordinate system in which the ellipsoids are symmetrically oriented 
with respect to the axes, and centered at the origin. 

It can be shown quite simply (see e.g. [5.3] ) that if R is a positive-definite 
matrix and if Q is the orthogonal matrix formed from its orthonormalized 
eigenvectors, then 

QTR -1 Q = A-1 	 (5.6.6) 

where A -1  is a diagonal matrix, made up of the eigenvalues of R -1 . By 
inverting both sides of the above equation, we note that these are the 
reciprocals of the eigenvalues of R. 

Suppose then that we have the ellipsoid 

(Z - B) T R -1 (Z - B) = k 2 	 (5.6.7) 

and that we wish to study its shape. Let Q be defined as above, and define 
the transformation 

Z - B = QJ 	 (5.6.8) 

Then the vector J is an orthogonal transformation on the vector Z -B, and so 
shapes have been preserved (since orthogonal transformations only rotate and 
do not stretch). Using (5.6.8) in (5.6:7) gives 

j QT R-1QJ = k2 	 (5.6.9) 
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which, by (5.5.6) becomes 

JTA-1 = k2 

But 	is diagonal and so (5.6.10) reduces to 

; 2 	; 2 	 ; 2 
Jo 	Ji 	 J rn  
— — + • • • + 	= k 2  

m 0 	A l 	A  

(5.6.10) 

(5.6.11) 

showing that the ellipsoids are now symmetrically oriented in the J-space 
and centered on the J-origin. Moreover for k = 1, the numbers A. 01/2 , 
X1 112 , • • • A.  1/2 are the intercepts which the ellipsoid makes along the axes 
of the J-system. 

Thus in this new coordinate system, the eigenvalues of the matrix R give 
us all the information we require to form a picture of the shape of the 
ellipsoids, and so to study the shapes of the error surfaces. All that we in 
fact require are those eigenvalues. While we do not propose to continue this 
discussion further, it is readily seen that the shape of the error ellipsoids is a 
most useful concept in performing a system analysis, and in determining 
major sources of error. (See Ex. (5.15).) 

A density function which is very closely related to the Gaussian one is the 
Chi-squared function. Assume that N is an m-vector of independent standard 
normal variables (i.e. zero-mean and covariance matrix given by an identity 
matrix). Then the scalar NTN, i.e. the sum of the squares of those random 
variables, has a density function known as the Chi-squared function with m 
degrees of freedom. The details of its form need not concern us here (see 
e.g. [5.5, p. 98] ), and all that we require are tables of its cumulative distribu-
tion function (see e.g. [5.6] ). 

In the event that N has a covariance matrix R (not necessarily an 
identity matrix), then it is readily shown (see Ex. 5.16) that the scalar 

x 2  = NTR -1 N 	 (5.6.12) 

is also Chi-squared.t 
The Chi-squared function provides us with an extremely sensitive test for 

verifying, to within confidence limits, the hypothesis that a given vector is a 
likely member of an ensemble whose covariance matrix is known. Thus, 
assume that we were told that a Gaussian ensemble has as its covariance 

tThe vector N is still assumed to be Gaussian with zero-mean. 
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matrix 

R 
(

1 -1 

-1 1.01 
(5.6.13) 

and suppose that the vector N = , OT  were presented. We wish to test 

the hypothesis that this N is a likely member from that ensemble. To do 
this, we compute the value of x 2  for N relative to R, thereby obtaining: 

X2  a N TR-1 N = 100.25 	 (5.6.14) 

Then reference to tables (Chi-squared with two degrees of freedom) shows - 
that 

P(x2 	100.25) = 0.99999 ... 	 (5.6.15) 

which means that of all possible points in the 2-space in which N lies, 
99.999% of them have smaller values of x 2  than the N given above. If our 
confidence limit is established at, say 95%, then we infer that our hypdthesis 

is false, i.e. that N is not a likely member of our ensemble. Alternatively 
we can infer that R is not its covariance matrix. - 

On the other hand, as is readily verified, the vector N 	--2)T  has a 

)( 2 , relative to the above R of 0.5, and from tables 

P(x 2  5_ 0.5) = 0.22120 	 (5.6.16) 

This, by our chosen confidence limit, does nothing to disprove our hypo-
thesis, and so we can assume that this N is a likely member. 

While the reader may well feel that in the above case the likelihood 
of the two N's could have been judged by inspection from the sign of the 
off-diagonal element in R, in higher dimensions this is not possible. But in 
all cases, regardless of the dimension of the space, the Chi-squared test 
proves to be an extremely powerful and very easily implemented criterion. 

In much of the work to come, our algorithms will produce both an 
estimate en , and a covariance matrix enn  . Needless to say, the algorithm 
is not of much use if the errors in the former are inconsistent with the 
latter. 

During the testing and de-bugging phase, when the inputs to the filter are 
being generated by the addition of synthetic errors to a known trajectory, 
it should be possible to compute the actual errors in X *7,, namely Nn n. 
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Then, by computing the x 2  of the latter, relative to the matrix S: n  , it is 
possible to verify whether or not inconsistencies are present. If they are, 
the matter should be further investigated until the reason for those incon-
sistencies is found. This could lie either in mathematical errors in setting 
up the algorithm, or in programming errors. But regardless of the cause, 
the problem should always be rectified before proceeding further. 

In many cases the algorithms also contain a prediction phase, in which 
+ 1 n 	 n n X* 

+ 1,n 	 n 

is computed from x* by forward-integration of the model, and , , 
s* 	is computed from s* ,n  by the use of (5.5.33). Again possible in- 
consistencies consistencies between the errors in 	 + 1,n + 1,n 	 n X* 	and the matrix S* 	should n  
be checked for using the Chi-squared criterion with a specified confidence 
limit. For if inconsistencies do exist, the algorithm will be of questionable 
value. 

In Ex. 5.15 it is shown that the Chi-squared value of the errors in en +1,,, 
relative to S* 	should be equal to the Chi-squared for the errors in X*  n + 1,n 	 n,n 

n relative to s* S. This equality should also be checked for, and in this way n, 
the consistency of the algorithm which computes en  + i , n  from x4nt n  with 
that of the algorithm for computing en +1,n  from S*n, can be established. 

EXERCISES 

5.1 Assume that a random variable x has meanµ and variance a2 . We 
sample x by making observations on it, thereby obtaining the values 
(x) 1 , (x) 2 , . . . , ( 30 i  from which we form 

k 

m 	
(X) . 	 (I) 

k 

1 	Fx) — ad
2 

Z,4 S 2 = 

k —1 i=i 

Assuming that the observations are statistically independent, verify that 
E 	= 	E Is2  = a2  thereby showing that ti and a2  can be estimated 

by the above averaging schemes. Show also the Om - itL)1 = a2  /k 

and so the variance of the estimate of goes to zero as k 

Hint: Set (x)i  = µ + v where Elv a  = 0, and Ely 	a2  if / - i 

and zero if i 	j . 



STATISTICAL BACKGROUND 159 

5.2 Show formally, using (5.2.18), that 

a) )av n  + i3v k 
= a Ely + /3ESv k  

b) El(av n  + k)1 = a2 E)vn2  + 	Ely n v + /3 2 E k2 

c) Hence verify that (c/f (5.2.34)) 

E)(av n  
+. 	) 21 (a, f3) E  (v)) a(v.,v 

v k 	 1(31 

5.3 Verify that if v n  and v k  are statistically independent then 

Elv na 	
= Ekrq Eivnl 	 (I) 

for any exponents a and /3. For uncorrelated randoiri variables (I) 
holds in general only for a, /3 = 1. 

5.4 Let v n , v k  be two discrete random variables which assume values 
1-1, 0, 21 and 10, 1, 21 respectively. Their joint density function is 
given by 

Compute 
a) the probability that v n  j, for j = — 1, 0, 2 , 
b) the probability that v k  = i, for i = 0, 1, 2, 

c) Eiv , E1VA, E1V 12 1/k  
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d) Hence verify that v n  and v k  are uncorrelated but are not indepen-
ent. 

5.5 Prove that if all of the random variables in 

N E.- (v o , v i , 

are uncorrelated, then, whether they are zero-mean or not, the co-
variance matrix of N is diagonal. 

5.6 Let ri . be  the i, j th  element of R, the covariance matrix of m random 
variables. Show that 

rn  r j  —> r 	1 _5_ i,j < m 	 (I) 

What happens to the above inequality in the event that every one of the 
m random variables is linearly independent of the others? If (I) has a 
strict inequality, can we infer that all m random variables are linearly 
independent? 

5.7 Let A be an mxk matrix and R a kxk matrix. Show that if R is 
positive definite then ARA T  is positive definite if and only if A has 
full row-rank. 

5.8 Prove that if R is nonnegative definite then its diagonal elements are 
all nonnegative. 

5.9 Let B and M be real square matrices with M symmetric and B non-
singular. Then BMB T is said to be a congruence transformation on M. 
Verify 
a) that since M is symmetric then so is any congruence transformation 

on M and 
b) that each of the properties 

i) positive definite, ii) positive semidefinite, and 	nonnegative 
definite, is preserved under congruence. (In fact the signature 
of a matrix is also preserved under congruence. The signature 
is the triplet of numbers a, /3, y where a is the number of 
positive eigenvalues, /3 the multiplicity with which zero is an 
eigenvalue and y the number of negative eigenvalues. This 
accounts for b) above but is considerably harder to prove.) 

5.10 Let D be a congruence transformation on M, i.e. D = BMB T, all matrices 
being m x m. Verify 
a) that if M is positive definite then all of D's diagonal elements are 

positive. 
b) If D is diagonal with positive diagonal elements then M is positive 

definite. 
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c) Hence infer that if D is diagonal then its diagonal elements are all 
positive if and only if M is positive definite. 

d) If D is diagonal with m - k positive elements and k zeros on the 
diagonal, verify that M is positive semidefinite with rank 77/ 

••• 

5.11 Let 

2 

M = 2 5 

\2 5 

Verify that if 

/ 
B 1  -2 1 

  

o 	0 	1 , 

then B 1  MB 1T has zeros in the 1,2 and 2,1 positions. We have, in 
fact, performed one step of Gaussian elimination. We call a matrix 
such as B 1  an elementary matrix, which by definition is an identiy 
matrix with a single nonzero off-diagonal element. 

b) Construct the elementary matrix B 2  such that B 2  (B i  MB 1 T)B 2 T  

has zeros in 1,3 and 3,1 (in addition to 1,2 and 2,1). Finally 
construct the elementary matrix B 3  which then also puts zeros in 

2,3 and 3,2, thus making B 3  [B 2  (B 1  M B B 27] B 3T  diagonal. 
c) Using part c) of Ex. 5.10, infer that M above is positive definite. 
d) Verify that B = B 3  B 2 B 1  is lower triangular. 

5.12 Diagonalize 

/2 1 3\  

M1 --- 1 	5 	0 

0 5) 

by congruence using the method of Ex. 5.11. From that diagonal 
matrix, what is the rank of M 1 ? Is M 1  nonnegative definite? Repeat 
using 

2 

3 4 

4 5 
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Is M2  nonnegative definite? 
Hint: See Ex. 5.10. 

5.13 Given that the covariance matrix of the zero-mean random variables 
v 0' v 1' v 2  and v3 is 

E WW1 = 

1 -2 2 	3\ 

-2 	5 -2 -10 

2 -2 

3 -10 

show that two of the random 'variables in N are linearly dependent 
on the other two which are independent of one another. 
Hint: Diagonalize the above matrix by congruence. 

5.14 Verify that normally distributed random variables are independent if 
and only if they are uncorrelated. 
Hint: What form does the covariance matrix for uncorrelated random 
variables assume? 

5.15 Assume that v o  and v are two normally distributed zero-mean random 
variables which have as their covariance matrix 

a) Verify that the eigenvalues of R n  are 2 and 4 and that the associa-
ted normalized eigenvectors are, respectively 

1 	 1 — 	and V 
—1 	 1 

2  = 

b) Verify that the matrix 

Q = (71, 172) 

is orthogonal, i.e. QT = -1  and that 

2 
Q Tlin Q = (0  
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i.e. Q is the orthogonal transformation which diagonalizes R n  to 
its eigenvalues. 

c) Infer that 

1  
2 

Q TR: 1 Q = 
0 

 0 

d) The density function of v o  and v 1  is 

pvo, vi (z o , z ) o 	— 1 	 exp 
277V 

Infer that the contours of equal probability are ellipses centered 
on the z o , z 1  origin, their semimajor axes rotated by 45 °  with 
respect to the z o  axis, and with the lengths of the semimajor and 
semiminor axes in the ratio . : 1. 

5.16 a) Prove that if N is an m-vector of Gaussian random variablest 

with E IN) = B and El (N - B)(N - B)1 = R, then R -1/ 2 (N - B) 

is a vector of independent standard Gaussian variables. 
b) Infer from a) above that the scalar x 2  defined by 

X2 =  (N - 13) T  R -1 (N - B) 

is a random variable which has a Chi-squared distribution function. 
5.17 a) Define 

,2 	N* 	N* 
A n,n 	n,n n,n n,n 

2 
A n + 1,n 

N *T  S*-1  N *  n + 1,n n + 1,n n + 1,n 

Making use of (5.5.18) and (5.5.20) prove that 

,2 	 „2 
An + 1,n — A n,n 

( 	
(2 1 

b) Assume that = (I) 	1 1  , N *  = (1, 17 and S:. 	Com- 

pute the X 2  for N *n,n . Now derive N: Li, and en  + 1 , n  . Compute 
the x2  of N: +1,n  and compare this to the x2  for 

t See p. 154 for a definition. 

1 
4 
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6 
EXACTNESS, 

LEAST-SQUARES 

AND 

MINIMUM-VARIANCE 

6.1 INTRODUCTION 

This chapter is concerned with the general form of linear estimators, i.e., 

x* ,n = W n Y Y (n)  n (6.1.1) 

in which the estimate is obtained as a linear transformation on the observa-
tions. 

We show that the matrix Wn must satisfy a fundamental condition, called 
the exactness constraint. This is followed by a statement and proof of two 
theorems by which Wn  is chosen, the first being called the least-squares 
method and the second the minimum-variance method. All of our subsequent 
work will be merely implementations of W chosen either by least-squares or 
by minimum-variance. 

The chapter then proceeds with an analysis of the properties of these two 
concepts. The minimum-variance procedure is shown to be very far-reaching, 

ICC 
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and will be seen to be the cornerstone on which our most powerful smoothing 
algorithms are based. 

6.2 THE OBSERVATION SCHEME 

Assume that we are observing a process and that we wish to smooth our 
data or make predictions based on them. As a first step, we will have to make 
an a priori assumption concerning the mathematical form which we believe 
will adequately describe that process. As was shown in Chapter 4, this 
means the assumption of a state-vector and a differential equation, and the 
consequent derivation of a transition matrix. 

Suppose then that a model has been selected, based on the state-vector 
X (t) In Chapter 4 we showed how, depending on the type of differential 
equation on which that model is based, three successively more general 
situations arise. These can be summarized by stating the form of the 
transition equation for each case. Thus 

Constant-Coefficient Linear Model 

X(t n 	C) = 4) ( C) X(t n) 

Time-Varying Linear Model 

X(tn  + C) = 4:1)(tn  + C, tn)X(tn) 

Nonlinear Model 

(6.2.1) 

(6.2.2) 

X (t n) = X (t. n) 	8X (i n) 	
(6.2.3) 

6X(tn  + C) = (I)(tn  + 	to  ;X

/ 

 

In the first case, the transition matrix depends on only one parameter, 
namely C , the amount by which time is shifted. In the second case, two 
parameters enter into (I), the amount of time-shift, c , and the time at which 
the shift takes place, t n . Finally in the nonlinear case, three facts are 
required for the formation of (1). In addition to the amount of time-shift 
and the time at which it takes place, a specific trajectory is involved, as 
specified by X in (6.2.3). In all three cases, however, a linear transition 
relation can always be written. 

We now examine the possible ways in which the observations can be re-
lated to the state-vector, and show that a very close analogy to the above 
three cases also exists here. 
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Consider first the very simple situation where we have, say, a quadratic 
model, and where we are observing x(t) at each sampling instant. Then the 
observation yn  is related to x. by 

Yn = 	vn 

where v n is the n th  observation error. This can also be written 

yn  = (1, 0, 0)(x) + vn  

36 

which is of the form 

Yn = MX n + Nn 

(6.2.4) 

(6.2 5) 

(6.2.6) 

where Yn is the vector of observations taken at time t o , and Nn is the 
associated error vector. (In this case, Y. = y„,N n  = v„.) 

In the above example, the matrix M assumes a particularly simple form, 
but it is easy to generalize slightly and to assume that M is any constant 
matrix of appropriate dimensions. (See Ex. 6.1.) 

Suppose next that the matrix M changes with n. Then we would write 
the observation relation as 

Yn = M n Xn + Nn 
	 (6.2.7) 

Consider, finally, the most general observation model which could (and 
frequently does) arise, namely, 

Yn = G(X ) + N 
	

(6.2.8) 

where G is a vector of nonlinear functions of the state-variables. 
A common example of such a situation is the following. Let X(t) be the 

state-vector consisting of the Cartesian coordinates of the position of an 
object and the first derivatives of position, i.e. 

X(t) = (x o(t), x i (t), x 2 (t), 'C ott), 	i2(t) T 	 (6.2.9) 

The reader is referred to Figure 6.1. 



xo  
tif 	tan-1  (1) 	 (azimuth) (6.2.11) 
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Fig. 6.1 Cartesian and polar coordinates. 

Suppose now, that a radar is being used to observe the object and that 
the radar puts out the triplet of numbers 

Y (6.2.10) 

where p, and 0 are the polar coordinates of position 

p 7 (x 02  + x12 
 + 

x 22)1/2 	
(range) 

0 Es tan-1 	 1/2 	
(elevation) 
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and vP' v41  ' v are the respective observation errors. This is a nonlinear 
observation system, and if (6.2.11) is used in (6.2.10) we obtain an equation 
of the form of (6.2.8). 

While we shall return to the nonlinear case in a later chapter, and discuss 
it in further detail, •  we outline here briefly how we will handle such 
situations. 

Assume that we have a known nominal trajectory X( t), close to the true 
trajectory, i.e. 

X(t) = X(t) + OX (t) 
	

(6.2.12) 

where the components of SX(t) are small compared to those of X(t). We 
compute 

vn  G (xn) 

Now subtract (6.2.13) from (6.2.8), and letting 

SYn Yn 

this gives us 

(6.2.13) 

(6.2.14) 

SY. = G 	+ 8X n ) — G (TO +1 \ 	 (6.2.15) 

We now expand the first two terms on the right, using the Taylor series 
method discussed on p. 108, thereby obtaining to first order, 

SY n  = M(Ye n) axn 	 (6.2.16) 

where 

3g;  (X) 

  

(6.2.17) 
aXi  

 

X = xn 

     

For the example considered in (6.2.11) M 
page. 

is given on the following 
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I io 

x 1  

2 

\ i0i2 
p2 g 

where 

002  + ;2  + 22)1/2 

and 

7G
02 + 

1
2) 1/2 

Equation (6.2.16) is seen to provide an approximate but linear relation, 
with which we can replace the nonlinear system of (6.2.8). The linearized 
replacement is, of course, subject to errors due to the truncation of the 
Taylor series. More will be said about this later. 

We see then, that in close analogy to (6.2.1), (6.2.2) and (6.2.3), we can 
summarize the above analysis on the possible observation methods by the 
following sets of equations. 

Constant-Coefficient Linear Observation System 

Y n = MX n N n 	 (6.2.18) 

Time-Varying Linear Observation System 

Y n = M n Xn N n 	 (6.2.19) 

Nonlinear Observation System 

X = X + 8X 

	

n 	n 	n 

	

Yr, 	G(Te n) 

SY n Y n — Vn 

saY n 	M(X n)8X n  + Nn  

(6.2.20) 
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In practice, systems may arise which have any of the three model choices 
mated with any of the three types of observation systems. Thus, for 
example, we could have a nonlinear set of observation equations used in 
conjunction with a linear model. This will pose no problems. However, 
for the remainder of this chapter we shall assume, essentially, that both the 
model and the observation equations are time-varying linear, and this 
naturally covers the constant-coefficient linear cases as well. The nonlinear 
cases will be discussed, per se, in later chapters. However, as we shall then 
see, very little changes, and the results of this chapter continue to apply 
with only very minor modifications. 

6.3 THE EXACTNESS CONSTRAINT 

Suppose that at time t o  we make a vector of observations on a process. 
Let the chosen state-vector be the (m + 1)-vector 

X (t)  
(6.3.1) 

and let the observation and error vectors be, respectively, the (r + 1)-vectors 

  

vo 

v i  

 

Y r1 N n 
(6.3.2) 

    

    

where r and m are not necessarily equal. Then, assuming a time-varying 
linear observation scheme of the form shown in (6.2.19), we have that 

Yn = Mn Xn N n 	 (6.3.3) 

On page 139 in Chapter 5, we define the total observation and error 
vectors as 
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Y = (n) 

n - 1 

N (n) 

Nn-1 

 

 

• (6.3.4) 

 

• 

Y n - L I 

 

• 

 

  

N n -L 

 

formed from the concatenation of L + 1 successive vectors of the form of 
(6.3.2). The total observation vector Y (n) will form the input to our filtering 
algorithms, and we investigate how it is related to the state-vector X.. 
Accordingly we use (6.3.3) for each of the instants to  _ L  to to  and obtain 

_ Y rz .._\ / 

Yn - 1 

\Yn - L 

M n Xn 

Mn - 1 Xn - 1 

•  

\Mn - L Xn - 

Nn-1 

Nn - Ll 

(6.3.5) 

Assume now, that the transition relation for the chosen model has the 
form 

X (t n k) = 0(tn - t n) (t n) (6.3.6) 

(which means that the model is a time-varying linear differential equation). 
Then (6.3.5) can be written 

IMn-1 0(tn-1' tn )Xn 
M n Xn 

(6.3.7) 

Y  n - Li i\Mn -L 4)(tn - L' t n)X n \N n  _ 

n-1 

showing that the entire set of observations, made over the extended time 
span t._ L  5_ .t 5_ to  can be related to the model state-vector evaluated at the 
single instant in. 
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We now factor Xn out of the right-hand side of (6.3.7) and obtain 

Y n - 1 

M n 

M n - 1 0 (t n - 1' t n ) 

xn 

N n _ 
N n - 1 — — 

(6.3.8) 
• • 

\Y n - L 	
\Mn - L 	( t n - L t Nn - L 

Define the matrix 

M n 

M n - 1 (1) ( t n - 1 	tn) 

T 
n (6.3.9) 

M n - L 	( t n --L tn)/ 

Then (6.3.8) can be written as 

Y (n) 	T n X n 	N(n) 	 (6.3.1 0) 

This compact equation is of crucial importance in what follows and will 
recur over and over again. It is the most general form of a linear observation 
scheme, combiried with a linear model,t and shows that the total observation 
vector can be related, by the use of the matrix T n , to a single value of the 
state-vector. (See Ex. 6.2.) There are essentially three types of information 
which are incorporated into T n . 

1. As is evident from (6.3.9), the instants at which the observations 
were taken is recorded in T , both indirectly by the subscripts of the M's 
as well as explicitly, in the dual arguments of the transition matrices. Note 
that at no stage have we restricted the observation times tn  _ , tn  in 
any way whatever. They can be concurrent, some or all distinct, equally or 
unequally spaced, etc., and in fact tn  need not even be the most recent, 
although for convenience we take it to be so. They also need not follow 

f Discussion of the nonlinear cases is deferred to Chapter 8. 
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one another according to their subscripts, although this is again taken to be 
the case for convenience. 

2. The choice of observation schemes is recorded clearly in T. by the 
elements of the matrices M n  _ L 	, Mn. Complete freedom is possible, and 
the dimensionality of the vectors Y. _ L  , 	, Y n  can differ from one another. 
Moreover the relationships of those vectors to the state-vectors X._ L , 	, X. 
need not all be the same, provided only that they are all linear. The M 
matrices will convey that information in an appropriate way. 

3. Finally, the specific choice of model is firmly contained in T. by 
the presence of the transition matrices. The only restriction, at this stage, 
is that the model be a linear one, although this too will be relaxed later on. 

Thus all of the a priori decisions which we make for our smoothing 
scheme — when we observe, how we observe and what we believe we are 
observing — enter into the formation of T. It is not surprising that this 
matrix occurs so frequently in what lies ahead. 

The decision is now made that we shall limit ourselves exclusively •to 
linear estimation schemes. Thus all of our algorithms will either be of the 
form, or reducible to the form, 

X*n n = W n Y (n) , (6.3.11) 

As yet the matrix W. is completely arbitrary in all respects, other than its 
array size, which is, of course, fixed by the orders of the vectors Y(n)  and X. 
It will be our aim, in what follows, to develop various schemes for deriving 
W so that certain objectives are met. 

We now combine (6.3.10) and (6.3.11), thereby obtaining 

=W TX n,n 	n a a +W (n)  (6.3.12) 

We also make the further restriction that the only matrices W which are 
of interest to us, are those which guarantee that their associated Xn is an 
unbiased estimate of X n , i.e. that 

E1X*.A = Xn 	 (6.3.13) 

Taking the expectation of both sides of (6.2.13) gives ust 

= W n T n X n 	 (6.3.14) 

t No) is zero-mean, by assumption. 
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and so if (6.3.13) is to hold, then we must have 

Xn 	W n Tn Xn 
	 (6.3.15) 

However, since X n  is arbitrary, this can only mean that Wn  must satisfy 

W n Tn = 1 
	

(6.3.16) 

where T n is given. Only those W's which do satisfy (6.3.16) will be accept-
able, since only for those cases will X: ,n  be an unbiased estimate of X n . 

We refer to (6.3.16) as the exactness constraint and as we shall see, it 
forms the basis of all of our further developments.t We examine it in 
further detail. 

Suppose, first, that the order of the vector Y w is tess than the order of X n . 
For definiteness let Y (n) be a 2-vector and X n a 3-vector. Then (6.3.10) has 
the form 

YO 

( 1 1 ) t00 

t 10 

t 01 

t ll 	- • 

tot 2) 

1 

(x0'\ 

X 1 

(1)0 

V 1 )n 

2
/ 
/n 

(6.3.17) 

and (6.3.11) appears as 

(w 00 

W 1 0 W 1 1 

W O 1 C
1 
 O) 

Y (n) 
20 	

W
21 

(6.3.18) 

Hence the exactness constraint (6.3.16) gives 

wl 0 	

/V 	t 00 	t 01 	tot 	1 	0 

w l 1 	t 10 

01 

t 11 t 12) 0 	1 
/WOO 

\W 20 W21/ 	 0 0 
n (6.3.19) 

t See chart at the end of Chapter 1. 
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which is seen to be 9 equations for the 6 unknown wij 's.. A solution for such 
an overdetermined system does not in general exist and so we shall exclude 
the case where the order of Yc n>is  less than the order of X . 

Suppose next that Y o)  and X n  are vectors of the same Order. Then both 
W n and Tn are square and since (6.3.16) implies that T is nonsingular, we 
have the solution 

W n = T: 1  (6.3.20) 

In this case W is uniquely determined and the resulting filter turns out to be 
simply an interpolation on the data, in which the trajectory is forced to pass 
through every observation precisely. This case will only be of marginal 
interest to us, since it leaves us no freedom to attempt to do something about 
the observation errors. 

Finally then, we consider the case where the order of Y o)  exceeds the 
order of Xn , e.g. Y (n)  is a 4-vector and Xn  a 2-vector. The exactness constraint 
now gives us 

W01 	w02 00 	 W03 /t00 	t01 \ 	1 	0 

W 11 	w 12 	w13 	(0 	1 10 	 13 	 t 11 

	

t 20 	t21 

	

\t30 	t31/ 

(6.3.21) 

which is an underdetermined system. There exists an infinity of W's which 
will satisfy it for a given T, and yet all of them will lead to unbiased 
estimates. Within that underdetermined structure we will be free to maneu-
ver, in an attempt to offset the observational errors, and so this is the case 
of real interest to us. 

As we shall soon show, by setting up further constraints, we will arrive at 
two choices for W, the first being called the least-squares filter matrix, 

A 
symbolized W , and the second the minimum-variance filter matrix, symbo-
lized 	. 	ti  

I Examp e:t We take as our model a first-degree polynomial, and as the 
state-vector we choose (c/f (4.2.14)) 

x(t) 
Z(t) 

rx (t) 
(6.3.22) 

t This example is continued in each of the sections of this chapter to illustrate the successive 
developments. 
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where r is the constant inter-sample time. The transition matrix is (c/f 
(4.2.15)) 

(6.3.23) (1)(h) = 
0 1 

and, assuming that we are observing only the position variable, (c/f (6.2.5)) 
the observation matrix is 

M = (1, 0) 	 (6.3.24) 

For the case, where three observations go into each estimate, we have 

yn \ 
Y (n) = y 

- n-1 

\Y n- 

and so by (6.3.9) 

(6.3.25) 

—1 

1 (6.3.26) 

—2)/ 

1 

(6.3.27) 

(1, 0) 

. 	

(1, 0)(1 

0 

(1, 0)(1 

0 

which reduces to 

0\ 
T 
	

1 —1 n 

V —21 

Thus (6.3.10) becomes 
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Y n 

n - 1 

n - 
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x 	/ v  n 

1 	—1 	Ti n 
	- 1 

\V  n - 2/ 

(6.3.28) 

The exactness constraint now gives us 

woo 	W01 	W02) 1 	0 

—1 W10 	W11 	W 12 0 	1 (6.3.29) 

which is four equations in six unknowns, namely 

woo + Wo 	w02 = 1 

w01 + 2w 02 = 

0 (6.3.30) W 10 + W 11  + W12 = 

W11 + 211)12 = 

6.4 FURTHER RELATIONSHIPS 

Prior to embarking on a discussion of the least-squares and minimum-
variance techniques for selecting W, a few additional results are required. 

Returning to (6.3.12) we see that Xn n  is composed of the sum of two 
parts, a deterministic vector W. T. X. plus a random vector W n No) . Since 
only W's satisfying the exactness constraint will be considered, the former 
reduces simply to X., and the latter we recognize, of course, as N *.. defined 
on p. 143. Thus (6.3.12) can actually be written 

= 	N*  n,n 	n 	n,n (6.4.1) 

This very simple form shows that X.* ,n  will equal X. to within a vector of 
zero-mean, random errors, N. 

Unfortunately another error component enters for the following reason. 
We have assumed, somewhat naively perhaps, that the chosen model exactly 
describes the true process. What if it does not? As we shall see later, a 
further vector of deterministic errors will then be added to (6.4.1). However, 
for the present we ignore that possibility, and we continue to assume a per-
fect match between the chosen model and the true process. 
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From (6.4.1) we solve for X n , and inserting the result so obtained in 
(6.3.10) gives us 

Y(n) — T X *  = N(n) — T N n ,n n,n 	 n n,n 

Then, by taking the expectation of both sides, we see that 

(6.4.2) 

.X *nA = 0 	 (6.4.3) 

	

The vector Y (n) 	n n 
— T X* n  is thus zero-mean if the exactness constraint holds. 

We now examine the rank of the matrix T n , a quantity of considerable 
importance. 

The matrix T n first arose in (6.3.10) which we repeat here, i.e. 

	

Y (a) = T n 	N (n) 
	 (6.4.4) 

In general, the order of Y (n)  will exceed that of X n , and so T n  will be a 
rectangular matrix with more rows than columns. The maximum rank which 
T n could possibly have is thus equal to the number. of its columns. We 
show that, without loss of generality, only T's with maximum rank, i.e. full 
column-rank, need ever be considered. 

Suppose, for definiteness, that Y (n)  is a 4-vector and X n  is a 3-vector. Then 
(6.4.4) would become 

,off 	o 	to 	t02 40\ 	/1,0\ 

V3/ (n) 

Y2 	

( 

t 30 

t20 t 21 

t 31 	

t 22 

t32 

\X 2/12 	V
2 

\113/(n) 

Y1 	t 10 	t 11 	t 12 	X 1 	V
1 (6.4.5) 

Assume now that the three column vectors of T n are linearly related. For 
example, let the first column be a-times the second plus /3-times the third, 
where a and /3 are some scalars. Then (6.4.5) can be written as 

(6.4.6) 

y2 

\y3/ 



180 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

But this is now of the form 

Y(n) = T
11 
" Xn + N n 	 (6.4.7) 

where T' has two columns and where 

X #  
axo  + x1)1 ( 

Pxo  + x2 
(6.4.8) 

is a 2-vector. We started out with the assumption that the state-vector should 
be a 3-vector and we have arrived at a situation where we are observing a 
2-vector. It will not be possible to estimate the required three quantities 
(x0 , x 1  , x2)n  from an estimate of (6.4.8), and so we are forced to conclude 
that we cannot let the columns of T be linearly related. Thus only T's with 
full column-rank will be considered. tn  

As we show in the next section, it is precisely that assumption that T has 
full column-rank which enables us, from a matrix formalism standpoint, to 
obtain estimates at all. Without it we encounter operations which call for 
the inverses of singular matrices. 

Example: Returning to T n  of (6.3.27) we see clearly that it has rank 2, 
i.e. full column-rank. 

6.5 LEAST-SQUARES ESTIMATION 

In the preceding section we showed how the total observation vector 
could be related to the true state-vector by 

Y(n) = Tn Xn + N (n) 
	 (6.5.1) 

We now introduce the idea of a simulated observation vector. 
Thus, let the state-vector Xn  in (6.5.1) have some given numerical value, 

say V. Then the simulated observation vector is that vector of numbers 
computed from (6.5.1) as though an error-free total observation vector were 
being made on V. Thus the simulated observation vector on V, based on the 
observation relation (6.5.1), is 

Y 	T n V 
	

(6.5.2) 

-This question of the rank of T is of course governed by a relationship between M and 4) (see 
(6.3.9)). In Section 8.9 we pursue this matter further. 
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As another example of a simulated observation vector the reader is referred 
to (6.2.13). 

The next concept which we introduce is the idea of the residual vector. 
Thus, suppose Y(n)  is a total observation vector related to the true state-
vector by (6.5.1), and let rtin  be some estimate of X n , extracted from Y (n) 

 by the estimation scheme 

n X*  = W n Y (n) a, (6.5.3) 

We now form the simulated observation vector based on enn  , namely T 	. n n,n 
Then the total residual vector is defined as the true observation vector minus 
the simulated observation vector based on that estimate. We designate the 
residual vector as E, and so we have 

E (en,n) 	- T X (n) 	a n,n 
	 (6.5.4) 

where we display clearly the functional dependence of E on the estimate 
n,n . 
At this stage we are in_ a position to embark on a general discussion of the 

least-squares principle. Of the infinite number of ways in which 4, can be 
chosen, the principle of least-squares states, simply, that it should be chosen 
so that the sum of the squared components of its residual vector is least. 
Thus, least-squares calls for the vector n X* to be chosen so that the scalar 
inner-product, 

e (2C: ,n) 	[E (rna)]T E (X * 
	

(6.5.5) 

shall be smallest. We now show how e (X* n)  is minimized over X*nn . 
First, we recall from the previous section that, without loss of generality, 

we can always assume the matrix T n  to have full column rank. That being 
the case, the matrix T nT T n  will be symmetric and positive definite (see Ex. 
6.4), and so it is quite permissible to talk about its inverse (T : Tn)- ', as well 
as about the matrices (Tn1

' 

T n  )112  and (T: T nr. (See Ex. 6.5.) 
We now insert (6.5.4) into (6.5.5), obtaining 

e (en,n ) = (Tn  en, - Y(n)T  (T. 	- Y(n) 	 (6.5.6) 

which, by a rearrangement of terms analogous to "completing squares," 



A 
ness constraint (6.3.16) and so W n ‘ftylo 

is an unbiased linear estimate of X . 
This is a direct consequence of choice by least-squares. 

A 
The reader can verify immediately that W n , so defined, satisfies the exact- 
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becomes 

e x ) 

= [(TTn1i2x* — (TTD)1/2-1- 	[(TTT) 1/2 X* — (TTT) 1/2 TTY] 

— YTT (TTT)-1  TT Y 
	

(6.5.7) 
+ YTY 

Proof follows quite readily by direct expansion. (See Ex. 6.9.) 
Examination of (6.5.7) shows that, of the three terms on the right, only 

one of them contains e n . We have no control over the other two, and so n, 
if e is to be least then r n  must be chosen so as to minimize the first of n, 
those terms. This is readily accomplished if we set 

T 
r 

n n 	n,n 

(TnTTny1/2 TriT Y(n) 
(6.5.8) 

for then, that first term becomes zero. Since e(rnn  

scalar, this is clearly the correct way to minimize it. 
From (6.5.8) we thus get the least-squares estimate 

1 
= (7-n Tn TnT  n,n 	 Y (n) 

and under these circumstances, by (6.5.7), 

/A 	\ 	 --1 *r  ,r2) 	Y(n) — T. (T: Tn) TnT1 Y (n)  

is a nonnegative 

(6.5.9) 

(6.5.10) 

* 	A*  
(Henceforth when we place a hat over X ,, i.e. X,, then we are referring 
specifically to the unique estimate shown in (6.5.9), obtained by the least-
squares principle.) 

Equation (6.5.9) is seen to be of the same form as (6.5.3), the weight 
matrix being 

A 	 1 w a (T TT ) 	T 
n n 	n 

(6.5.11) 
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In Section 5.5 we pointed out that W. can be taken, without loss of 
generality, to always have full row-rank. Likewise in Section 6.4 we showed 
that Tn can be assumed to always have full column-rank. The reader can 

A 
easily verify, from (6.5.11), that W. will have the same rank as T.T , and 

so the full column-rank assumption on T. implies full row-rank for W. 
A 

Consider now the covariance matrix of the random errors in X* ,n , namely n 

A 

n 	an S*  . By (5.5.10) and (6.5.11) this will be 
n , 

A 	A 	A 
S*  a-  W n R (n ) W nT  r2,12 

= (7.n T 
1 

T: R (n) TnnT  T f2)- 
1  

(6.5.12) 

and so, if the covariance matrix of the random input errors in Y oo is known, 
A 

n then the covariance matrix of the random errors in X* is obtainable from n 

this expression. 
One case of particular interest is the following. Suppose that a single 

instrument is being used to observe the process and that the observation 
errors have constant variance and are uncorrelated with each other. Then 
R (n) would have the form 

R (.)  = 0-7,1 	 (6.5.13) 

where I is the identity matrix and a 2  the variance of the errors. For this 
case, (6.5.12) reduces quite readily to 

A 

n n 
= a  2 (T 

n 
TT 

 n 
yi 	 (6.5.14) , 	v  

The matrix (TnT  TJ 1  plays a very significant role in least-squares estima- 
• 

tion, as can be seen from (6.5.11), (6.5.12) or (6.5.14). Obtaining that 
inverse is, in fact, the major problem of least-squares estimation from a 
computational standpoint. We refer to (6.5.9) as the classical formula. 

In Chapters 7, 9 and 13 we will derive least-squares algorithms which 
avoid the need for a matrix inversion. This is accomplished by the use of the 
orthogonal polynomials developed in Chapter 3, and it will be seen that, as a 
result of the orthogonality property, the matrix T.T T. will, in effect, be 
replaced by a diagonal matrix whose inversion is trivial. However, there are 
many practical situations where the classical formula must be used and we 
cannot stress its value sufficiently. 
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As long as both the model and the observation scheme are linear, the 
foregoing discussion shows how the principle of least-squares can be used to 
provide an estimate. If either of them is nonlinear, however, then a further 
analysis will have to be undertaken before an estimation scheme is obtained. 
In Chapter 8 we treat this question and arrive at what is known as the 
method of iterative differential-correction. 

A 
We note in conclusion that W can also be obtained by using the differ-

ential calculus to minimize e(r.,.) of (6.5.6). The reader is referred to 
Ex. 6.6 and 6.7 and to the important comment following Ex. 6.7. 

Example: Using the observation equation (6.3.28) we obtain the least-
squares weight matrix. Thus, by (6.3.27) 

( 3 -3) 
T T T n n 

-3 5 

and so by (6.5.11) 

(6.5.15) 

W = (Tnr  TnY 1  TnT  

6 3 0 _3 

1 (5 2 -1 

A 
Note that WT = I, showing that the exactness constraint is satisfied. 

We recall, Prom (6.3.23), that the model which gave rise to T. used above, 
was a first-degree polynomial.t Assume now that the observations on that 
polynomial are 

(6.5.16) 

(6.5.17) 

Then (6.5.9) gives us 

X *  n,n 	
1 (5  2 — 	. 1\ 

6 3 -3 	2.2 

A 

\0.9' 

(3.167) 

1.1 

(6.5.18) 

'See also (6.3.22) where its state-vector was defined. 
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Thus the estimate of x(t), at the time that the observation yn  = 3.1 was 
obtained, is 

1-1,n 	3.167 	 (6.5.1 9) 

and the estimate of r5c(t) at that time is 

ri* = 1.1 	 (6.5.20) 

Assuming that r = 1/10 second, we see that 

n,n 

ic* = -14  = 11 
	

(6.5.21) 
n,n 	r 

Let the covariance matrix of the errors in Y (n) of (6.5.1 7) be 

1 
R (n) = 	2 

2) 

(6.5.22) 

Then by (6.5.12) 

A 	A 	A 
Sn,n = W n R (n)W nT  

/35 21\ 
36 36 

21 27 
\36 36/ 

(6.5.23) 

6.6 MINIMUM-VARIANCE ESTIMATION 

In the least-squares estimation approach discussed above, we directed our 
attention towards the summed squared residuals. Reference to (6.4.3) shows 
that the total residual vector is a vector of zero-mean random variables, and 
what we did, by the least-squares principle, was to set up the algorithm 
which minimizes the sum of the squares of those random variables obtained 
on each successive sample draw from the observation process. 

We now direct our attention, instead, to the covariance matrix of the 
output errors. Assume that the matrix Tn  is given, and that the covariance 
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matrix of the input errors, R oo , is known. This last assumption is basic to 
the minimum-variance estimation procedure.t Restricting ourselves to those 
matrices W which satisfy the exactness constraint (6.3.16), we conceptually 
form all possible estimates 

X*n,n = W n Y (n) 

Their respective covariance matrices will be 

s*  T  n,n 	Wn R (n) W  n  

(6.6.1) 

(6.§.2) 

We now set about sorting through this infinity of covariance matrices, 
generated by the infinity of W's which satisfy the exactness constraint. 
Among those covariance matrices, one in particular is of interest to us. 
We call it the minimum-variance covariance matrix, designated SzT.. Like-
wise the W which produced it, in (6.6.2), is called the minimum-variance 
weight matrix, designated Wn , and the resultant estimate is called the 
minimum-variance estimate and designated 4,n . 

The property of this matrix S: n  which interests us is that each of its 
diagonal elements is individually the smallest if compared to the correspond-
ing diagonal elements of all of the other matrices en n  generated by (6.6.2). 
Specifically, assuming 3 x 3 matrices say, then the diagonal elements of en, 
satisfy 

(I)* 	<_ 
0,01, ,n  — 	0 ,0) ro., 

0*  ) 5_ (S *  1, li mn 	1, 1)„,n  

0* 	< (S*  2,2),, , ,, 	2,2)„,n  

(6.6.3) 

for every matrix e. generated by (6.6.2). t 
The matrix s*n n  so selected exists, it is unique, and it constitutes the 

crux of the minimum-variance estimation procedure. While we have singled 
it out by examination and comparison of diagonal elements only, we shall 
see, in the succeeding sections, that the minimum-variance property actually 
reaches further than just the diagonal terms. It in fact covers the entire 
matrix and has a number of very far-reaching implications. 

f By contrast, we did not require IR(n) in order to perform least-squares estimation. See. (6.5.9). 
t Always assuming that Wn  satisfies the exactness constraint (6.3.16). 
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We now embark on solving the minimum-variance estimation problem, 
namely: Given 	 n Y (n) ,  R0) and T n , find 1* n n, , i* n 	n and ,§* S. The problem can be 
restated more formally as follows: 

Given the observation relation 

yoi)= T n X n + N(n) 
	 (6.6.4) 

and given that R (n)  is the positive definite covariance matrix of the zero-
mean error vector N ow  find the weight matrix W n so that 

a) If we estimate X n by 

.k)*  
n,n W'n Y (n) 

then the errors in x *,n  have the smallest variances, and n 
b) The matrix W n  satisfies 

in Tn  = 1 

(6.6.5) 

(6.6.6) 

The problem is well suited to an application of Lagrange's method of 
undetermined multipliers (see e.g. [6.11). Thus, given the positive definite 
matrix R ()  and the full-column-rank rectangular matrix T n , find the rectan-
gular matrix W n so that each of the diagonal elements of 

W R n W nT 
	

(6.6.7) 

is minimized, subject to the constraint equations 

W r1 T n = I 
	

(6.6.8) 

For definiteness let R () be 3 x 3 and T n be 3 x 2. Then W n will have to be 
2 x 3. Define its rows by the row-vectors 

WO E"-- (w00 , w01 , w02 ) 

W1 "7- (U)10 , w11 , wl 

(6.6.9) 

and likewise, define the column-vectors of Tn  by 

T o  (6.6.10) 
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Also define a 2 x 2 matrix of (as yet undetermined) multipliers by 

A (A" 
A i 

A01' 
a-  (A 	A1  ) 1-.)  

A 11 
(6.6.11) 

Thus Ao  is the first column of A and A l  the second. 
The covariance matrix s* is now 2 x 2 and becomes, by (6.6.7), 

n,n 

(

wo Rwor 

Wi  RW02.  

W o  RWiT) 

W 1  RW 
(6.6.12) 

The constraint equation (6.6.8), on the other hand, gives us the four scalar 
equations 

Wo  To  = 

W i  To  = 

1, 

0, 

W T = 0 

W 1  T 1  = 

0 0, 

1, 
(6.6.13) 

and it is now clear that the Lagrangian minimization problem can be 
separated into two completely disconnected problems. Thus: 

Problem I 
Minimize the scalar W o RW 0T over the row-vector of numbers W 0 , subject 

to the constraints 

Wo  To  = 1 
	

Wo  T 1  = 0 	 (6.6.14) 

Problem II 
Minimize the scalar W 1  RW iT  over the row-vector of numbers W 1 , subject 

to the constraints 

T 
	

W1 T l = 1 	 (6.6.15) 

Lagrange's method requires that we foim the Lagrangian function L, which 
is the sum of the function to be minimized and each of the constraint 
equations multiplied by an "undetermined multiplier." Thus for Problem I 
above we form the scalar L 0 , defined by 

L 	W o  RiVoT  - 2(W o  To  - 1)A00  - 2(Wo  T 1 - 0)A. 10 	(6.6.16) 
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where, for convenience we use -2A 00  and -2A 10  as the multipliers. L o  is a 
function of the vector (W 0  A. 	A ). o 	oo , 	10 

Following Lagrange's method we now differentiate L 0  with respect to 
each of the components of W o , setting the results to zero. This gives the 
vector of equations (see Ex. 6.10) 

	

2RW or - 2T0 A 00  - 211 1 A. 10  = 0 	 (see Note) 	(6.6.17) 

which we reorganize as 

A fig., 
RS oT = 	T ) 0 	) 

io 
(6.6.18) 

Lagrange's method also requires that we differentiate L o  with respect to each 
of the multipliers A 00  and A 10 . This gives 

Wo  To  = 1 and Wo  T i  = 0 	 (6.6.19) 

We now have exactly the right number of equations to solve for A00, A10 and 
the numbers in W 0 , and _we could, if we wish, solve for W 0  from the above 
system of equations. 

The situation is simplified, however, if we solve Problems I and II above 
simultaneously. Applying the same operations to Problem II as we did to 
Problem I, leads to the set of equations 

A  RWiT = (T o  I T 1 ) ") ( 
A 11 

(6.6.20) 

W 1 T 0" = 0 and W 1  T 1  = 1 	 (6.6.21) 

which can be combined with (6.6.18) and (6.6.19) to give 

RWT = "TA 	 (6.6.22) 

WT = I 	 (6.6.23) 

It is easily inferred that this pair would also result if we were solving the 
general case rather than the 2 x 2 case considered above. 

Note: By the symbol 0, both here and henceforth, we mean a null-vector or a null-matrix, 
whichever is appropriate. 
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The matrix W is now obtained as follows. By transposing (6.6.22) we get 

WRT = AT TT. 

	 (6.6.24) 

but since R is a (symmetric) positive definite matrix (6.6.24) can be written 
as 

W = ATTTR -1 	 (6.6.25) 

Post-multiplying by T then gives 

WT = AT TT R -1  T 

= I 
	

by (6.6.23). 	 (6.6.26) 

It is shown in Ex. 6.4 that TT R -1  T is positive definite if R is positive definite 
and T has full column-rank,t and since by assumption, this is the case, 
TT R -1  T can then be inverted. Thus by (6.6.26) 

AT  = (TTR-1 T) -1  

This is now used in (6.6.25) to give, finally, 

W n = (T T R -1 T)-1 7. T R -1  n 	(n) n 	n 	(n) 

(6.6.27) 

(6.6.28) 

Strictly speaking, Lagrange's Method leads to a stationary point, i.e. the 
above W may have made the diagonal elements of S:. to be maximum, 
minimum, or at a saddle point. However, by (6.6.12) we see that each of 
those elements is a quadratic form on a positive definite matrix which rules 
out the possibility of a maximum or a saddle point. Thus we have arrived at 
the matrix W which minimizes, individually, each of the diagonal elements 
of S:,. and we write, as the resultant filter 

2°< * = V°V nn 	n  Y (n)  

where 

(

7- TR-1 T T R-1 
n (n) n n (n) 

(6.6.29) 

(6.6.30) 

This is called the minimum-variance unbiased linear estimator. 

frith fact also follows directly from (6.6.26), i.e., A T  T T  R-1  T = I implies A T  and T T  R -1  T 
have nonzero determinants. 
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n The resultant covariance matrix ,§* ,n  is, by (6.6.7) 

O 

,17  = 'cif) n R (n)I* nT 
	

(6.6.31) 

and it is easily verified (see Ex. 6.11) that this reduces to 

1( n,n §1*  = (TnT 
 R (-n1) T ni 1  (6.6.32) 

The reader is also referred to Examples 6.12 through 6.14. 
It is particularly interesting to examine the case where, the input errors 

are uncorrelated, stationary and have covariance matrix (c/f (6.5.13)) 

R (n) 	a 
71
'I 

	

(6.6.33) 

The minimum-variance filter matrix and the output-error covariance matrix 
then become 

-1 
( n  1 n Tn 

§* T T T n n -1 n,n 

(6.6.34) 

(6.6.35) 

which follows readily by using (6.6.33) in (6.6.30) and (6.6.32). Comparison 
of the above two equations with (6.5.11) and (6.5.14) thus shows that if the 
input errors have a covariance matrix given by (6.6.33) then the least-squares 
filter is also the minimum-variance filter. For any other case of input errors, 
however, the diagonal elements of Sn ,n  will be less than or equal, term by 
term, to corresponding elements in all covariance matrices of unbiased linear 
estimates on the same data, including the least-squares estimate. 

In this way, then, we have solved the minimum-variance estimation 
problem. Again we see from (6.6.30) that matrix inversions are called for —
not one, as in the least-squares case, but two. We have also seen that, under 
certain circumstances, the minimum-variance and least-squares estimators 
are one and the same. 

The minimum-variance estimate has been derived on the basis of complete 
linearity, i.e. a linear model and linear observation relations have been 
assumed throughout. In many cases of practical interest however, linearity 
does not prevail, and in Chapter 8 we will show how minimum-variance 
estimation can be applied to nonlinear situations by the use of the method 
of iterative differential-correction. 
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The remainder of this chapter is devoted to a study of the minimum-
variance property in greater depth. Many relationships will be revealed 
which will play important roles in our future discussion. 

Example: Using the observation equation (6.3.28) and the observation-
error covariance 

* ,n 
 matrix (6.5.22), we now derive the minimum-variance 

matrices W n and S . Thus n 

n 
R -1  T 

(n) 

- 1 

/10 
11 

6 
\11 

6 

8 
11 

(6.6.36) 

which, by (6.6.32), is the mat_rix 	By By (6.6.30) the minimum-variance 
weight matrix if becomes 

iv) 	1 (10 	2 

11 6 -1 _5  (6.6.37) 

W of (6.6.37) does satisfy the 

A 
(6.6.36) to the matrix S'inc n  of 
denominator, namely 396, we 

As a check, we note that kr n  = I, and so 
exactness constraint. 

We compare the covariance matrix 'S)*nn  in 
(6.5.23). Reducing them to their common 
obtain from (6.6.36), 

n,n 

1 (360 216 

396 216 288 
(6.6.38) 

and from (6.5.23) 

- 
S 
A 	1 385 231 

*  
11' n 	396  231 	297 

showing clearly that the diagonal elements of .§3*  
n,n 

(6.6.39) 

are smaller than those of 

n,n • 
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6.7 GENERAL ASPECTS OF MINIMUM-VARIANCE 

The approach we adopted in the preceding section to the minimum-
variance estimator was through the diagonal elements of the output-error 
covariance matrix. We now show that the minimum-variance property 
actually goes far deeper, only one aspect being the minimal nature of those 
diagonal elements. 

Suppose, as we did in the previous section, that we consider all covariance 
matrices 

n,n 
	Wn R (n) WnT 
	

(6.7.1) 

which arise from weight matrices W. which satisfy the exactness constraint 

Wn Tn = I 
	

(6.7.2) 

Suppose that owe now subtract from each matrix S.*  , the minimum-
variance matrix S *.„ , as obtained in Section 6.6. In general, the difference 
between two positive definite matrices may or may not be a definite matrix. 
However, as we now prove, the matrix n S is such that every one of the n 
matrices C•defined by 

o 
C S:n  - 

is a nonnegative definite matrix. 
To prove this we require the following. 

Lemma 

Let 

(6.7.3) 

C BBT - BG(GTG) -1 GTBT 	 (6.7.4) 

where B and G T  are any m x k matrices with k m, and G T  G is nonsingular. 
Then .0 is nonnegative definite. 

Proof 
A 

Returning to (6.5.10) we recall that e(C
* 

 .„) is nonnegative, and so since 
Y (n)  of that equation is arbitrary, it must be true that the matrix I - 
T (T T  T) TT is nonnegative definite. Hence so is I - G (G T  G) -1  G T  for any 

where R W and T n are given.t Each of those matrices Si n  is positive definite n, 
if R (n) is positive definite and Tn has full column rank. 

f Throughout this section, when we write St y,, we mean a covariance matrix of the form of (6.7. 1 1 
where Wn  satisfies (6.7.2). 
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matrix G for which (GT G) -1  exists. Finally then for any matrix B, the 
matrix 

C = B[I — G(GT 	GlBT 
	

(6.7.5) 

is nonnegative definite and so the lemma is proved. 
We now have the following: 

Theorem 6.1 

Let R be a positive definite k x k matrix and T a k x m matrix (k m) with 
full column rank. Let W be any m x k matrix satisfying 

WT = I 

Then the matrix 

C WRWT - (T T  R -1  Ti' 

is nonnegative definite. 

Proof 

(6.7.6) 

(6.7.7) 

Using the previous lemma we set 

B = WR 112 
	

G = R-112  T 	 (6.7.8) 

Then (6.7.4) shows that the matrix 

WRWT - WT (TT R -1  T) -1  T T  WT 

is nonnegative definite. But by (6.7.6) this now reduces to 

WRW T (TT R- 1 T) -1  

and so the theorem is proved. 	 •• 
Of course, it is now evident that the following is also true. 

Corollary 6.1.1 

For S:n  and tn  defined by (6.6.2) and (6.6.31) respectively, the matrix 

C a IS*  — n,n 	n,n 

is nonnegative definite. 

(6.7.9) 
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Proof follows directly from Theorem 6.1 above. 
This corollary is the very fundamental aspect of the minimum-variance 

concept to which we have been alluding, and all of the properties of the 
minimum-variance covariance matrix can be obtained from it. 

As a start, if 	— en ,n  is nonnegative definite, then its diagonal elements 

are all nonnegative,t i.e. 

[c] 	[

s* 	[.§* 	0 	(0 < i < m) 	 (6.7.10) n,n i i 	n,n 

We thus have 

Corollary 6.1.2 

[s* 	> Pi*  1 n,n (0 < i < m) (6.7.11) 

The above proves that each of the diagonal elements of S * ' are individually 
less than, or equal to, corresponding elements in any of the other matrices 

m  • S*  This formed the basis of the preceding section and now emerges simply n 
as a corollary of the minimum-variance property as stated in Theorem 6.1. 
Henceforth, when we talk of the minimum-variance property of the matrix 
SL, then we are referring specifically to the fact that the matrix 

C .s* _§* n,n 	n,n 

is nonnegative definite. 
As a further important corollary we have the following. Suppose that 

i*  n is the unbiased minimum-variance updated estimate of Xn , based on 
Y(n)' R (n) and T n , and assume that we form the prediction 

U 	(h) n,n 	 (6.7.12) 

Clearly U is an unbiased estimate of X n  h  since 

E 1 U — X n h  = cro ( E 	— Xn 	 (6.7.13) 

t See Ex. 5.8. 
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The question we now ask is, if U is compared with any other unbiased 
estimate of Xn + h based on Y (n) and T n , will the covariance matrix of U 
have the smallest diagonal elements? The answer is yes, as we now propose 
to show. 

Thus, let en, be any unbiased estimate of X n  based on Yo)  and T , i.e. 
let 

X *  = W Y n,n 	a (a) 

where W n Tn = 1. Form the prediction 

V E.- 411(h) X*  n,n 

(63.14) 

(6.7.15) 

Then by the reasoning of (6.7.13), V is an unbiased estimate of Xn + h based 
on Y (n)  and T n . 

The covariance matrix of V is, by (6.7.15) and (5.5.20), 

S* 	(h) 	(h) 
	

(6.7.16) 

Likewise the covariance matrix of U is seen from (63.12) to be 

S*u  = (1:1(h)kn'. (I)(h) T 
	

(6.7.17) 

Hence 

SV, — 	= (h) 1Sn n  — 	n) (M T 	 (6.7.18) 

But by Corollary 6.1.1, the right-hand side is now seen to be a congruence 
transformation on a nonnegative definite matrix. This property is preserved 
under congruence (see Ex. 5.9) and so the left-hand side of (6.7.18) is then 
also nonnegative definite. Thus the diagonal elements of S. — S*u  are non-
negative and so we have proved the following: 

Corollary 6.1.3 

Each of the diagonal elements of St and S. satisfy 

? [41 . 	 (6.7.19) 

By equation (6.7.18) we now have the final corollary, 
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Corollary 6.1.4 

The minimum-variance property is preserved under prediction or retro-
diction, i.e. for any h, the matrix 

C = S* 	— :S*  n + h,n 	n + h,n  

is nonnegative definite. 
We shall accordingly write (6.7.12) and (6.7.17) as 

X* 	(h) n + h,n 	n,n 

§ 	= (h) §* 	(h) T  n + h,n 	n,n 

(6.7.20) 

(6.7.21) 

(6.7.22) 

showing that if a prediction is made on the basis of a minimum-variance 
estimate, then that prediction is also minimum-variance by comparison to 
all other unbiased predictions to the same time-instant, based on the same 
data. 

The minimum-variance property does indeed contain some important 
ramifications. They will feature more and more strongly as our discussion 
proceeds. , 

Example: In (6.6.38) we obtained the minimum-variance covariance matrix 

n 1132° n 	 n whereas in (6.6.39) we have the least-squares matrix /* for the same S*  
model and the same data. Their difference is 

S*  — §* ,n  17 

1 (25 15 = 
396 1_5 	9 

(6.7.23) 

which is quite clearly nonnegative definite, as Theorem 6.1 predicts. More-
over, if we now form, say, a 1-step prediction using 40(1) from (6.3.23), then 

§* n + 1,n = (1)(1)?n,n 	T 

 1 	1 1 360 	216 1 	0 

0 1 396  216 288 1 	1 

'(1080 504 

396  504 288 

(6.7.24) 
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whereas 

	

(.10 	= 	1),' (1)(1) T  

	

n + 1,n — 	,n 

1 (1144 528 
396 528 297 

Then, 

(6.7.25) 

A 
;9*  n + 1,n + 1,n 

1 24 

 24 

396 24 	9 
(6.7.26) 

which is also nonnegative definite as Corollary 6.1.4 predicts. 

6.8 UNIQUENESS OF LEAST-SQUARES AND MINIMUM-VARIANCE 

We now raise the question of uniqueness of the minimum-variance and 
least-squares estimates. It is clear that given Y T n  and R(n)5  there can be 
only one minimum-variance and one least-squares estimate, and these are 
clearly spelled out by (6.6.29) and (6.5.9). However, the following question 
arises. 

Suppose that the units, in which the components of Y in)  are expressed, 
were changed — feet to inches, etc. Would this have any effect on the 
resultant estimate? The problem goes somewhat further yet, since we must 
also recognize that the elements of Y (n)  may be of mixed dimensions 

—length, velocity, mass, etc., and we must also examine whether or not it is 
legitimate to mix such measurements. 

It is now shown that alteration of units and the mixing of dimensions 
constitutes no problem whatever for the case of minimum-variance estima-
tion. However, the same is not true for the least-squares case. 

To see this, consider the following hypothetical situation. Two observers, 
A and B, are assumed to be observing a process, simultaneously using the 
same set of observation instruments. A reads the measurements in one set 
of units and B in another. Letting Q be the diagonal matrix of scale factors 
relating A to B (e.g. 12 inches per foot), then A's and B's total observation 
vectors Y A  and YD  will be numerically related by 

Y A 	QY B 
	 (6.8.1) 

Note that Q is diagonal with positive entries. 
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The errors in Y A  and YB  are NA  and NB , related by 

NA  = QN B 	 (6.8.2) 

and so clearly the respective covariance matrices are connected by 

R A  = QRB QT 	 (6.8.3) 

For simplicity, we suppose that A and B both use the same state-vector 
Xn (although we could also assume a difference in units, with an equation 
similar to (6.8.1) connecting XA  and X B ). Thus, assume that the equations 

YA = TA Xn + NA 
	 (6.8.4) 

and 

YB = T B Xn + NB 
	 (6.8.5) 

constitute the observation relations which A and B are using. Then by virtue 
of (6.8.1) and (6.8.2) we must also have 

TA = QT B 	 (6.8.6) 

Observers A and B now form their respective minimum-variance estimates 
obtaining 

= 	T R -1 T 	T TR -1 Y A 	AA A
-1 
 AA A (6.8.7) 

and 

1 
3(3*  = 	T  R -1 T 	T R - 
- B 	B -  B 	B-B B 1Y B (6.8.8) 

But if we now apply (6.8.1), (6.8.3) and (6.8.6) to (6.8.7), we obtain 

3 A  = 

= 

[( QTB ) 

\ B  TRB-1 TB) 

( QTB)Ti 

TB  TR -1 Y B 

( QT B )T@R B  QTyi QyB  

B 

(by (6.8.8)) 	(6.8.9) 
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and so, regardless of the choice of units, A and B obtain precisely the same 
estimate vector. 

The case of least-squares is, however, somewhat different. Based on YA  

and Y B  our two observers obtain their respective least-squares estimates as 

X A  = 

and 

A

B  - 

Then by (6.8.1) 

.1,\C*A 	= 

= 

and now in 

Q2  = k 2 I 

where k 2  is 

general only 

\ 	 1 
(T A T  T A) 	TA 

(TBTTB\-1 TBT y  

and (6.8.6) 

QT B ) T  QT BT 

BT  Q 2  TBI 1  
general, only 

some scalar, 

when Q = 

T T Y  T  

B 

1  ( QT B ) T  QY B  

T; Q2  Y B  

if 

A 
is X*A  equal to X 

A* 
B  . 

kl is X 
A* 

A  = X 
A* 

B . 

(6.8.10) 

(6.8.11) 

(6.8.12) 

(6.8.13) 

Hence (6.8.13) means that in 

Since a change of units does 
not generally amount to such a Q when the dimensions in the obser-
vation vector are mixed, we thus see that a least-squares estimate can 
definitely be influenced, and in fact modified, by choice of units (see 
Ex. 6.15). 

The above must then serve to cast some very serious doubts on the value 
of least-squares estimation when the data have mixed dimensions. Thus, 
suppose that distances and speeds are observed for the purpose of estimating 
the state of a process. What units shall be chosen? Recasting the distances 
from microns to miles or the speeds from light years per microsecond to feet 
per century would have a definite effect on the estimate vector, and certainly 
units such as these are every bit as valid as any others that we might choose. 

It is for this reason that least-squares estimation, based on mixed dimen-
sion observations is seldom, if ever, performed. In our case, least-squares 
will always be restricted to situations where a single aspect of a process (i.e. a 
single element of the state-vector X n ) is being observed. We will also assume 



e (X *  ,n) y (n)  T X *  k n,n1 
k= 0 

3 
2 
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that all observations are scaled in the same way. Thus Y (n)  will be a vector 
of measurements, all on a single quantity in X n , all of the same dimensions 
and all scaled in the same units. 

If mixed dimensional information is to be combined, as is very often the 
case, then minimum-variance estimation must be used. The presence of the 
covariance matrix R (n) serves as a normalizer, permitting measurements of 
differing dimensions to be combined. Moreover, if units are changed in 1 1 02)  , 
then as we saw in (6.8.9) they are also changed in R ()  in precisely the 
required way to nullify the effects of that change. Minimum-variance esti-
mation is again seen to be a very profound concept. (See Ex. 6.16.) 

6.9 WEIGHTED LEAST-SQUARES 

In the preceding section we showed that, in the case of minimum-variance 
estimation, the covariance matrix of the input errors serves as a normalizer 
which compensates precisely for any changes in the units of the observations, 
and permits us to combine observations with mixed dimensions. We now 
show that it plays another exceedingly important role, and in so doing we 
shall be able to demonstrate yet another aspect of the power of the 
minimum-variance approach. 

Thus, suppose that we fiave a total observation vector Y (n)  related to the 
true state-vector X n by 

Y (n) = Tn  Xn  • + N(n) 	 (6.9.1) 

and that we wish to form a least-squares estimate. According to the least- 
squares criterion, the summed squared residuals must be minimized over the 
estimate vector r n .  Thus en n must be chosen so that (c/f (6.5.6)) the n, 

scalar 

e (X *  n,n) 	(Y 02)  — nr n ,n)
T 

(n)  — T n X: ,n) 	 (6.9.2) 

is least. Note the dependence of e(rnn) on rn .. 
For definiteness, let Y (n)  s (y0 , Y 1 , Y2 , y3) n) and call the rows of T n  the 

row-vectors T 0, T 1' T 2 and T 3 . Then (6.9.2) can be written in the form: 

(6.9.3) 
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This shows clearly that e (rn,n) is a sum of squares, each comprised of the 

difference between an actual observation and its simulated counterpart based 
on the trajectory XL,. 

Now, the closeness with which a simulated observation approaches the 
actual one is a measure of the credence which the selected trajectory is 
giving to that observation. In the case of interpolation the trajectory passes 
through all of the observations precisely, and so complete credence is given 
to every element of 11(n)  . However in the least-squares process, the chosen 
trajectory does not necessarily pass through all or even any of the observa-
tions. 

Suppose that we are able, somehow, to determine that one particular 
observation is more precise than the .  rest, and decide that a higher than 
average amount of credence should be given to it. This means that we would 
somehow want to force the selected trajectory to pass somewhat closer to 
that observation. 

To accomplish this we examine the possibility of applying weights to the 
squared residuals in (6.9.3). One form of obtaining the weights, which 
presents itself very naturally, is to use the inverse of the variance of the 
observation on which the residual is based. In this way if the variance is 
large, the weight is small and that particular residual will be played down. 
If the variance is small, then the residual is stressed more heavily, as it should 
be. Equation (6.9.3) is thus made to read as follows: 

3 
12 

e (X *  = 	Ry 	— T X *  n,n 	 k n •nj 
k=0 

1 

a 
k2L) 

(6.9.4) 

where (cr 2)
(n) 

 is the variance of (Y k  ) and is obtained by taking the appro-k  
priate diagonal element out of R (n)' the covariance matrix of the errors in Y (n)• 

The criterion (6.9.4) is essentially what Gauss chose to minimize in his 
estimation procedures, discussed in [6.2] . It remained until 1934 when 
Aitken (see [6.3] ) proposed using the entire covariance matrix (and not 
just its diagonal elements) in the criterion. Thus, Aitken proposed replacing 
(6.9.2) by the weighted criterion 

e (X44n,n) - X* )
T 

T 	R 1  ( 	— T n n,n 	(n) 	(n) 	n n,n) (6.9.5) 

and, as is readily verified, when R uo  is diagonal, this immediately reduces to 
Gauss' criterion (6.9.4). The criterion (6.9.5) is known as weighted least-
squares. 
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If we now minimize (6.9.5) over XL, , we obtain (see Ex. 6.17) 

- x* = 	 1 TR-i- T 	T TR - 1 y 
n,n 	n 	(n) n 	n 	(n) (n) 

(6.9.6) 

which we immediately recognize as the minimum-variance estimate. 
We have thus shown that the minimum-variance estimate can be arrived at 

through the concept of weighted least-squares, and in so doing we have 
thrown further light on the importance of the covariance matrix of the 
input errors. Hence, in addition to performing the normalizing role pointed 
out in the previous section, its inverse also serves as a weight matrix for 
selection of the trajectory, stressing the contributions which the more 
precise observations make and 'playing down the contributions of the less 
precise ones.t 

The minimum-variance estimate has thus been shown to have some very 
wide implications. Our approach was initially to choose W in order to 
minimize the diagonal elements of the covariance matrix, but we soon 
showed that the minimum-variance property in reality extends deep into 
the entire matrix through the fact that C= en n  — Sn,n  , y is nonnegative.  
definite. This then showed us that the minimum-variance proP -erty also 
extends to the entire trajectory, i.e. if i n* . is minimum-variance then so is 
4:121(h)F n  for all h. In the preceding section we showed that mixed dimen-
sions and arbitrary units can be used, and in this section we have shown, 
further, how the minimum-variance estimate stresses the observations in 
accordance with their quality as exemplified by their second order statistics. 

In passing, we point out that if all squared residuals are weighted equally, 
i.e. if the error covariance matrix has the form R (a)  a2  I, then minimum-
variance and least-squares, as seen from (6.9.6), would coincide. The 
weighted least-squares criterion is thus an important unifying concept be-
tween the two techniques. 

Finally, we mention that if the errors in Y (n)  are multivariate Gaussian, 
then the minimum-variance estimate is also the maximum-likelihood esti-
mate (see e.g. [6.4] ). This is discussed in Ex. 6.19. 

6.10 THE RESIDUALS 

In this, the final section of the present chapter, we show that the residuals 
can be utilized to very great advantage in a method for calibrating or 
monitoring the accuracy of the observation instruments. 

t The reader is referred to the historical note at the end of this chapter. 
t See also p. 191 where we also discussed the relationship between least-squares and minimum-

variance. 
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We suppose that R an)  is known to within a scale-factor, i.e. we assume that 

R (n) 	P (n) (6.10.1) 

where P (n) is known but A2  is unknown. We pause briefly to demonstrate 
that such a situation could easily arise in practice. 

As a first example, suppose that a single instrument is observing a process 
and that the observation errors are completely uncorrelated and stationary. 
(This is certainly a reasonable situation.) Then a total covariance matrix, 
formed from those errors, would be of the form 

R (n) = oV2 I 	 (6.10.2)  

where 0. 7,2  is the variance of the errors on any one measurement. If the 
value of (7,2  is unknown, then this corresponds precisely to the situation 
conjectured by (6.10.1). 

As a second example, suppose that the entries in Y in)  are obtained by the 
consolidation of other measurements: As a simple demonstration, let 

5 
1 

s.-. 

	

Yn 	 gi5 i=1 

3 
1 
— 

	

 
Yn-1 	 h i 

i=i 3   
7 

(6.10.3) 

1 
Y n -  2 k 

7 1=1 

where the g's, h's and k's are drawn trom parent bodies of data.t If the 
situation is such that the g, h and k measurements are all of equal variance 
a:, then, assuming an absence of correlation, the covariance matrix of the 
errors in 

y n  

Y = 
(n)  Yn-1 

\ Y  n - 2/ 

(6.10.4) 

t Such situations occur frequently in astronomical work in the formation of what are called 
"normal places" from raw data. 
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would be of the form 

   

2  R (n) = a7, 

1 
3 

(6.10.5) 

   

   

If Qv is unknown, then again this is of the form of (6.10.1). 
We now show that A 2  in (6.10.1) can be estimated from the residuals. 
The minimum-variance estimate is obtained from Y (n)' R (n) and Tn by 

1?-1  T 	T R -1  Y 
n, n 	n 	(n) n 	n 	(n) (n) (6.10.6) 

and making use of (6.10.1), this becomes 

ioc*  
n,n = 

 (
T Tp - 1 T p - 1 y 
n (n) n n (n) (n) (6.10.7) 

which means that the minimum-variance estimate can be obtained even 
though A 2  is unknown. We are thus also able to compute the residual vector 
using Y (n)  and (6.10.7), i.e. 

o * 
E (i*n,n ) 	Y (n)  — Ten,n  

from which we form the weighted summed squared residuals 

Eqt,n) (11) 

E (00, ) 
, n 

This quantity can be computed in any given situation. 
Returning now to (6.4.2), we see that (6.10.9) can be written as 

= 	- T gl* 	 - T * n 	(n) 	n n, n 	(n) 	(n) 	n n , n 

However we recall that 

Itn 
0 

wn  N (n) 
	 (6.10.11) 

(6.10.8) 

(6.10.9) 

(6.10.10) 
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and so (6.10.10) reduces to 

= R/ — Tn  )N ] 1 — T 1%) N 

= N T 
 (n) 
 GN  (n) 

where 

G 	— Tnnr (1) — 	 ) T 437  n n 

If we now make the substitution (c/f (6.10.7)) 

1,17,2  =(T P-1  T y T T P -1  n 	(n) n 	n 	n 

then it is readily verified (see Ex. 6.20) that (6.10.13) reduces to 

G = P;i1)  — T n) 

Moreover, by Ex. 6.23 

N (Tn) GN (.) = Tr (CI N (n)  N (T.)) 

(6.10.12) 

(6.10.13) 

(6.10.14) 

(6.10.15) 

(6.10.16) 

(where Tr means trace). Combining the above equations then reduces 
(6.10.12) to 

en = Tr 	— Tn 	P (.rt1)(n) (nd NT (6.10.17) 

We now take the expectation of both sides. Then since the expectation 
of a trace equals the trace of the expectation, (6.10.17) gives us 

E ) cd. = E {Tr 	— T .1* OT  P (ni) N (n)  N (]} 

= Tr RI — T n  fiiny P 	(.)1 

= A' Tr — T by (6.10.1). 

(6.10.18) 
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The identity matrix in the above equation is of the same order as Y (n) 
 Call that number No . Then (6.10.18) becomes 

E en  = A2  [No  — Tr (W.T TnT)] 	 (6.10.19) 

Moreover, as is shown in Ex. 6.22 

Tr  (1,?TnT T.T) = Tr (Wn Tn ) 	 (6.10.20) 

and since 4317n satisfies the exactness constraint, tifT n Tn equals an identity 
matrix of the same order as the state-vector. Call that -number N.  We 
thus write (6.10.19) as 

E. ) en  = A2  (No  — N x ) 	 (6.10.21) 

This gives us, finally, 

gni x2 	 
No  — N x  

(6.10.22) 

In practice we do not know E)gn 	All we have is a single sample value 

of the random variable en  . However, in lieu of Eig 	we decide simply to 
use that sample value, i.e. we assert that 

en (See Note) (6.10.23) 

and so by (6.10.22) 

O en A 2 (6.10.24) 
No  — N x  

from which A 2  can be estimated. The number 'd is computed from (6.10.9). 

Note: When No  >> Nx , then we can expect en  to have a small variance, making (6.10.23) a more 
valid approximation. 
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By the use of this method, R oz)  is now completely known to an accuracy 
depending upon how well (6.10.23) holds true. Thus the residuals can be 
used, very effectively, either as a means of calibrating the observation 
instruments or else as a method of keeping a check on their precision. 

One caveat of importance should be pointed out. All of the above argu-
ments originated with (6.10.8), which by (6.4.2) is equivalent to 

E 	= N (n)  — T n Nn 	 (6.10.25)n  

and shows that the residual vector is founded on the input and output 
random error vectors. However, if the assumed model does not match the 
true process precisely, then there exists another set of errors, called the bias 
errors.t These will show up in Nn n 

and cause an inflated reading. 
In many situations it is possible to match the model to the true process 

very accurately. For example in celestial or orbital mechanics, differential 
equations of motion are usually known very precisely. In other situations 
however, the match is often not so good, as for example in process control 
systems. The user must accordingly exercise judgment in applying the 
results of this section. 

NOT ES 

For a historical note on the method of least-squares, weighted least-
squares and minimum-variance estimation (sometimes also known as Markoff • 
estimation), the reader is referred to Plackett [6.5] , who concludes that it 
was Gauss who first justified the use of weighted least-squares, and showed 
that it led to the minimum-variance estimate. Gauss restricted himself to 
diagonal covariance matrices and it was Aitken [6.3] who developed the 
generalization given on p. 202. 

In [6.2] , Gauss states the following. "Our principle,t which we have 
made use of since the year 1795, has lately been published by Legendre in 
the work Nouvelles methodes pour la determination des orbites des cometes,' 
Paris, 1806 . .". 

The fact that [6.2] was published in 1809, i.e. three years after Legendre's 
work was published, yet claiming to have ante-dated him by eleven years, 
led to a one-sided feud between them (Gauss simply ignored Legendre). An 
account of this battle is given by Bell in [6.6] , in which Gauss is cited as 
having replied, simply: "I communicated the whole matter to Olbers in 
1802." Apparently Legendre was able to contact Olbers who still had the 
manuscript at the time the dispute erupted. 

tTo be discussed later. 
ti.e. weighted least-squares. 
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EXERCISES 

6.1 a) Suppose that the observation vector is Y .  (3/ 0 , y) T, where @On  

and (y 1) are both observations on x(t) made simultaneously by 
k 

two separate transducers. Assume that x (t) is a cubic, characterized 
by X n  (x, Verify that if we wish to write Y. = 
MX n Nn, then we must use 

M = 
(1 

1 

0 0 

00) 

b) Let the observation vector be 17  n  a-  (y0 , yl)n  where y0  and y i  

are observations on the quadratic process x(t) and its derivative. 
We choose as the state-vector U. ( x, Vx, V 2 x),,T. 

Show that if we wish to write Y n = MU n Nn , then we must use 

Hint: See (4.4.8). 
6.2 Assume that Y = y ., where yn  is an 

a quadratic, with state-vector Z.  E.-- 

tween samples). 
a) Write out the matrix T of (6.3. 

rank 3, i.e. full column rank. 
b) Show that 

observation on x (t), assumed to be 
T 

(x, 	(r is the period be- 
n 

9) for L = 10 and verify that it has 

10 10 	1 0 

1=0 

— 	il  
1=0 	i=0 

1 0 

— 	i3  
i= 0 

10 
	

10 

— 	i3  
1= 0 
	 = 0 

TT T 
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c) Using the summation formulae on page 40 and the method of 
Ex. 5.12, verify that T T  T is positive definite. 

6.3 Repeat Ex. 6.2 above for L = 2 to obtain. the ..3 3 matrix T. 
a) Solve (by inverting T or otherwise) for the matrix W which 

satisfies (6.3.16) i.e., WT = I. Is W unique in this case and if so 
why? 

b) Verify that the algorithm 

(I) 

makes Z:n  the derivative-vector of (4.5.9) and that (I) is in fact a 
Lagrange estimator. (Compare (I) to the filter obtained from 
(4.5.17) setting h = 0 and removing D(0.) 

6.4 Let T be the k x (m + 1) matrix 

T .(T o  IT 1•••iT tn ) 

where the T i  are k -vectors and k ?_ m + 1. 
a) Show that TT T is positive definite if and only if the vectors Il i 

 are all linearly independent. 
b) Verify that if R is positive definite then TT R -1  T is positive 

definite, if and only if T has full . column rank. 
6.5 Let A be a real symmetric matrix. Then, as is well known,t there 

exists an orthogonal matrix Q, made up of the normalized eigenvectors 
of A such that 

Q T  AQ A 

where A is a diagonal matrix made up of A's eigenvalues. If A is 
positive definite then all of its eigenvalues are positive 
a) Verify that 

QAk QT = A' 

tSee e.g. [6.7] or [6.8]. 
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where k is a rational number and hence write the expression for 
A 112  and A-112  interms of Q and A. 

b) Letting 

A = 
1 	3 

find 44 1 /2  and A -1/2 . 
6.6 a) Let 

	

(x0 , xi ) aoo 	aoi 	xo  
e(x , 	) 

	

a01 	all 	x 1 

Verify that 

	

2(1, 0) a00 	ao 	xo  

	

a01 	all 	x 1 

and that 

) ( 

	

2(0, 1) ao0 	a01 	xo  

	

a
01 	

all 	x 1 

and hence that 

/ae ∎  
= 2(a oo 	aol\ 	(xo  

a01 

 

a l l 
 

The vector on the left is usually abbreviated as ae/aX. Infer that 
if e (x) = XT AX, where A is symmetric and X is an (m + 1)-vector, 
then 

ae 
ax o  

ae 

axi  

aX0 

 ae 



212 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 	- 

  

de 
axo 

 

ae 

  

ae 
ax 

    

 

axi  

 

= 2AX 

     

• 
• 

de 
ax 
m 

b) Let e(X) 	Y where X and Y are both (m 1)-vectors. Verify 
that 

(I) 

c) Verify that if e (X) = YT X, then (I) above still holds. 
6.7 Using the results of Ex. 6.6, verify that if 

e (X: n) = (Y (n)  — Tnen,n) 	- Tn  Xn n 1 	 (I) 

then deriving ae/a (x4')
n n 	 n for each element in X* ,n  gives the vector of  

equations 

de 	 - 2 T T  (Y — T X*  ) 
ax* 	(n) 	n n,n 

n,n 

Now infer that if T n has full column rank, then setting 	 n ae/aX* equal n, 
to a null-vector gives 

3\C* 
n 

= TnT  T fl
y T Y (n) n, 

which is the same as the least-squares estimate. Comment: As yet we 
have only shown that this X:n  is a stationary point of the surface 
e 	

n 
(X *  ) of (I). To show that it is a minimum (and not a maximum or 

n, 

a saddle point) we must also show that in its neighborhood 
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* 
e n,n  + 	1 > en  ((*ri,n ) 

where A is any small vector added to 2%. This inequality will hold if 
and only if the matrix of second partials of e \ n ) (i.e. the matrix 
whose i,i th  element is a2 e/axIax7), is positive definite in the neighbor- 

hood hood of X. (See e.g. [6.8] .) But from (II) above, we see that this 
matrix is precisely 2 TnTT n  which, if Tn  has full column rank, is 

positive definite. Thus .X: 42  is in fact a minimum of e (X%) of (I), 
and so the least-squares estimate can be derived using the differential 
calculus. 

6.8 a) Using the observation scheme implied in Ex. 6.2, show that 

en 	(1/ (n)  — Ten ,n)T  (Y (n)  — TX *  ) n,n 

can 

o 

be written 

2 
e = -  (x*„ [Y - k2x2k) 

2 „,n] n 
k=0 

n - k 

b)  Set 	aen/qx*,) 
nn 

= 0 for 0 < i < 2, to obtain a set of linear 

equations of the form 

A2* B 	 (I) n,n 

where A is a 3 x 3 matrix and B is a 3-vector. 
c) Verify that 

A= TTT 

. B 	TTY (n) 

By Ex. 6.2, TT T is positive definite. Infer that (I) above gives 

A 
X*  =. (T T  T)

-1 TTY (n) nn 

6.9 By direct expansion on (6.5.7), verify that it follows from (6.5.6). 
6.10 For the scalar (c/f (6.6.16)) 

L 	W o RW 0T  2(W o T o  —1)A 00  2W0T1A10 
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use the results of Ex. 6.6 to verify that 

aL. 	
2RW 0T - 211 0 A.00  - 271 i A io  

thereby proving (6.6.17). 
6.11 Verify that (6.6.30) and (6.6.31) give (6.6.32), i. 

-1 
§* = 	T /2 -1  T n n,n 	n 	(n)  

6.12 Assume that the state-vector 

x 
Z n = 

(i )n 

defines a polynomial process sampled at equally spaced instants. Let 
the observation vector be Y n consisting of the scalar y n  which is an 
observation on xn . Let the covariance matrix of the errors in three 
successive observations be 

R (n) 

a) Write the transition matrix for Z n , the observation matrix M of 
(6.2.18), and hence the matrix T of (6.3.9) using L = 2. 

b) By the use of (6.6.30), (6.6.32) and (6.7.22) find I*, ,§):, and 
o 

+ h,n' 
c) Verify that as we vary the prediction instant h, the diagonal ele-

ments of 	+ h,n §* 	are least when h = -1, i.e. for retrodiction to  
the center of the observation interval, t = nr,  , (n - 1) r, (n - 2) r. 

A A 
6.13 a) For the above example, find W, en  and Dik h,n  by the use of 

(6.5.11), (6.5.12) and (5.5.22). 
A 

b) Verify that the diagonal elements of en+ h,n  are also least when 
h = -1. 
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Compare the covariance matrices g*  of Ex. 6.12 and g*  of this 
example, and verify that for any value of the prediction instant h, 

p  [ S*  n + h,n 1,i 	n + h,n i 1 	
l = 0, 1  

Thus the diagonal elements of §: 4n  are less than or equal to 

those of S 
A* 

n + h,n • (In fact the diagonal elements of igt + 12,n  are 
less than or equal to those of any other covariance matrix S: h,n  
resulting from an unbiased linear estimation when the errors have 
the covariance matrix R (n) of Ex. 6.1 2.) 

6.14 Repeat Ex. 6.12 and Ex. 6.13 using R oo  av2  I. 
6.15 The following example demonstrates how the choice of units affects the 

least-squares estimate. 
A body is in one-dimensional, unaccelerated motion. It is observed 

on two occasions, one second apart, the measurements being 

(polsiti.otn (ft) sec) 	(22 

n 

position (ft) ( 	(1) 

velocity (ft/sec)2 n - 

(Neglecting observation errors, the position measurements suggest a 
speed of 1 ft/sec but the velocity measurements suggest 2 ft/sec.) 
a) Obtain the least-squares estimate for X based on the above four 

observations but with the position measurements rescaled in 
inches, leaving the velocity measurements scaled as given in feet 
per second. Verify that 

A 
X*  n,n 

( 1.986 ft 

= 0.972 ft/sec 

b) Now repeat but rescale the velocity measurements in incheslsec 
and leave the position measurements scaled in feet. Verify that 
the least-squares estimate becomes 

(

2.499 ft 

1.998 ft/sec 
A 
X*  n,n 
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Thus, resealing the observations into smaller units has emphasized 
them much more strongly, and shows that a least-squares estimate 
is not unique. 

6.16 Using the data of the previous example plus the following covariance 
matrix of the observations: 

ft2  

1 ft2 /sect 
R 

1 ft 2  

1 ft2/sect 

verify that resealing of the observations has no effect on the minimum-
variance estimate. 

6.17 By setting de/ar.. = 0 for e (4.) of (6.9.5), show that (6.9.6) results. 
6.18 Assume that the covariance matrix R (n) of (6.9.5) is block-diagonal. 

(The errors are stage-wise uncorrelated.) 
a) Using (6.3.4) for Y oo  and (6.3.9) for T., verify that for such an 

R (n)' en of (6.9.5) can be written 

L 

en = 1[Y n - k — MO (— k) X* 
T 

R
_ 

[Y 	— (— X *  rz,n 	n - k 	n - k 	 n,n] 
k = 0 

where M is the observation matrix, )(*.. is an estimate vector and 
(1)(h) is the transition matrix of the process. 

b) By setting ae./axt. = 0 for each component of Xn (see Ex. 
6.6), verify that this leads to the estimator 

= n [01)  (—M T 	Y nn 	 n k rz - k 
k=0 

where 

[A,1( I) (-kW Rnl OM- k) 
k= 0 
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c) Reconcile the above derivation with the minimum-variance 
filter given in (6.6.29), (6.6.30) and (6.6,.32). 

6.19 Referring to (6.3.10), i.e. 

= Tn X n + N (n) 
	 (I) 

we see that if N (n)  is zero-mean, then T n  X n  is the mean of Y (n) . Sup-
pose that the variables in N (n)  are all normally distributed. Then their 
multivariate density function is (see (5.6.3)) 

p(N 	 El (T -1  N 
2 \

N 
 (n) 

R (n) (n))] 
(n)

) = 
(20 m 2  (det R)1/2 

exp 
 

where 

R(n) 	EiNuoNfzi) 

and m is the order of N. Verify that the random variables 11 (n)  of (I) 
have distribution 

exp 	 X ) 7. 	( Y — T X )] P Y(a)) = 
(277)

m/2 
1 

(detR)
1/2 	2 (Y 	— T (n) 	

11 n 
	(n) (n) 	n n 

Since Xn is in general unknown, we estimate it by a vector n X*  X. The n , 
Principle of Maximum-Likelihood [6.4] states that the unknown 
vector 	n X* shall be chosen so that the value of the density function 
p (Y (n)) is maximized for the particular draw of ) 1(n) . Verify that when 
p (Y (n)) is Gaussian, then this leads to (6.9.5) and hence, via Ex. 6.17 to 
the minimum-variance filter. 

6.20 Verify that (6.10.13) reduces to (6.10.15) when we insert 

cl = 	T  P-1  T 	Tp-1 n 	n 	(n) n 	n 	(n) 

6.21 Let N be a vector, G a matrix. Prove that 

N T  GN = Tr(GNNT) 

where Tr 7--  Trace means the sum of the diagonal elements. 
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6.22 Assuming that AB, BA, and A TBT are all defined (A and B are matrices), 
prove that 

Tr(AB) = Tr(BA) = Tr(A TBT) 

6.23 Using Ex. 6.21 and 6.22 above, infer that 

NTGN = Tr(GTNN T ) 

and hence verify that 

E iN TGN1 = Tr (G T E iNN T I) 

6.24 Suppose we wish to calibrate an instrument by making a series of 
uncorrelated measurements on a constant quantity. The statistics of 
the instrument's errors are stationary (i.e. the variances of all observa-
tions are equal). 
a) Using a least-squares approach set up the observation relation as 

Y (n) = Tx n 	N on) 

where n is a scalar and Y (n) and N (n) are k-vectors. Verify that 

T = (1, 1, 	, 1) T  

b) Verify that least-squares estimation of x n  gives 

k 

n - + 1 
	 (I) 

i=1 

c) Using the results of Section 6.10 (see (6.10.24)) to estimate the 
variance of the instrument errors, verify that 

k 

a -  
	 \ 2 

k — - i=i 

Are (I) and )II) above consistent with (I) and (II) of Ex. 5.1? 
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PART 2 
FIXED-MEMORY 

FILTERING 

Two essential concepts have been reviewed, namely, the idea of a model 
based on a differential equation, and the idea of trajectory selection, based 
on the application of least-squares or minimum-variance to a sequence of 
observations. We are now in a position to commence our discussion of 
the main topic. 

This, the second part of the book,t is devoted to one aspect of that 
problem and covers what we term the Fixed-Memory Filters. Their mode of 
operation is, briefly, as follows. 

Observations are being repeatedly taken on a process and are streaming 
into a computer where they are received and stored upon arrival. They are 
placed into, what is called, a push-down table. This is a memory storage 
area in which the most recent observations are entered at the top, while all 
of their predecessors are moved down to make room for them. Each time 
new observations arrive, the procedure is repeated, all previous observations 
being moved down the table and the most recent ones again being entered at 
the top. In this way each observation occupies a place in the table in the 
same spatial sequence as the time sequence of arrival. 

The push-down table is of fixed length, and so each observation eventually 
reaches the bottom of the table. Upon the next receipt of new data, the 
bottom-most entry is then simply discarded or forgotten. 

Chapters 7 and 8. 



The algorithms to be developed in the next two chapters base their esti-
mates on the current entries in the push-down table discussed above. This 
means that a record of fixed length is being operated on to produce an 
estimate, and for this reason we refer to these algorithms as Fixed-Memory 
smoothing and prediction schemes. They will be contrasted, in the re-
maining two parts of the book, with the Expanding-Memory and the 
Fading-Memory approaChes. 

As in the preceding chapters we continue to provide examples at the end 
of each chapter, but by necessity these now become progressively less 
theoretical and more applied. For the serious reader, however, there is no 
substitute for actually running the algorithms on a computer, and every 
effort should be made to program as many as possible of the filters and to 
feed them with artificially generated data. Only then will the true subtleties 
of the various schemes become apparent 



7 
THE 

FIXED-MEMORY 

POLYNOMIAL 

FILTER 

7.1 INTRODUCTION 

The first of the filtering schemes to be considered is chosen for its 
conceptual simplicity and is entitled the Fixed-Memory Polynomial Filter, 
the reason for this name soon to become apparent. 

We assume that a process is under observation and that, at equally spaced 
instants of time, a single aspect of that process is being observed. This 
gives rise to a sequence of scalar observations and we retain the most recent 

+ 1 of them in a push-down table, calling them 

' n-L' Yn-L, + 1 	Yn - 	Yn 

The purpose of the Fixed-Memory Polynomial Filter is to fit a polynomial 
to those L + 1 numbers, in the sense of least-squares. Thereafter the resulting 
polynomial is taken to be an estimate of the process which is giving rise to 
this sequence of observations. If derivatives of the process are needed, then 

nose, 
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the derivatives of the estimating polynomial are used, and if prediction is 
called for then it is based entirely on the selected polynomial. 

As an example, suppose that an object in flight is being observed by the 
use of a radar, pulses being transmitted at equally spaced instants. Three 
observations are obtained on the basis of each pulse, these being the object's 
range (p), azimuth (0) and elevation (0) (see p. 168). This gives rise to three 
sequences of numbers 

• • • 

• • • 

Pn - 2 

Ifrn - 2 

0n-2' 

Pn- 

Vf 	 - 1 ' 

0n-1' 

Pn' 

n ' 

en, 

' 

• 

• ' 

• • 

Three Fixed-Memory Polynomial Filters can now be used to fit polynomials 
to each of these sequences. On the basis of those polynomials we can, if we 
wish, estimate (d/dt) p (t), (d/ (t), (d/ dt) B (t) etc., or we can estimate what 
future values of p, VI, and 0 will be. The three filters are completely uncon-
nected, and operate entirely without any reference to each other. 

There are two essential ideas underlying the Fixed-Memory Polynomial 
Filter. First, by using a polynomial, we are not required to know much 
about the true process, since if the polynomial is of adequate degree, it will 
automatically seek out the signal in the presence of the observational errors 
and give us a reasonable estimate of it. 

Second, by using least-squares, we are not forcing the polynomial to equal 
any of the observations precisely (as was the case with the Lagrange inter-
polation scheme of Section 4.5). As a result, the polynomial positions 
itself in relation to those observations without necessarily passing through 
any of them, and as we shall see this results in a certain amount of smoothing. 

A considerable amount of attention will be given to analyzing the statistical 
properties of the random errors in the estimate, caused by the random 
observation errors. We will also consider a second type of error in the 
estimate, known as the bias _errors or systematic errors. These arise when 
the true process is not adequately approximated by the polynomial model 
we have chosen. 

The case where the observations are not equally spaced, or where the 
model is other than a polynomial, will be discussed in Chapter 8. For the 
present we restrict ourselves to equally spaced, scalar observations and to 
polynomial models. 
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7.2 CLASSICAL LEAST-SQUARES 

Suppose that we are making scalar observations on a process every r 

seconds. Let the most recent observation be y n  and its predecessors 

Yn-1 7  Yn- 2 • • 
etc. In Figure 7.1 we depict the situation, showing the 

time-axis, quantized by the index n every ' r seconds. The r-axis is now drawn, 
r increasing positively with time, with its origin located at t = (n — L) r, 

i.e. Lr seconds before the most recent observation, (where L is a chosen 
number whose significance will soon become apparent). 

We choose, as our model, a polynomial in r, designated [e(r)] n , where 

the star signifies estimation, and the subscript n shows that this is the polY-
nomial based on the total observation vector 

Y (n) 	(yn' yn- 1 , 
 " Ya-L)T 	

(7.2.1) 

in which yn  is the most recent observation. When a further r seconds 
elapse and y n 4. 1  is observed, we shall recompute p* using the vector 

Y (n +1) 	 (7.2.2) 
(yn + 1 7  yn' ' • • yn - L + 

The new polynomial will be designated [1,1*(rdn + l't  
Assume for. the moment that [p*(rd n  has been obtained. Then by 

assigning various values to T, we are able to use it to estimate the process at 
various points. As an example, setting r = L (see Figure 7.1) gives us the 

updated estimate [p*(L)]n . Setting r = L + 1 gives the 1-step prediction, i.e., 

[p*(L + ld n . 
We now address ourselves to the selection of p*. For definiteness, let 

it be of first degree, and write it as 

[p*(d n 	001+ (I3,)„r 
	 (7.2.3) 

where the /3's are as yet arbitrary. (Note that they are subscripted with n 
for the same reason that p* is subscripted with n.)$ 

At this stage we make the decision that the /3's shall be chosen by the 
least-squares criterion. Thus the vector of residuals is (c/f (6.5.4)): 

t For [p*(r)]n  we read "polynomial in r at time n." 
t For (Ail we read "Ai  at time n." 
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yn  - [p*(Ld n  

E(n) 	
— [p*(L — 	

(7.2.4) 

n - L —  [P*Wdn 

and so the sum of the squared residuals becomes 

en = 	 — 
12 Yn - L „ [P*(rdn 
	 (7.2.5) 

r=0 

Combining this with (7.2.3) then gives us 

en = 

1 	2 

En - L+rI01 
r=0 j=0 

(7.2.6) 

which is seen to be a scalar, function of the P's. 
Following the least-squares approach, we now minimize en by setting 

aen/a (01 = 0 for i = 0, 1. This results in 

1 	

rl 	I r'y n-L+r 
	0,1 	 (7.2.7) 

j=0 	r=0 	 r=0 

which is equivalent to the system of linear algebraic equations 

L 

1 

r=0 

L yn 	r\ 

r=0 

\/ rYn -L + 
r=0 

 

(7.2.8) 

I r 
r=0 

 

By the use of the formulae on p. 40 the above now reduces to 



L +1 
	—L (L + 1) 

2 

— (L + 1) 	—
L 

(L + 1) (2L + 1) 
2 	 2 r=0 

Yn - L 
r=0 

L 

/ rYn - L + 

(7.2.9) 
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L 

and since we wish to know the values of the p's in terms of the observations, 
it is necessary that the matrix on the left be inverted. 

While this is a trivial - task, if L is assigned a definite numerical value, it is 
by no means so easy if left in functional form. For the 2 x 2 case the 
inverse in functional form would be 

(

2L (2L + 1) —6L 

—6L 	12 

(L + 2) (3)  

but obtaining the functional form of the inverse of anything much beyond 
a 2 x 2 is obviously out of the question. Although numerical inverses would 
give correct answers, resorting to numbers would, at this stage, force the 
analysis to terminate, and the analysis has as yet hardly begun. 

It is this impasse which makes us abandon the present approach. In the 
next section we show that if [p*&)]  is written as a linear combination of 

the discrete Legendre polynomials, then the matrix which comes about is 
the identity matrix and so no inversion problem arises. 

7.3 THE ORTHOGONAL POLYNOMIAL APPROACH 

In Section 3.2 we derived the polynomials which satisfy the orthogonality 
condition 

p(r;i,L)p(r;j,L) = 0 	i A j 
	 (7.3.1) 

r=0 

The polynomials p(r;j,L) are given in (3.2.20) as 

(r j, L) = 	(- 1) V() 	± 	r(v)  
V 	L( 

V=0 

(7.3.2) 
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Also, the quantity c (j, L), defined by 

[c(j,L)] 2  = E [p(r;j,L)] 2 	 (7.3.3) 
f=0 

is given in (3.2.30) as 

[c(J,L)]2 	(L + 	+ 1) (,  + 1 ) 

( 2j + LW 
(7.3.4) 

For the remainder of this chapter we abbreviate as follows: 

p (r) = p(r;j,L) 
(7.3.5) 

c(j,L) 

the L being implicit throughout. 
We now define the normalized discrete Legendre polynomial of degree j by 

coi (r) = 1 p ,( r) 
ci  

Then it is easily verified that 

L 

I 9,(09j (r) = Si] 
r=0 

(7.3.6) 

(7.3.7) 

where 8 1i is the Kronecker delta. At this stage we return to the derivation 
of the estimating polynomial [p*(r)] n . 

In the preceding section we started with [p* (r)] as a power series in r 

(see (7.2.3)). This led directly to the impasse arising out of the difficulty of 
obtaining functional matrix inverses. Instead, suppose we write p* as a 
linear combination 

t 
of the discrete Legendre polynomials. Thus, for a poly-

nomial of degree m,we write 

tThe letter m will be reserved exclusively for the degree of the estimating polynomial. 
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m 

[p*(r]. = 	(3 	1  (r) 
	

(7 3 8) 
1=0 

where the /3's are as yet arbitrary. 
Once again we set up the least-squares error functional [c/f (7.2.5)] , 

L 

en 	 2 = 11Yn- L + r [P*An 
r=0 

(7.3.9) 

and then, using (7.3.8), this becomes 

2 

en = 	 yn - L +r 	 (Pi (r)  01 
 

(7.3.10) 
r=0 	 1=0 

which is a scalar function of the p's. 
We minimize en  by setting den/aPi = 0, for i = 0, 1, 	, m, which now 

results in the m + 1 equations, 

L m 

(13140 1 (k)(p i (k) = 	Y n 	k v(k) 	i = 0, 1, . . . , m (7.3.11) 
k=0 j=0 	 k=0 

where r has been replaced by k for convenience. Interchanging the order of 
summation on the left, we obtain 

E • ( k) cio,J (k) = 	 Ic (Pi k) 

	
(7.3.12) 

j=0 	k=0 	 k=0 

to which we apply (7.3.7), giving 

= 	Yn - L + k (k) 	j = 0, 	..., m 	 (7.3.13) 
k=0 

Then by (7.3.8) 
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[p*(r)] n  = E 
	

Y n - L + 0 °; ( k )   C a  i (r) 
	 (7.3.14) 

j=0 k=0 

This is the required expression for the polynomial [p*(d n , which best fits 

the data vector Y (n) of (7.2.1) in the sense of least-squares. The orthogonality 
property of the polynomials c1(r)  has thus enabled us to overcome com-
pletely the matrix inversion impasse of the previous section. No matrix 
inversion problems arose this time, because, as we see by comparing (7.3.12) 
with (7.2.7), the matrix is now the identity matrix rather than the one shown 
in (7.2.9). 

We obtain the time -derivatives of the estimating polynomial form (7.3.14) 
as follows. From Figure 7.1, we see that, to within a constant, t = rr, and 
so dt = rdr, i.e. 

d 	1 d 
dt 	r dr 	

(7.3.15) 

Applying this to (7.3.14) gives us 

m [L 

[d p*(r)  = 1 
dt r j= 0 k=0y

n - L + k c0j (k) —
d .(r) 
dr 

(7.3.16) 

and in general (letting D = d/dt) we have, for the i th  time-derivative of 

[P*q n 

[Di  p*(r)] n  
m [ L 	

kj yn-L

1  
+ 	( k) dri q' j ( r)  

ri 1=0 k=0 

(7.3.17) 

Just as we did in the case of the Lagrange interpolator, we have decided 

that [e(rdn  shall be used as an estimate of the true process. This estimation 
is good or bad, depending upon how well the process can be approximated 
by , a polynomial of degree m, and depending on how badly corrupted were 



2 I- 
L (L + 1) (L + 2) 

= II 	314  

(7.3.19) 
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the observations on which [p*(d n  is based. However, for better or for 

worse, henceforth [p*(rli  will be used as the estimate. Moreover, just as the 

process is estimated by [p*(rdn , so its time-derivatives will be estimated by 

the use of the time-derivatives of [p*(r)]n . 

By varying r, we can estimate the process at various instants in the future 

or the past, based on observations up to the present. Thus [13*(rd n  is the 

estimate of what the process is at time t = (n = L + r)r, based on observa-
tions up to t nr. Setting r = L, say, gives the updated estimate, and the 
1-step prediction of the i th  derivative of the process is obtained from 
(7.3.17) by setting r = L + 1. 

At this stage we pause for a small example. Let m = • 1 and L = 4. Then 
by (7.3.6), (3.2.21) and (3.2.31), 

Vo ( r)  = (7.3.18) 
v'L + 1 Vg 

and- - 

= 	21 r 5  11--  (1 	.i.) 

We rearrange (7.3.14) as 

L [ m 

[p*(rd n 	 i0j  (k) (pi  (r) y _ L  
k=0 1=0' 

+k 
(7.3.20) 

and likewise (7.3.16) is written 

L[ m 
rEd  p*(r) = 	( k) —

d (r)  cpj  
dt 	k -0 j=0 	dr Yn - L +k 

(7.3.21) 



(

0(5)) 1 (8 5 2 —1 —4 ) 

Dp*(5) n  10 2 1 0 —1 —2 
(7.3.23) 
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in which the factor r has been moved to the left-hand side. Then using 
(7.3.18) and (7.3.19) 

(p*(r) 

rDp*(r) 

/ 4 
[_ 4._2 

k=o
5 1 

5 

4 NI  
k=0 

( 

1 
— 5 

1 - 

- 2 / 

_2) 

n 	L 

yn 
- L + k 

+ k 

(7.3.22) 

If, as an example, we wish to obtain the 1-step prediction of the process, 
then we must set r = L + 1. For the above case, where L = 4, this results in 

We now define the vector en  + ,,„ by 

(p*(5) 

rDp*(5) n  

(7.3.24) 

(Note that zt is r times the derivative of p* and so it is a scaled version of 
the first derivative of the latter.) Also, the total observation vector is 
designated as 

Yn  

Yn - 1 

Y() = 	y - n - 2 

Yn- 3 

Yn - 4/ 

(7.3.25) 



z n  
10 2 1 0 —1 —2 

1 (6 4 2 0 —2) 
Y(n) (7.3.27) 
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Then (7.3.23) can be written in matrix form as 

Z
n + 1,n 

= W Y(n) 
	 (7.3.26) 

The 0-step prediction is obtained from (7.3.22), by setting r = 4. This 
gives 

Alternatively, it can be derived from (7.3.23), using (4.2.16), i.e., 

Z*  = (1) (— 1) WY (n) n,n 

where in this case, by (4.2.15) 

(7.3.28) 

(1) (-1) = (7.3.29) 

The actual algorithms for the 1-step position and scaled-velocity predic-
tors, based on L = 4, would be respectively, [c/f (7.3.23)] 

(zOn +1, 	116 (83in + 5Yn - 1 	2Yn - 2 — Yn - 3 — 4Yn - 4 ) 

	
(7.3.30) 

(ZOn + 1,n = 10 (2Y 11 	yn-1 - 	yn -3 - 3 — 2yn - 4 ) 

	
(7.3.31) 

As each new observation y n  arrives, we simply "push down" the previous 
ones, discarding yn  _ 5  and computing the latest 1-step predictions using the 
above. This illustrates the fixed-length nature of the memory. The filter 
stores in memory, and uses only the most recent five observations, and any 
which are older or staler than 5r seconds are completely eradicated or 
"forgotten." The "memory" of the Fixed-Memory Polynomial Filter has 
the graphic form depicted in Figure 7.2 where all observations from the 
most recent, y n , to its Lth  predecessor, y n _ L , are weighted by unity and 
the remainder by zero. 

We recall that (e) 	• of (7.3.24) is [(d/dt) p*(L + ld n and so it is an 
n + 1,n 

estimate of 7-times the first derivative of the process. To obtain an estimate 



	LT seconds Time 
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Past Present 
	

Future 

Fig. 7.2 Memory window of fixed-memory filter. 

of the derivative itself, (7.3.31) must be divided by r. If yn  is in feet, then 
the units of (7.3.31) are feet. If however we divide it by r, and T is in 
seconds, the result will then be velocity in ft/sec. Thus, from (7.3.30) 
and (7.3.31) we obtain the algorithms 

(X*) n  + 1,n = 110  (8)/n  + 5yn  _ + 2yn - 2  — yn  _ 3  — 4ya  _ 4 ) 	(7.3.32) 

(x*)n + 1,n = ilor  (2yn  + yn  _ 1  — yn  _ 3  — 2y. _ 4 ) 	 (7.3.33) 

We can think of the above algorithms in the form shown in Figure 7.3 
where the observations are streaming in, and where two outputs are 
available, namely x* and We call these the position and velocity outputs 
respectively, and of course, if only one is required, we simply operate only 
that channel. 

7.4 THE GENERAL FORM 

In the preceding section we obtained the filter matrices for the 1-step 
and 0-step, first-degree estimators, based on fixed-memory least-squares. We 

Position 

channel 
(pi n 

Position 
 output 

x* 

  

Y n 

Velocity (d *) 

channel dt P  

Velocity 

output 
•* 

(Observations 

Fig. 7.3 Block-diagram representation of smoothing algorithm. 



L 
p0(k) 

2 Yn- L + 
k=0 	Co 

Lp1(k) 
(7.4.2) 

k=0 	C 
Y -L 

p 0 (L) 	p i (L) 

p i (L 
dr 
— y —d p*(DI 

dt 	n 

p*(L) 

d 

... , p o (0) 

. , p i (0) 

(7.4.3) 
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now develop a general expression which gives the weight matrix W for any 
values of L, m and prediction interval h. For ease of notation, we continue 
to use the abbreviations given in (7.3.5). 

Returning to (7.3.17), we see that it can be written 

p j  (k) 
[Li  13' p*(r) = 	1 — di —. p j (r) 

i! 	 j=0 i! 	k=0 C? 
Yn-L+ k 

1 

(7.4.1) 

Assume that m = 1 (i.e. p* is first- degree) and set r = L (i.e. we are con-
sidering an updated estimation). Then (7.4.1) is equivalent to the matrix 
equation 

where (d/ dr) p (L) means (d/ dr) p i (r) I L . 

We now observe that the vector on the extreme right of (7.4.2) can be 
factored as follows: 

k = 0 

( 

p o (k) 1 • 

Yn-L+ .1 	7-2  
C 	 C o 

p 1 (k) 

C1
2 Yn-L k 	\ 

0\ 	p o(L), p o(L -1),  1), 

12/ 	:1 1 (L), p 1 (L - 1), 

We designate the first matrix on the right of (7.4.2) as P, which, for an 
estimator of degree m, has as its i, j th  element 

[P] i. a —
1 

—
di p 4(r) 

i! dri  ' 
0 < 	< m 	 (7.4.4) 

r=L 
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Also, the first matrix on the right of (7.4.3), will be called C. It is diagonal 
with i, i th  element 

[C] = —1 
ij — 

c
2  ij 

 

0 < 	< 77/ 	 (7.4.5) 

The second matrix on the right of (7.4.3) will be called B. The i, ith  element 
of B is 

[B1 11 	p i(r)I r . L  _ 
0 < i < m 
0 < j < L 

(7.4.6) 

Note that P and C above are square (m + 1) x (m + 1) matrices, whereas B is 
rectangular, having m + 1 rows and L + 1 columns. Finally we define the state-
vectors Z* and X* by n + h,n 	n + h,n 

 

p*(L 	h) 

TDp*(L + 

7 2 
— D2  p*(L + h) 
2! 

—

rm 

Drn p*(L + 
m! 

 

p*(L + h) 

Dp*(L + h) 

 

   

z*  n + h,n X*  n + h,n 

 

(7.4.7) 

  

Dmp*(L + hl 

 

   

We shall - refer to e 	as the n + h,n 

scaled estimate vector. 
Combining all of the above, 

the matrix equation 

unscaled estimate vector and to Z*n + h,n as the 

we see that for r = L, (7.4.1) is equivalent to 

n,,, 	PCB Y (n) 

It thus follows immediately that we can write 

* Z n + h,n = W (h) Y(n) (7.4.9) 

(7.4.8) 
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where 

W(h) 	c(h)PCB 
	

(7.4.10) 

and where c(h) is defined on p. 76 by (4.2.15). Equation (7.4.10) is the 
general form of the weight matrix for obtaining the scaled estimate vector 

+ h,n' 
Z 	based on a total observation vector Y (n). n  

Finally we obtain X: + hm , the vector of unsealed derivatives, by the use of 
the matrix D (r) also defined on p. 76. Thus we have 

X* 	= W(h YO) n -F h,n 

where 

(7.4.11) 

W (h, r) 	D(r)(1)(h) PCB 	 (7.4.12) 

This is the general form of the weight-matrix for estimating the unsealed 
derivatives of the process for any values of r, h, m and L. 

There remains one small problem, namely the form of the i, ith  term of 
the matrix P of (7.4.4). By its definition this is 

1 d  — — p 
i! dri 

However, a small amount of exploration on (3.2.21), shows that the discrete 
Legendre polynomials do not easily permit of differentiation. Any attempt 
to differentiate them completely fractures their structure, and all order is 
thereafter irretrievably lost. There are two solutions to this problem. 

In Appendix I we present a recursion formula for the derivatives of p 
and that can be used, in conjunction with a computer, to fill in the numbers 
of the matrix P, once L is chosen. 

An alternate, and as we shall see in subsequent developments, very useful 
approach, is as follows. It is also shown in Appendix I that 

r = L 

  

(-1) 1()( i) 1  
i 

 

—1 Vip .(r) 
i! r = L 

(7.4.13) 

   

This is indeed a compact and easily computed form. We now define the 
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matrix G, whose i, j th  term is precisely (7.4.13), i.e. 

[G](-  1) (1  1..) 	i) 1 
 L (1)  

(7.4.14) 

The Ph  column of G is seen (from the left-hand side of (7.4.13)) to be the 
vector 

p i(L) 

Vpi(L) 

_1  V2p.(L) 
2! 

i.e. a polynomial of degree j and its scaled backward differences of succes-
sively higher order, all evaluated at r = L. Comparison with (4.4.6) shows 
that this is of the same form as V. of that equation. 

On the other hand, the j th  column of the matrix P [see (7.4.4)] , is of the 
form of Z. in (4.4.6) with r of that equation set equal to unity. We can thus 
obtain P from G by the use of (4.4.8) i.e., 

P = SG 	 (7.4.15) 

S being the associate Stirling matrix of the first kind, given on p. 85. We 
have thus shown that the matrix W (h) of (7.4.10) can be written in the 
alternate form 

W(h) = ?(h)SGCB 	 (7.4.16) 

As an example, we check (7.3.23) by the use of (7.4.16). Since (7.3.23) 
was a 1-step predictor, we must use h = 1. Also (7.3.23) was based on L = 4 
and m = 1. Thus (7.4.16) gives 



1 8 5 2 
10 2 1 0 (7.4.17) 
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W(1) = (1) SGCB 

( 	( )( 

1 1) 1 0 1 -1)(k 

2 
0 

Oa) (11  

5 	

1 	1 	1 

o 1 o 1 
2 

0 11) 

which of course agrees precisely with (7.3.23). 
Equation (7.4.16) can 136 used in conjunction with a computer to generate 

the weight-matrices for the Fixed-Memory Polynomial Filter, for any degree 
and any value of h and L. If unscaled derivatives are required, we pre-
multiply W (h) by D (r) as shown in (7.4.12). 

For convenience, the matrix G is given in Table 7.1 up to i, j = 10, 
although in any computer program which computes W from (7.4.16) the 
general term of each of the matrices should be programmed. The general 
form for S is given as a recursion in the notes following Chapter 4. (See p. 
116.) 

7.5 VARIANCE REDUCTION 

In the previous section we derived the general form of the weight-matrices 
for obtaining the scaled and unscaled estimate-vectors, en +h, n  and en  + h,n' 
from the vector of observations Y (.) . We now examine the statistical proper-
ties of the random errors in those estimates. 

The observational errors in Y o)  are denoted by the vector N or, and so Y(n) 
is related to the model state-vector, X., by, an equation of the form 

Y (n) = TX n 	N (n) 
	 (7.5.1) 

This was discussed in Section 6.3 where T was first defined. We now 
use (7.5.1) in the smoothing and prediction algorithm (7.4.9), thereby 
obtaining 

Z* 	= W (h) TX + W (h)N n + h, n 	 (n) (7.5.2) 

Thus the vector N on)  gives rise to a vector of random errors in the estimate 
defined by 

N: h,r2 	W 	N (n)  (7.5.3) 
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s* 0. 2 pop T 
n,n 	v (7.5.9) 
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If N one  is a vector of zero-mean random variables then (7.5.3) shows that 
+ h,n N * 	is also zero-mean. Assuming this to be the case, the covariance matrix  

of the latter is given by 

+ h,n s* 	= W (h) R (n) W (h)T n  (7.5.4) 

where, of course, R (n)  is the covariance matrix of N ow  Given R ow  we can 
use the above relationship to compute the covariance matrix of the random 
errors in the scaled-derivative estimate vector, en  + 

An assumption which is very frequently made is that all of the observation 
errors are zero-mean and uncorrelated, with equal variance a:. This means 
that R (n) will have the form 

R (n) 	av21 (7.5.5) 

For the remainder of this chapter, we take this to be the case. Applying 
(7.5.5) to (7.5.4), we accordingly obtain 

Sr% = U: W (0)W (0) T  

and then, by (7.4.10), 

S:n  = vv PCBB TC TPT  

This expression simplifies considerably. 
First, it is easily verified (see Ex. 7.12) that 

(7.5.6) 

(7.5.7) 

BBT = C-1 	 (7.5.8) 

and so (since C = C T ), we see that (7.5.7) is equivalent to 

Next, we factor C into C1/2 C1/2. (Since C is diagonal, so is C", and the 
elements of the latter are simply the square-roots of those of the former.) 
It is then easily verified that PC 1/2 has as its i, jth element 

[pc1/2] 	 so,(r)  

i! dr' 
0 < , j < m 	 (7.5.10) 

r 7-" L 
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where c e j (r) is the normalized discrete Legendre polynomial, defined in 
(7.3.6). (See Ex. 7.13.) 

We now define the matrix Q(x), whose i, ith  element is 

[Q 
	di 	N 

= — 	ye> 
ij 

 

	

it dri 	• r = 

0 < 	< m 	 (7.5.11) 

   

Then (7.5.10) can be written 

PC1/ 2  = Q (L) 
	

(7.5.12) 

and so (7.5.9) becomes, finally, 

SI*  = 0' 7)2  Q (L)Q(L) T 	 (7.5.13) 

The covariance matrix et:, thus has, as its i, ith  element, 

	

[

S* 	= 	/ Pard ik  [QUI 

	

n, 	 v 	 k j 
k=0 

(7.5.14) 

= 2 [1 	„ 1  

	

7) 4 	. 9.On I! —
dr' 

itc'ku.' 

	

k=0 	dr' 

As an example, for m = 1, the covariance matrix of the random output 
errors in en n  of (7.4.8) becomes, using (7.5.14), 

 

4 02 (r) + so 12  (r) cp 1(r) d— so i (r) 
dr 

2 
d (pi (7) 1 

[fir 	j I 
r = L 

 

S* = Q 2 
n,n 

  

(7.5.15) 

 

col (r) —dr  coi (r) 

 

r= L 

Using (7.3.18) and (73.19), this gives (see Ex. 7.14), 

S *  n,n — a  2 
71 

2(2L + 1) 6 
(L + 2) (L + 1) 

6 

(L + 2) (L + 1) 

12 
+ 2) (L + 1) (L + 2) (L + 1) L/ 

(7.5.16) 



S* n,n 

(7.5.17) 
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and so for very large L 

showing that S*, goes to a null matrix as L 
Consider next the covariance matrix of N n 	i.e. the random output- 

error 	
, 

error vector of an h-step prediction. By (7.4.9) 

Z* + h,n = 41)(h) PCB Y (n) n  

and so, 

Sn + h,n * 	- 019 (h) PCB R (n) B T C TP T c1)  (M T  - 

When R (n)  = 07,2  I, this reduces, by the arguments given- above, to 

(7.5.18) 

(7.5.19) 

S: h  = 7,2  ED (h) Q (Ld ,FI)(h) Q(L] T 	 (7.5.20) 

But (7.5.11) shows that 

(1)(h) Q(L) = Q(L + 
	 (7.5.21) 

and so (7.5.20) gives us 

+ h,n S 	= 0-7,2 Q(L + h) Q(L + h) T 	 (7.5.22) n  

Comparison with (7.5.14) then shows that the ij th  term of en+  hal  will be 

 

tr2 

	

2 	1 di 	, 1 	, 

	

= a 	 —
j! dr'  kw .)  

k=0 i! dri   

  

[

S*  n + h , ni it 
r = L +h 

(7.5.23) 

    

As with the example of (7.5.15), when m = 1 this is just 
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S*  n + h,n 

co 1(0 —
d 

cp i (r) 
dr 

2 [c..1 (pi(r) 
 

dr r = L +h 

(7.5.24) 

and so, for the 1-step predictor say, we set r = L + 1 in (7.3.18) and (7.3.19), 
and obtain 

S*  n + 1,n 

(2L + 3) 6 

(7.5.25) (L + 1) L 

6 

(L + 1) L 

12 
\(L + 1)L (L + 2) (L + 1)Li 

Equation (7.5.23) is the general analytic expression for S.* 4. h,n , assuming 
that (7.5.5) holds true. In the next section we shall discuss its properties. 

It was pointed out earlier that a computer program can readily be written 
which generates the matrix W (h) of (7.4.10) for any h, L and M. It is then a 
trivial matter to add the additional program to generate S: h,n . By (7.5.4) 
we obtain 

Sn + h,n 
= av2 W(h)W(h) T 	 (7.5.26) 

and in practice, the best way of obtaining the actual numerical values of 
S*. + h,n is directly from this expression. 

Until now we have assumed that the output of the filter is Z: h,n , the 
vector of scaled estimates. If the filter output is to be the unscaled vector 
X*n + h,n of (7.4.7) then the covariance matrix of the random output errors is 
S: hn , where (see (7.4.12)) 

S 	 n + h,n * 	 (7.5.27) n + h,n 	D (r) 	D (r) 

It is easily shown (see Ex. 7.-17) that this together with (7.5.23) gives 

[

S*  n+ h,n 11 
iu   re  

L n + h,r] ij 

(7.5.28) 
Q 2 m 

r i + j 	dr i 
k=0 

  

j 
(r) —

d 	
(r) dri  k 

r = L +h 
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The attention of the reader is directed to the use of an upper-case italic S 
for the covariance matrix of the scaled estimate vector Z*, and a sans serif 
italic S for the covariance matrix of the unscaled vector X*. The matrix 

+ h,n S* 	is independent of r, as seen from (7.5.23), whereas S.*  h,n  contains r  
and is really the matrix of interest. 

7.6 DEPENDENCE OF THE COVARIANCE MATRIX ON L AND r 

In any practical situation, the user of a filtering algorithm faces the follow-
ing problem: Given the statistical properties of the observation errors, how 
should one select the parameters of the filter so that the outputs satisfy a 
given set of requirements? As an example, suppoSe that the observation 
errors are zero-mean, uncorrelated and of standard-deviation v v  = 10 feet. 
What first-degree fixed-memory smoothing algorithm should be selected so 
that errors in the position output have a standard deviation of 3 feet, 
assuming 1-step prediction? 

From (7.5.25) we see that 

2 2 (2L + 3)  
[S: +1,1 o = (721  (L 	1)1/ 

and so we require that 

9 = 100 2(2L + 3) 
(L + 1) L 

(7.6.1) 

(7.6.2) 

giving L = 45. The vector Y (ro  must thus contain 46 entries. 
What will be the standard deviation of the random errors in the velocity 

estimate? 
Again by (7.5.25) we have 

Es: + 

12 = 0-7,2 	  
i""1" 	(L + 2) (L + 1)L 

(7.6.3) 

To obtain the variance of the errors in the unscaled velocity estimate, we 
must take into account the scale-factor T. Thus by (7.5.28), using L = 45, 

1 FQ  
[Sn+ 	1,1 = 2  L'*  n + 1,11 

2 	1 12 	 (7.6.4) 
= a  

v  (L + 2)(L + 1) L 

0.0123  
T 2  
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This is the variance of the random output errors in the velocity esti- 
mate. 

It now remains to fix [s* + 1,n  1 in order to fix r. Thus, if we require the 
random velocity errors to have a a O

1 
 f say 4 ft/sec, then 

16 = 1 (0.0123) 
r2  

giving r = 0.029 seconds, i.e. about 36 observations per second. 
In summary, assuming a first-degree, 1-step predictor, if the standard-

deviation of the observation errors is 10 feet, r = 0.029 secs and L = 45, 
then the standard-deviations of the errors in the position and velocity esti-
mates will be, respectively: 

0-(x*) = 3 feet 
(7.6.5) 

a(5c*) = 4 ft/sec 

The above problem had a simple solution because it was deliberately 
constructed that way. Note also that it was based on the assumption that 
(7.5.5) is true. In practice things are seldom so easy, and what we are 
usually required to do is to fix parameters by trade-off, i.e. we are given a 
set of conditions which cannot all be met and the only thing we can hope 
to do is to find the best compromise. 

For this reason, it is essential that we gain some insight into the behavior 
of the terms of the covariance matrices as we vary the parameters L, m, h and 
r. In this section we consider their behavior as L and r are varied. The 
effects of varying m and h are examined in the next section. The entire 
analysis assumes that (7.5.5) holds true. 

Consider first the matrices of (7.5.16) and (7.5.25). In both cases we 
see that all of their elements go to zero as L increases. This is true, as we 
now show, for any degree (m), and any prediction interval (h), and means that 
we can make the covariance matrices arbitrarily close to null matrices by 
taking L sufficiently large. 

The proof is as follows. By (7.5.9) (letting ay = 1), 

S* 	(1) (h) PCP T (1)  (M T  n + h,n 

= 4:1) (h) SGCG T  S T  4) (h) T 	 [by (7.4.15)] 
(7.6.6) 
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When L is large, we see from (7.4.5) and (3.2.31), that 

3 

  

5 (7.6.7) 

   

Moreover, from (7.4.14) and Table 7.1 on p. 241, when L is large: 

71 -1 1 

2 	6 
L L 

6 • • • 

L2 

(1 

1 	 -2 	. 

	

1 -1 	1 	• • • 

L 

G 

(7.6.8) 

6 • • • 
L 2  

\ 	 / 
Thus (for a 3 x 3), 

GCG T  = 

 

1 	

\ 	( -2 6 

2.21 \ 

7 1 

-1 -2 

   

    

 

1 

L 

  

1 

L
= 

     

      

L12) 

 

\1 6 

    

  



= 1 
L 

/1 

9i, 

36 

1 
L 

36 

1 

...36 
/9 

. 

30\ 
L 3  

180 

	

36 	30\ 

	

192 	180 

	

180 	180/  
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(7.6.9) 

2 L 2  

L 2 

 192 

L 2  

\ 30 
L 3  

L 3  

180 

L4 

 180 
L 4  L 5/ 

which goes to a null matrix as L 	Thus every element of S *n  h,n  goes to 
zero as L goes to infinity. (Although we proved this for the 3 x 3 case, it is 
easily seen that the method of proof is quite general, and can be applied to 
matrices of any size.) 

Since (h) S [on the right of (7.6.6)] is a matrix which does not depend 
on L, we see that (for large L), 

	

S + h,n 	[43. (h) 	(GCG T ).[ST  (I) (h)1 n  

(a00 

L2 	

a02 

L3 

a01 

	

a 10 	all 	a12 

	

L 2 	L 3 	L 4  

	

\

a20 	a21 	a2 .  

	

L 3 	L 4 	L 3  

(7.6.10) 

We are thus able to see from (7.6.10), just how the elements of S *  go to 
zero as L increases. Thus the i, jth  element of S: 4. h,ti  will be approximately 

a.. 
	 0. 2 
Li+.1+1 (7.6.1 1) 

where all is a constant, depending on h and m, but not on L. From (7.5.28) 
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we see further, that for large L, the i, jth element of the matrix S: kn  will 
be 

ij 	2 
v LS* n 	j 	ri+ 	• 

(7.6.12) 

where A ij  is a constant depending on h and m. (In fact, A o = i! j! air) 

It thus follows that any element of 5: + h,n  can be made as small as we 
wish, by simply taking the number of observations (L + 1) sufficiently 
large. This is, of course, consistent with the heuristic idea that by averaging 
over a sufficiently large number of unbiased errors, the net error can be 
made arbitrarily small. 

Consider next, the behavior of S: h,n  as r is varied. Define the smoothing 
time T by 

T = Lr 	 (7.6.13) 

Thus T is the total time between the most recent and the oldest observations 
used in the filter for any given estimate.t Then by (7.6.12), 

r 
+kjii  

or n TI + ÷ 1  

We can vary r in two ways. 

(7.6.14) 

CASE A 

Reduce r keeping L fixed. Then (7.6.12) shows that (for i, j > 0), 

[
s + 	will increase. This means that if we make a fixed number of n  

observations at a greater rate, the variances of the random output errors 
increase. 

For i = j = 0 we see from (7.6.12) that the variance of the random errors 
in the position estimate is 

n   [s*] 
+ h,n 00 

0 0 	2  

	

CT v 	 (7.6.15) 
L 

which does not depend on r and so remains constant as we reduce r while 
keeping L fixed. 

tEquivalently T is the length of the memory (see Figure 7.2 on p. 235). 
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CASE B 

Reduce r keeping T fixed. This means that the observations are being 
made over an interval of fixed duration but that their number is increasing. 
By (7.6.14) we see that the elements of S: h,n  diminish as we reduce r. 

It would appear that in the limit, as r 0, then S: hm  tends to a null 
matrix if T is kept fixed, but this is true only in theory. We recall that all of 
the above arguments were based on the assumption [see (7.5.5)] that the 
observation errors were uncorrelated and of constant variance. As T -, 0 it 
is difficult to envisage this situation persisting, and sooner or later, in a 
physical case, the errors would become correlated and then (7.6.14) would 
cease to hold. The reader may feel that, as the sampling interval diminishes, 
the requisite absence of correlation could prevail if, in the limit, the random 
errors assumed the form of white noise. However, ideal white -noise (which 
is uncorrelated regardless of how frequently sampled) has infinite variance 
(autocorrelation function equal to a Dirac delta), and so this violates the 
assumption that a: remains constant. 

In summary then, as r 0 with T fixed, S: h,r1  diminishes to a null 
matrix according to (7.6.14), provided that (7.5.5) continues to be true 
and cr: remains constant. 

We have discussed the behavior of S *  as we vary L and r. In the next 
section we examine how that matrix depends on m and h. 

7.7 DEPENDENCE OF THE COVARIANCE MATRIX ON m AND h 

Some of the properties of the covariance matrix of the Fixed-Memory 
Polynomial Filter were analyzed in the preceding section. We showed there 
that for any degree and prediction interval, when L is large, 

LS* 
	

i1 
	 Q 2 

n + hajii 
rl 	 v  

_ (7.7.1) 

We now examine the behavior of S* as we increase the degree, m, while 
keeping L fixed. 

When m is 1 say, then S is 2 x 2. Let h = 0. The diagonal elements of 
S* are 

[5:71]0,0 	
Var (random errors in position) 1.  

[S* 	Var (random errors in velocity) 	
(7.7.2) 

tWhere Var means variance. 



[S* 	
v 

 -n,nj 	
[di  

r k= o dr 2 1-4 	Ic‘d 

2 m 	 2 

(7.7.4) 
r = L 
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For m = 2, then S* is 3 x 3 with diagonal elements 

[5:ml o,o 
= Var (random errors in position) 

Es* 	= Var (random errors in velocity) 

[5*  fl , n] 2,2 = 
Var (random errors in acceleration) 

We can array these diagonal members of S: n  as follows, 
Degree 

(7.7.3) 

    

X 0 1 2 3 

position 0 X X X X 

velocity 1 X X X 

acceleration 2 • X X 

jerk 3 X 

and for i = 0, say, we see that the first row of the table gives us the variances 
in position [S 	as m increases through successive values. (The above 

n 	0,0'  

table applies only for h = 0, say, and for some other values of h we can 
derive the corresponding tables.) 

Suppose h = 0, By (7.5.28) the ith  diagonal term of S *, for an mth -

degree estimator, is 

and so this is the i, mth  term of the above table. 
Now, it is a known fact that all of the polynomials p i(r) and their 

derivatives have all of their zeros strictly inside the interval 0 r Lt Thus 
it follows that at r = L and outside of the interval, the polynomials and their 
derivatives are nonzero, and so, for any i and k: 

, r, di  cok;12  
dr , 

r = L 

> 0 	 (7.7.5) 

  

t This applies more generally to any set of orthogonal polynomials. Thus (see e.g. [7.11) it can be 
shown that any set of such polynomials has all of its zeros strictly inside the orthogonality interval and 
that all of those zeros are distinct. Moreover this is also true for the zeros of all of the derivatives of 
the entire set. 
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This means that for each increase in m, a positive number is added to the 
right hand side of (7.7.4), and so moving across any row of the table on p. 
252, the entries will be strictly increasing functions of m. 

We know from (7.7.1), that for large L, 

X . AM) • 
2 • 

[317]  
 v 

2iL 2 i + 1 - r 
(7.7.6) 

where we now show explicitly that A depends on m. In Table 7.2 (p. 
m258), we show the values of ..( ) for 0 m 5_ TO. Moving along the 

zeroth row of that table, we see that as the degree increases, the position-
output variance increases through the values 

m 0 1 2 ••• 

1 cry2 
L [4M] 0, 0 

 

4 0  2 
L 	

v 
_9 o_v2 • • • 

The velocity-output variance likewise increases through the values 

m 0 1 2 • • • 

[5: A1,1 
_ 12 2 C7, 

- 

192 
(77,

2 

- 

... 
T 2L3 T 2L3 

For other values of h, the corresponding tables show a similar increase 
with m. Table 7.3 on p. 259 gives the table for h = —L/2 (center of the 
observation interval), when L is large. Note how the values increase step-
wise along any row. This is a direct consequence of the fact that 

d 

i 	
.( ) 

dr L 

For large L, the table for h = 0 can be used equally well for h = 1, i.e. 

= 0 (i + j odd) (7.7.7) 

    

Table 7.2 applies to both 0-step and 1-step prediction. 

It is this increase of [S a., h 	with m that makes it imperative that we 

keep the degree of the estimator as low as possible. (This problem will be 
discussed again in Section 7.13.) 
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+ h,n 1 
We now consider what happens to [s* 	when we vary h and keep 

m (and of course, L) fixed. Returning to (7.5.28), we see that, since 
(d i  /dr i)cok (r) is a polynomial in r of degree k - i, the term 

0. 2 	122 	2 

ES 	 21—"z+h,r2].. r2i 	--di  40  (r) 
1 1 	 k 

k=0 
r = L +h 

(7.7.8) 

   

will be a polynomial in h of degree 2 (m — i). Moreover, since (d/drl)io k(r) 

has all of its zeros inside the observation interval, [S: h,n] ii  will be strictly 

increasing with h when we are predicting or retrodicting to any points out-
side the observation interval. Thus, as an example, for m = 3, i = 1 say, 

[S: ai  is a polynomial in h of degree 4 which increases strictly when 

h > 0. 
Figure 7.4 depicts the behavior of 	 + h,n [s* 	outside the smoothing inter- n 

val, and shows how rapidly the variances of the random output errors 
increase when h > 0 or h < -L. It is clear that long predictions outside of 
the smoothing interval are always to be avoided, particularly when m is 
larger than 1 or 2. 

Inside the smoothing interval, the zeros of (diAlr i)(p k (r) come into play 
and cause the diagonal elements of S: h,n  to remain relatively small. In 
Figures 7.5 and 7.6 we show typical plots of such elements, and the reader 
will note that they do in fact remain relatively small in the interval. He will 
also note how rapidly they are increasing at the end points. Outside the 
interval they continue to increase as depicted in Figure.7.4. 

m = 4 

h = —L 
	

h = 0 

F ig . 7.4 Variance of the random output errors as a function of h. 
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Fig. 7.5 Asymptotic curve of L x [S:+h,jo,o for  m = 2 as L oo. 
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,n1,0
Fig. 7.6 Asymptotic curve of L x [S:+h for m = 3 as L 00. 
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In summary then, the zeros of the polynomials and their derivatives, being 
all located inside the smoothing interval, will cause the curve of [s 	to 
remain relatively small in the smoothing interval, whereas the complete 
absence of zeros, outside the observation interval, will result in a rapid 
increase in that region. 

By virtue of their symmetry over the orthogonality interval, one half of 
all of the polynomials and their derivatives have a zero at the center of the 
interval. This very high preponderance of zeros at that point causes the 
curves such as Figures 7.5 and 7.6 to be minimal in one half of all 
cases at the center and close to minimal in the remainder. For this reason 
(and others to follow) the .center of the observation interval should always 
be chosen as the estimation point unless the latter is fixed by prior con-
straints to lie elsewhere. 

7.8 THE VARIANCE REDUCTION FACTORS 

In the preceding section, reference was made to Tables 7.2 and 7.3. These 
tables give us what we call the Variance Reduction Factors (yRF's), for any 
degree, and any derivative up to 10, assuming that L is large.T 

We demonstrate their use by an example. Given that we are observing a 
process at intervals of r seconds, and assuming that the observation errors 
are zero-mean, uncorrelated and stationary with variance a 2 , find the 
variance of the random errors in 

+ n + h,n n 
x* i* and 5i* + h,n for h = 0, and  

h = —L/2. The degree of the estimator is 4 and L is very large. 
Table 7.2 applies for h = 1 or 0. For m = 4, we obtain the A l  (m) of 

(7.7.6). Thus (see the fourth column on p. 258) 

A 00 = 25 

X 11 = 4800 

A
22 =. 317500 

Then by (7.7.6), for o-,2  = 1, 	= 

(7.8.1) 

A ii (m)/r 2iL 2i +1, and so 

25 

L 

4800 

r2 L 3  

317500 

 r4 L 5  

(7.8.2) 

t We continue to assume, throughout, that (7.5.5) is true. 
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We call these the Variance Reduction Factors. They are the ratio of the 
output-error variance on each channel to the variance of the input errors. 

For an input variance of a7,2  other than unity, the output variance equals 
the input variance times the VRF. Thus, 

Var(x* ) 	25 
a = — 2 

nn 	
L V  

_ 4800  Var(itn)   a
11 

2  

r 2 L 3  

_ 317500  2 Var(3e* ) 	ay  n,n 
r4L 5  

(7.8.3) 

For smoothing to the center, (h = —L/2) the VRF's are obtained from 
Table 7.3. Thus, from the fourth column of that table, 

VRF (*
= L 	

3.516 
n - i ,n 	..) 	L L. 

VRF 
75 

• * 	= (n  _ 12_, , n)  
r 2  L 3  

_ 720 
VRF(* 

 
n-  L ) ,-y ,n 	r4 L5 

(7.8.4) 

Thus, given that the observation errors have variance a v2, the random output 
errors in the estimate will have variances 

3.516  a 2  Var(* L  - 
n - -2- ,n 	L 	V  

Var 

 

I. L  = —75 a 
n - -2 ,n) 	r2L3 

Var( * L 	720 2 
n - -2-,n 	r4L5 

(7.8.5) 

The reader should compare corresponding entries in Tables 7.2 and 7.3 
and observe 
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a. How much more slowly the VRF's increase with degree when one is 
smoothing to the center vs. the end point. 

b. How much smaller (sometimes by three orders of magnitude) the 
VRF's are at the center, vs. the end point. 
It is for both of these reasons and others to follow that we always prefer to 
smooth to the center, if we have the choice. 

When L is not large (in relation to the degree) then we must use the exact 
expressions for the VRF's. These are tabulated on p. 371 where the 
symbol n is used in place of L, for the 1-step predictors up to degree 3. For 
other cases, use must be made of (7.5.28). 

7.9 A SIMPLE EXAMPLE 

In order to reinforce some of the ideas developed above, we consider the 
following simple example. 

A radar is making equally spaced measurements, pn  (range), er n  (azimuth) 
and 0. (elevation),t on an object in orbit. The observation errors are zero-
mean, uncorrelated, and have variances up' , 04,2  and a9 2 . 

Assuming a Fixed-Memory Polynomial Filter of degree m = 2, and obser-
vation length Lr seconds, how shall the filter be organized so as to 

(I) Make 1-step predictions of p, tfr and 0 to assist the radar in making 
fiirther measurements. 

(II) Make extended predictions into the future. 
Part (I) requires that we compute, repeatedly, the 1-step predictions of 

p, tfr and 0. We obtain these from three identical Fixed-Memory Polynomial 
Filters, as follows: 

L 

	

+ 1,n = 
	W 

01
p 

n - j 
j=0 

(7.9.1) 

	

= 	W Of 
— j 

 

j= 0  

0* 	 W 0 n + 1,n 	Oj n - j 
J=0 

tFor a definition of these quantities, see p. 168. 



THE FIXED-MEMORY POLYNOMIAL FILTER 	261 

where the weights 

(w00 , w01, • • • WOL )  

are the zeroth row of the W(h) matrix of (7.4.10), using h = 1, m = 2 and L 
as selected. These predictions can be used to help point the radar at the 
object in order to make further observations. 

We also usually require the variance of the random errors in these 
predictions. From Table 7.2, we see that the VRF in each case is (assuming 
L is large), 

VRF = —9 
L 

Hence 

 

(7.9.2) 

62  (en + 1,) 2- a 2 

L P  

 

0.2 (0.: 	) + i,n 	9 	2 =  (7.9.3) 

0.2 	 2 ( 0* 	9 a. 
n + 1,) 

For Part (II), we know, from the theory of Section 7.7, that it is unde-
sirable to use the estimating polynomial to make long-term predictions 
because of the rapid growth in the VRF's with h (see Figure 7.4). (A 
second important reason will be discussed under Systematic Errors in the 
next section.) Accordingly, we decide instead to determine the orbital 
parameters, and then to make our predictions from them. Moreover, to 
get the best possible estimates of those parameters, we decide to estimate 
at the center of the observation interval. (This is desirable, both from a 
variance reduction standpoint as we have already shown, as well as for 
keeping the systematic errors down, as we shall show in the next section.) 

To get the center-smoothed values we use the filter equations: 

* P _ L = n i,n 

p. 

• 

L 	— n - 

W OJI9  - n 
j=0 

L 

(7.9.4) 
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where in this case the w's are respectively the zeroth and first rows of (7.4.10) 
with h = —L/2, m = 2 and L as selected. In the same way, using the same 
weights, we obtain (0 * , le, 0* , e*) L , and these six numbers can then 

n- 

be used to compute estimates of the six orbital parameters. Long-term pre-
dictions can now be made with considerably more confidence by integrating 
the true equations of motion. 

The covariance matrix of the random errors in the estimated orbital param-
eters can be estimated as follows. Define the vectors 

X* 	(p* , 0, o* o* , 8*
, 0*)T L  

	

n- -2- , n 	 n - -,n 

(7.9.5) 

	

K* 	(k* k* 	k* k* le) T  2' 	3' 	4' 	5 

where the k's are the six orbital parameters. Let G be the vector of non-
linear functions by which K*  is computed from x*, i.e., 

K *  = G(X* ) 	 (7.9.6) 

Then if 6X* is a small perturbation on X*, and SK *  is the resultant change in 
K*, we have [see (6.2.20) and its derivation] , to first order, 

3K* = M (X *  L  )3x* 	 (7.9.7) 
n - -2-,n 

( where the matrix M X *  L  is defined by 
n - -2-,n 

[M (X *  L 
n - 

ij 

   

X = X *  L 
n - -2 ,n 

(7.9.8) 

  

g i  being the ith  element of G and xi  the jth independent variable in the right-
hand side of (7.9.6). 

Now assume that the perturbations in 3X* are the random output errors, 
i.e., N *  L  . Then SK* is the corresponding vector of random errors in K* . 

n- --2-,n 

From (7.9.7) we have, as the covariance matrix of the errors in K*  , 



• 

n  P n 

= 
(n) 

P (n) (7.9.10) 
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z* 	E 181(* (8K *)1 

= MEN*  L N*T L M T  n- 2,n n- 2, n 

= MS *  L M T 
 n-  2,n 

(7.9.9) 

where S *  L  is the covariance matrix of the random output errors in 
n - 

X*  L . S* can be obtained as follows. 
n 

Define the observation vectors 

Then from (7.9.4) we see that the filter which gives 	
- n 

x* L from the n  
observations can be written as 

(7.9.11) 

where W is the 2 x (L + 1) matrix of weights used in (7.9.4). 
The covariance matrix of the vector on the extreme right of (7.9.11) is 

R (n) = 

la 21 I 0 I 0\ 

0 I a 02  1 I 0 

O 	I 	0 	I o- 2 1 
I 

(7.9.12) 
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where I is the identity matrix of order L + 1. Thus from (7.9.11) the 
covariance matrix of r L  is 

n -  

 

I a 2 WW 	 0 \ 

 

* L 
n - -2-,n 

0 	I cr.,2 WW T 	0 
 	Y'  

0 	0 a  2ww7 

 

(7.9.13) 

   

and so by (7.9.9) the covariance matrix of the orbital parameters can now 
be computed. Note that this is only an approximation because of the 
higher-order terms neglected in going from (7.9.6) to (7.9.7). Note also 
that it depends both on the variance of the original observations 
(0;22 atp2 ,  0.02), as well as on r L  , since M of (7.9.7) is a matrix function 

n -  T t n 
of the latter. 	 .41 

7.10 THE SYSTEMATIC ERRORS 

Until now we have concerned ourselves only with the random errors in the 
output. A second very important type of error, known as the systematic 
errors, arises as follows. 

Suppose that we were able to observe the true process without errors, 
thereby forming the observation vector Y (n)  -a- 	, 3-/n  _ L )T, which is then 
presented to a Fixed-Memory Polynomial Filter. If the process were a 
polynomial of degree m or less (m is the degree of the filter), then the 
estimating polynomial [p*(r)]n  would agree precisely with this error-free 

observation vector at every point. However, when it is a polynomial of 
degree greater than m, or is not a polynomial, then the polynomial p* differs 
from these observations in a precisely predictable way. This difference is 
called the systematic error in position. In a like manner, the derivatives of 
p* will not exactly equal the derivatives of the process, and the differences 
are termed the systematic errors in the derivatives. Assembling all of these 
errors into vector form gives us the vector of systematic errors. 

Let B *„ n  symbolize the vector of systematic errors in the unscaled output 
vector, X*,, n  [see (7.4.7)] , and assume that the input to the polynomial 
filter is the error-free vector Y (n)  above. Then we define B *  by the equation 

X* = n - B*  n,n 	n 	n,n 
(7.10.1) 
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where we have introduced the state-vector 

ll 
n 

D77 ( t)  

\Dm  77 	 t = nT = 

(7.10.2) 

to represent the true process. 
Suppose, now, that we add a vector of zero-mean observation errors to 

Y
(n) 

. The filter output will be 

n,n = W 01  fro  + N fro ) 

B *  + N*  n,n 	n,n 

Define the total error in the estimate as 

n - X*  n,n 	n 	n,n 

Then we see that 

11*  - B* — N*  n,n 	n,n 	n,n 

(7.10.3) 

(by (7.10.1)) 

(7.10.4) 

(7.10.5) 

and so H*  is a sum of the random output errors and the systematic errors.t 
H*  is a biased random variable, because B* is a deterministic function of 

rf(t), the true process. Thus, since N*n, is zero-mean, we see from the above 
that 

= B* n,n (7.10.6) 

The systematic error vector is thus the mean of the total output errors, and 
for this reason the systematic errors are also frequently called the bias errors. 
We can obtain the precise form of en, if 1r (t) is known. This is done as follows. 

tThe attention of the reader is drawn to the fact that the term "random output errors" refers to 
N,,,n , which results from the vector of random observation errors in the input, namely No.o. The 
"systematic errors" on the other hand are generated by the mismatch between the model and the 
true process. 
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First suppose that r (t) is a polynomial of degree d. If g (t) is not a poly-
nomial, then we assume that it is defined by an infinite power-series. That 
being the case, there is an integer d, large enough, so that we can write 

d 
 7T(t) = 	ak tk  + 6(6 
	

(7.10.7) 
k=0 

where the error E(t) is completely negligible. 7r (t) is thus always assumed to 
be a polynomial of degree d, and since we can take d as large as we please, no 
generality is lost. 

As before, assume that we can observe 7r(t) without errors, letting the 
observations be 

ti 

Yn - L +. r 	rrn - L,-+ r 
r = 0, 1, 2, ... , L 	 (7.10.8) 

Thus 3)",, _ L 	is a polynomial of degree d in r, and so we can express it as a 
sum of the discrete Legendre polynomials, i.e. 

d 

- L + r 
j=0 

Nn I)  i (r)  
(7.10.9) 

(See Note) 

where the r-origin is chosen to be at t = (n — L) r. (See Figure 7.1.) The 
y , s can be obtained by forming 

L d 

k p j(k) = 	[1 	j(k]p i(k) 
k=0 j=0 

( 	Cj25 ii 
	 (7.10.10) 

j=0 

ti 

Hence 

(On Yn - L + k pj ( 	 0 j d) 
2 Cj 

 (7.10.11) 

Note: pi (?) and c 1  below were defined in (7.3.5). 

- L 
k=0 



THE FIXED-MEMORY POLYNOMIAL FILTER 	267 

Suppose, next, that the error-free total observation vector, 3-;(.) , is used as 
the observation vector for a Fixed-Memory Polynomial Filter of degree m. 
As in (7.3.8), we write the estimating polynomial as a combination of the 
discrete Legendre polynomials, i.e. 

m 

[p*tr]n  = 	(y)n  p ;  (r) 	 (7.10.12) 
j=0 

Then, either by the reasoning of (7.10.10), or else by that used in Section 7.3, 

= 

L 

1 	r■-• 

2 	Yn - L + kP,f
(k)  

Cj  k =0 

< j < m) 	 (7.10.13) 

We now form the systematic error defined in (7.10.1). The zeroth ele-
ment of the vector B *  will be 

[b* (r] 	(moo) - L + r (COn - L+ r,n 

ti 

=yn - L r 	[1.)*(r)  n 

(7.10.14) 

and by (7.10.9) and (7.10.12) this can now be seen to be 

m 

[b*(r n 	
1 =o 
	(r) 	

j = 0 
(Y  1 1).1 (r) 	

(7.10.15) 
rn 

n 
 p (r) 

j=tn+1 

But comparison of (7.10.11) and (7.10.13) shows that 

( n = 	n 

	(0 j 5_ m) 
	

(7.10.16) 

Hence for d > m, we see from (7.10.15) that the systematic error is 

[6*(rd n = 	(3 
n 
 i(r) 

j=rn+1 

(7.10.17) 

= 	[(3)-1 - (y,),J p(
r) 

+ 
.1 = 0 
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Note that [b*(r)]] is a function of r, if n is fixed, and a function of n, if r is 

fixed. It is thus important, when discussing systematic errors, to decide 
whether r or n is to be regarded as the independent variable. 

In exactly the same way, the systematic error in the estimate of the ith  
derivative is easily shown to be 

(

V) 	= 	1)*(r 
r + h,n 

r = L + 12 

(7.10.18) 
d 

(3;  iY 	P  i (r)  
j ,_- 12, +1 	n  dr' 

 

r = L h 

 

This is then the general form of the i th  element of the systematic error 
vector B *  n + h,r2 .  

7.11 BEHAVIOR OF THE SYSTEMATIC ERRORS WITH h AND m 

From (7.10.18), we see that the systematic error in the estimate of the 
ith  derivative of 7T (t) is given by 

d 

b*(r)  = 	co dri p 
I 
 (r) 

I dtz 	 j=in +1rr 

(7.11.1) 

This is simply a sum of the orthogonal polynomials and their derivatives, and 
so any behavior exhibited by them is also exhibited in (7.11.1). 

Inside the observation interval the polynomials and their derivatives 
fluctuate about zero. All of their zeros are inside this interval, and from 
plots of these functions (see Figures 7.7 and 7.8), we see that the fluctuations 
away from zero are surprisingly small. The polynomials are characterized as 
being very quiet inside the smoothing interval. Taking sums of these quiet 
functions gives a relatively quiet function for (7.11.1), and as a result, the 
systematic errors show relatively small oscillations about zero, inside the 
smoothing interval. 

Outside the observation interval, however, the orthogonal polynomials and 
their derivatives are devoid of zeros, and they are strictly increasing or 
decreasing with r. Thus in general as we leave the observation interval, the 
expression in (7.11.1) shows a tendency to increase rapidly. The general 
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Fig. 7.7 p ( x; 4,50) and its first two derivatives. 
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picture is then one of small systematic errors inside the interval and large 

ones outside. This is, after all, what we would expect, since [p*(i, was 

chosen so as to approximate n (t) well, inside the interval, with no conditions 
on how they were to agree outside of it. 

The zeros of the systematic errors inside the interval (if they exist), are 
related to the zeros of the orthogonal polynomials as shown by (7.11.1). 
Since half of the polynomials or their derivatives have a zero at the center, it 
follows then that the systematic error vector [B*(rJ should reflect this 
very high preponderance of zeros at that point. This is in fact the case, and 
so smoothing to the center of the interval is highly desirable from a syste-
matic error standpoint. 

In Section 7.7 we pointed out that the VRF's are close to minimum, if 
not actually minimum, at r = L/2, also because of the high preponderance 
of zeros at that point. Thus for both reasons, smoothing to the center is 
always to be preferred, if any freedom of choice exists. 

Consider next the behavior of b*(r) as we increase the degree of the 
estimating polynomial. By assumption, the true signal was [see (7.10.7)] , 

rr (t) 	ak t k  f E(t) 
	

(7.11.2) 
k=0 

where le (6 can be made as small as we please by choosing d sufficiently 
large. From (7.11.1), we see that if we increase m, then [b* (r1 is reduced. 

Up to a point we can make the bias as small as we please by increasing the 
degree of the filter. 

However, on p. 61, we pointed out that the set of discrete Legendre 
polynomials with parameter L form a finite set. Thus our attempts to 
increase the degree of the filter may, in fact, be foreshortened if L is not 
sufficiently large, since m cannot exceed L. Thus m = L will be the highest 
degree filter we can implement, and if this is not adequate, we will be 
unable to approximate n (t) to better than a certain precision unless we 
increase L. 

In practice we seldom approach this limit, and by increasing the degree 
of the filter the systematic errors are reduced. But as we increase the 
degree, the variances of the random errors increase as we have shown in 
Sections 7.7 and 7.8. These conflicting facts mean that a balance must 
be struck in the choice of m between the systematic errors and the random 
errors. 
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7.12 BEHAVIOR OF THE SYSTEMATIC ERRORS WITH L AND r 

Suppose that the power series expansion for the true process n (t) is 

a(t) = 	(ak)tk 
k=0 

(7.12.1) 

where for each succeeding value of a the t-origin is chosen to lie at the 
beginning of an observation interval of our Fixed-Memory Polynomial 
Filter.t (See Figure 7.9.) Let 3 be an error-free observation made on ir(t) 

at time t = nr. Then 

d 

(ak
)

n rkrk 
3 n-L +r = 

k=0 

(7.12.2) 

where the r-axis is also shown in Figure 7.9. 
Using the Stirling numbers of the second kind (see (2.4.13) "on p. 24), 

we know that 

k 

	

rk = 	[S-] 	ki r") 

i=0 

Thus (7.12.2) can be written as 

	

d 	 k 

61_) r k 	Es- 	r (i) 
Y n - L+r = 1(k n 	 ki 

	

k=0 	i=0 

(7.12.3) 

(7.12.4) 

tit is because the t-origin is redefined for each value of n that the constants a k  in (7.12.1) are 
subscripted with n. 

t 

 

t = 0 

(1)r = 0 

 

t =LT 

r = L 

 

jp.  r 

   

Fig. 7.9 The t and r axes. 
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We interchange the order of summation. Then 

ti 

Yn- L + r 

d [d 

r(i)(a.)n 

rk[s-9ki 

i=0 	k= (7.12.5) 

  

(r ' n)r(i)  
i = 0 

where we define 

i (r,n) = 	(ak) TkES - 1]ki 	
(7.12.6) 

/n 
k=i 

Observe that if i > 0, then 

lim A.(r,n) = 0 
r-)0 

(7.12.7) 

In Appendix I we prove that we can express r ( i )  as a linear combination of 
the discrete Legendre polynomials as follows: 

(i0 - 

L (I) 	( 1) 1(2i  + 	+ p (r) 
(2i) 1 = 0 	2i + 1)\i - j 

i 

Define 

(_ 1) 1(2j  + 	 2i+ 1 + 

2i + 1 	i 	j  gii  =  

(2i) 

(7.12.8) 

(7.12.9) 

Then (7.12.8) can be written 

r( i )  = L( i ) 	g i . pj (r) 
	 (7.12.10) 

1=0 



1 	/ Ai (r,n)L ( ngii  ] pi (r) 	 (7.12.14) [v(r)] r, 
j=m +1 1=1 

d [d 

THE FIXED-MEMORY POLYNOMIAL FILTER 	273 

and so (7.12.5) becomes 

A i (r,n)L (i)  / 	i (r) 
Yn- L +r = 

i= 0 	 j=0 

Interchanging the order of summation once more, 

d 	d 

Yn-L + r 	 z 
E p ( r) 	Ai  (r, n)L (i) gi] 
j=0 	i=j 

d 

= 	(.1'i)ri P  i (r)  
j=0 

(7.12.11) 

(7.12.12) 

where 

d 

kY 1A, 	A i (r,n)L (qgii  
i.; 

(7.12.13) 

We have thus expressed y,, _ L 	as a sum of the discrete Legendre poly- 
nomials in the form of (7.10.9), and so (7.12.13) is the explicit form for 
(y) , given the power series expansion for rf(t) about the beginning of the 

observation interval. We are now in a position to see how [b*(r)]n  behaves 
as we vary L. 

From (7.10.17) and (7.12.13), we have 

and so when L is large the coefficients multiplying the p i  (r)'s increase 
rapidly due to the L" )  term. Outside the observation interval, the p i  (r)'s are 
all nonzero. Thus in that region [b*(r)]a  consists of a sum of nonzero 

numbers, all of which are increasing in magnitude with L. Although there 
may be cancellations at discrete points, for various L and r, in general it is 
easy to see that as L increases the magnitude of the systematic errors will 
increase. 
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Consider next how [b*(d  behaves as we vary r. As with variance reduction 
(see p. 250), there are two cases. 

CASE A 

r is decreased while L is held constant. 
Then from (7.12.7), all of the A i  (r, n) appearing in (7.12.14) will decrease, 

and so, in the limit, for fixed r, [b*(r1 is seen to go to zero as r 0. This 

means that any power series can be approximated arbitrarily well by a 
polynomial of given degree if the interval over which the approximation is 
made is taken to be sufficiently small. 

CASE B 

r is decreased while L is increased so that T = Lr is constant. 
From (7.12.6), as r -, 0, 

A.(r,n 	
n 

and so as r 0 and L 	(7.12.13) gives 

d  

( ■ 	-) 	(a)n r1LtgTi 
 

i=1 

d E 

(7.12.15) 

(7.12.16) 

which is a constant. The systematic errors will then tend to an asymptotic 
value which would be the same as the errors of an approximation of ir(t), 
over the continuous range 0 S t T , using the continuous Legendre poly-
nomials up to degree m, defined in (3.1.2). 

From the above arguments it is clearly desirable, from a systematic error 
standpoint, that we keep T as small as possible. For r fixed, this means that 
L should be kept as small as possible. This is in direct contradiction to the 
choice we make to minimize the random output errors which is to make L 
as large as possible (see p. 250). 

Clearly then, as with the choice of m, a compromise must be struck in the 
choice of L so that the systematic errors are balanced, in some sense, against 
the random output errors. We now present an analytical way of achieving 
this compromise. 
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7.13 BALANCING THE SYSTEMATIC AND RANDOM ERRORS 

In practice we seldom know the true form of n (t). (If we do, so much the 
better!) What we usually know are the maximum values, or bounds on the 
coefficients of the power series, in the general time range over which the 
filter is to operate. We now make the assumption that, at all times, 77 (t) has a 
power series which converges rapidly enough so that if truncated, then the 
truncation error is essentially dominated by the first neglected term. 

Thus (restricting ourselves to, say, the position output of the filter) by 
(7.10.17), if [p*(rd n  is of degree m, then 

[b*(rd n 
	

(Ym + 1)n Pm +1 (r) 

	
(7.13.1) 

and by (7.12.13), setting d = m + 1, we have 

(3‘;n7 +i )n 
	Am +1

(r ' n)L (rn' +  "gm +1, + 1 

From (7.12.6), setting d = m + 1, 

A m+1 (r,n) 	(a +) rin+ 1  ... n  

(7.13.2) 

(7.13.3) 

since [S -] + 1, in  + 1 = 1. Moreover, by (7.12.9), to within sign, 

1  
gm + 1, m + 1 
	

(2m + 2\ 
	

(7.13.4) 
m + 1J 

Hence, we obtain (to within sign) 

(am  + :arm 	+ 1) 

[b*(r)]. 	 Prn  
(2m + 2) 
k m + 1 1 

+ 1 (r) (7.13.5) 

and in general (to within sign), 

) rm + 1 L on + 1) 

[Di  b*(rd n 	
1 	+ n  

P + (r)  
(2m + 2 	dri 
k m + 1 

(7.13.6) 
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Equation (7.13.5) [and its generalization in (7.13.6)] is an extremely 
useful result. It enables us to compute the systematic error anywhere in 
the observation interval for any L and n, on the assumption that 7r (t) is a 
polynomial of degree one more than the model. 

As an example, assume that m = 1. (i.e. we are fitting a first-degree 
polynomial to a quadratic.) Then (7.13.5) gives 

a2 r2 L(L - 1) Ev(rdz, = 	 P2 (r)  6 
(7.13.7) 

where we have used the fact that a 2  is a constant in this case. This then is 
the error in the approximation which results when we perform such a fit. 

Perhaps the most useful application of (7.13.5) is that it enables us to fix 
L and m so that the systematic errors are balanced relative to the random 
ones. This is done as follows. 

From (7.7.6) we recall that the variance of the random errors in the 
position estimate is 

o (m) 
2 

n 
[S* 	

o ,o
mio,o 

(7.13.8) 

where A o0 (m) is tabulated in either Table 7.2 or Table 7.3, depending on 
whether we are smoothing to the end point or the center. Assume that the 
former is the case. Then we obtain the bias error at the end point by 
setting r = L in (7.13.5). As is readily verified from (3.2.20), when r = L, 
then I 1 (r) I = 1 for any m, and so (7.13.5) becomes 

[b (r)] n 

(a
.+

1 r m + Li (rrz + 1) 
(7.13.9) 

(2m + 2 
m + 1 

 

We now make the .assumption that we know enough about n (t) so that a 

bound can be placed on (a + )n . This being the case we replace (a m i)n  by 

that bound, obtaining 

i rm + 1 L 
1 I 

+ 1) 

(7.13.10) 
(2m + 2\ 

m + 1) 
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From this expression we see how the bias increases with L, whereas in 
(7.13.8) we see how the random-error variance decreases with L. 

In practice we can tolerate a certain amount of bias in our answers. Just 
how much depends on each specific case, but suppose that we decide that we 
can accept a bias error equal to the one-a value of the random errors. We 
thus equate (7.13.10) to the square-root of (7.13.8), and for fixed m, we 
obtain a value for L. This then is the memory length which achieves our 
balance for that value of m. Repeating this procedure for m = 0, 1, 2, ... 
we then select the best overall situation and in this way the balance between 
the random and systematic errors can be optimized. 

The above method works very well in practice and can generally be used 
very effectively to select specific values for L and m in each given situation. 

7.14 TREND REMOVAL 

It is sometimes the case that a nominal trajectory exists which is close to 
the data being filtered by a polynomial smoothing algorithm. This can be 
used to great advantage. 

Suppose, specifically, that our model is given by the nonlinear differential 
equation 

—d X(t) = F[X(t)] 
dt 

(7.14.1) 

where X( t) is, for example, the state-vector of a body in orbit. Thus, 

X (t) = 

/x(t)\ 
y(t) I 

z(t) 
i(t) Vt (ty 

(t) 

(7.14.2) 

where the x, y, z axes form some Cartesian reference frame. 
We observe say range, azimuth and elevation (see p. 168) and obtain the 

sequences of observation 

Pn -  L ' " • Pn 

- L • • • tfrn 
	 (7.14.3) 

en - ' • • • en 
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Based on the nominal trajectory -X( t) that we assumed to be available, we 
now also compute the simulated observationst 

	

Pn—L' 	•1 Pn 	

(7.14.4) 
n - L+ • • , T n 

L ' • • • en 

and we then form the differences 

	

8Pn— k 	Pn — k Pn— k 
	0 < k < L 
	 (7.14.5) 

	

8 frn — k 	n — k 	n - k 
	0 < k < L 
	

(7.14.6) 

a0 — 
k en —k °n —k 

0 < k < L (7.14.7) 

We then send these differences to three Fixed-Memory Polynomial Filters, 
and obtain the center-smoothed values 

sfi* 	se 	si'fr* 	sec ,n , sec ,n  c,n' 	c,n' 	c,n 	c,n 

to which we add back the simulated observations 

computed at the center of the observation interval. This gives us the outputs 

	

8P*c, n 	pc 

8(3 c,n + 1 c 

	

fc,n 	45 fr*c, n 	c 

	

t .fr: n 	acfr: n 	tT c  

0*  Er-  se ,± 

	

n 	c, n 	c 

e* 	se* + 

	

c,n 	c,n 	c 

(7.14.8) 

The scheme is depicted in Figure 7.10 in which we show the portion associated 
with the p-data, assuming a quadratic filter. A similar system would be used 
to smooth the IA and 0 observations. 

t See (6.2.13). 
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From the 6-vector in (7.14.8) we can, if we so choose, computet a state-
vector ecn  which we now use in place of our nominal trajectory, thereby 
setting up an iteration procedure. We can also use this r n  as the nominal 
trajectory on the next cycle, when further observations become available. 

The rationale underlying the trend-removal procedure described above is 
that the differences in (7.14.5), (7.14.6) and (7.14.7), being formed by 
subtracting two close trajectories from one another will have power series 
with reduced coefficients. Thus let the true range-function be 

p(t) = a ()  + a l t + a 2 t 2  + • • • 

and let the nominal range-function be 

p(t) = ii o  + a l t + ii 2 t 2  + • • • 

Then the sp function of (7.14.5) is (neglecting observation errors) 

Sp (t) = (a 0  — «0 ) + (a — adt + (a2  — ado + • • • 

(7.14.9) 

(7.14.10) 

(7.14.11) 

which is a power series whose coefficients are small, relative to those of 
(7.14.9). 

The systematic errors, we have seen, depend linearly on the coefficients 
of the power series [see e.g. (7.13.6)] . Assuming a first-degree polynomial 
filter, the systematic-errors, if we filter the total p observations, would be 
proportional 1  to a 2 , whereas if we filter the ap's then they are proportional 
to a2  — a 2 . Thus, in the former case the bias error is, say 

I b (p*) I=  k I a 2  I 	 (7.14.12) 

whereas in the latter case it is 

I b (Be) I= kla 2  — a 2  1 	 (7.14.13) 

However, we now add the nominal trajectory back into 6p* [see (7.14.8)] 
and this does not lead to any further systematic errors, since we are merely 
adding back in what we subtracted out earlier. Hence the systematic errors 
in the trend removal case (7.14.13) become 

I b (8 p* + I)) I = k I a 2  — a 2  1 

which is clearly smaller than (7.14.12) if a 2  and Et 2  are close. 

t This is discussed in further detail in Section 8.5. 
We are assuming, as we did on p. 275 that the first neglected term in the truncated power series 

dominates the entire truncation error. 
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Thus by trend removal we are able to reduce (significantly in many cases) 
the systematic errors, thereby enabling us to 1) reduce the degree of the filter 
and 2) lengthen the observation interval. Both of the latter lead to reductions 
in the random-error variances. 

Trend removal is thus strongly recommended whenever a polynomial 
filter is being applied. When a nominal trajectory is not available initially, 
we can derive one based on the first set of outputs of the filter. This is 
discussed in Section 8.5 in further detail. 

Examples on the technique of trend removal are included in the exercises 
for Chapter 8. 

7.15 CASCADED SIMPLE AVERAGING 

A very effective method of reducing the amount of computation for the 
Fixed-Memory Polynomial Filters was devised by R. B. Blackman, and is 
entitled Cascaded Simple Averaging. It is described in [7.2] in a somewhat 
condensed way, but the reader who is seriously interested in these types of 
filters is strongly advised to make the investment needed to understand this 
technique. 

Basically, what Blackman shows is that, to a very close approximation, the 
operations of the Fixed-Memory Polynomial Filters can be reduced to 
sequences comprised only-of -push-down, addition and subtraction, together 
with an extremely small number of multiplies. The weights of the filter 
matrix disappear, and are, in effect, almost entirely replaced by +1's, —1's 
and zeros. This significantly reduces the computational load and also 
decreases the memory-space requirements. 

Blackman's scheme is very well suited to implementation in special 
purpose digital computers involving delay-line elements. It would be 
relatively easy to implement fairly large numbers of these filters in a single 
such machine, and the overall amount of equipment required would be 
quite small, this by comparison to a machine in which an equivalent number 
of Fixed-Memory Polynomial Filters, as described earlier in this chapter, 
were being operated. 

EXERCISES 

7.1 a) Starting from 

[p* 	
= (13 On  + (13 1)n r 
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obtain the expressions for p o  and f3 1  which best fit p*(r) to the 
observation sequence y n  _ L  , . . . , yn  in the sense of least-squares. 

b) Hence set up p*(r) in the form 

L 

[p* n  = 	w(k, L , r)y n - L +k 
k=0 

and verify that the multiplier w(k, L, r) is a first-degree polynomial 
function of r. 

c) Using b) above, show that 

L 

2 — 2L + 6k  x* n,n 
;c. (L + 2) (L + 1) yn 

-L +k 

Verify that for L = 4, 

xta 	-3+-)  (6yn  + 	-1 + 2y n  2  — 2y n  _ 4 )n  

d) Attempt to repeat the above for p*(r) a quadratic in r. 
7.2 a) Starting from 

[p*(rd i., 	(13 0).v0(r) 	0 1). cp1 (r) + (i3 2)co2 (r) 

where the co' s are the normalized discrete Legendre polynomials, 
obtain the expressions for the /3's which best fit p*(r) to the 
sequence yn  - L  , yn  in the sense of least-squares. 

b) Hence set up p*(r) in the form 

L 

[p* (r)] a  = 	W(k,L,r)Y n _ L k  
k=0 

and note that w(k, L, r) is a quadratic in r. 
c) Compare the above with the difficulties encountered in part d) of 

Ex. 7.1. 
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7.3 a) Verify that for a degree-1 estimator 

n,n 

L E 	12k - 6L 	• 

k=0 (L + 2)(L + 1)L 
Yn - L + k 

and reconcile this with (7.3.30) when L = 4. 
b) Verify that for m = 1, L = 4, 

1 (2 2 2 2 2) 
Z* 	= 

n - 2,n 10 2 	1 	0 -1 -2 
(n) 

 

is the Fixed-Memory Polynomial Filter which estimates at the 
center of the observation interval: 

c) Prove that for any L, when m = 1, 

1  
(Z111) 	= 

L + 1 - k 
k=0 

where c means the center of the interval. 
d) Compare c) above to the zeroth-degree polynomial estimator. 

7.4 a) Set up the Fixed-Memory Polynomial Filter 

Z ,n = W (0) Y (n) n 

for m = 2, L = 4, making use of (7.4.10) using P as defined in 
(7.4.4). 

b) Repeat a) above, but this time use P as defined in (7.4.15). 
c) From either a) or b) obtain the 1-step predictor matrix W(1) and 

the center-smoothing matrix W(- L/2). 
7.5 a) On p. 46 we defined the impulse response of a system as its out-

put when the input is a Kronecker delta 8n °. Verify that for the 
Fixed-Memory Polynomial Filter, Z: n  = WY (n) , the impulse re- 
sponse of the (zi.) channel is simply the sequence of numbers 

z nn 

given in the ith  row of W. Hence infer that any Fixed-Memory 
Filter has an impulse response which becomes precisely zero after 
a finite time equal to the memory length. 
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b) Plot the impulse responses for each of the elements of V.!. for 
the cases m = 1, m = 2 with. I, = 10 [make use of (7.4.10)]. 

7.6 For the case where R = I, (7.5.4) gives us 

L 

= 	[W k EW (0% k  
k=0 

Let the input to the filter 

Z* ,n = W (0) (n) 

be a Kronecker delta 8,0 . 
a) Prove that if we square the sequence of outputs from the zI 

channel and add them together, then we obtain [s* ] above. n,n 

b) Prove that if we multiply each output from the z" channel by the 
concurrent one from the z* channel and then add these products, 

we obtain [s: ni j above. 
, t   

In this way we can, with the aid of a computer, obtain numerical 
values for S*n,n for the case R = I. 

c) Using the matrix W(0) of (7.3.27) carry out the above operations 
either by hand or preferably with the aid of a computer, and 
reconcile the result with (7.5.16). 

7.7 Verify that the product PC in (7.4.10) is nonsingular and that the 
rows of B are linearly independent. Hence infer that the matrix W (h) 
of (7.4.10) has full row-rank and that by Ex. 6.4, WWT is positive 
definite. 

7.8 a) Obtain the quadratic least-squares estimating polynomial p*(r) for 
the observation vector 

(

sin 90° 

 sin 67'/i ° 

 sin 45°  

\
sin 221/2 

sin 0°  

Y 

by the use of (7.3.20). 
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b) Now tabulate p*(r) for 1 °  increments (using a computer) and 
compare the results to the true values of sine (0 < 0 < 900 ). 

c) Note that the estimate p*(r) above is a linear combination of 
vo (r), (p i  (r) and Sot  (r)[c/f (7.3.14)] and so it can be rearranged 
into a power series 

p*(r) = a o  + a r + a 2 r 2 

in which form it could be programmed to serve as the basis for a 
sine/cosine subroutine. 

Note: A slightly better quadratic approximation to sin0 can be 
obtained by minimizing the maximum error rather than minimizing 
the squared residuals. (See e.g. [7.3] .) 

7.9 a) Using a computer, generate the sequence of observations 

n 
yn —+ v 	 -vn) 

100 t 0 

where li n  is obtained from a random-noise subroutine within the 
computer. (Set-the subroutine so that a 7, = 1 -3.) 

b) Now apply this sequence to a first-degree Fixed-Memory Poly-
nomial Filter using first L = 4, then L = 10, then L = 100. Com-
pute the errors in the outputs. 

c) Observe that those errors diminish as L is increased. 
d) In each case also compute the elements of the covariance matrix 

by the procedure outlined in Ex. 7.6. 
7.10 Given that 

1 0 0 0\ 

1 2 1 0 0 

R (n) = '0 	1 	2 	1 	0 

0 0 0 

O 0 1 2 	1 

1 

use the weight-matrix W from (7.3.27) i1 (7.5.4) to obtain S:, . 
Verify that the diagonal terms of Sn n are 1. and 0.28. 

7.11 Using (7.5.22), obtain the 2 x 2 (first-degree) matrix 	where c 

means "at the center of the observation interval." Verify that 	is 
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diagonal, i.e. the position and velocity estimates are uncorrelated. 
Note: In general for higher degree filters, S*cn  is not diagonal. 

7.12 Verify (7.5.8). 
7.13 Verify (7.5.10). 
7.14 Verify (7.5.16). 
7.15 Verify (7.5.25). 
7.16 Obtain S* for the quadratic and cubic cases and verify that the 

1,n  

diagonal elements for degrees zero through three are as given on p. 371 
with n replaced by L. 

7.17 Verify that S: h,n  of (7.5.27) reduces to (7.5.28). 
7.18 Using (7.5.28) obtain the 2 x 2 matrix S: ÷1,,, from (7.5.25). 
7.19 Using the matrices S: +  I , from Ex. 7.16, verify the assertions made 

in Case A and Case B on pp. 250 and 251. 
7.20 Set up the filter 

B = WY (n) 

where B is the vector of /3's of (7.3.8). Show that if R (n)  = I, then the 
covariance matrix of B is diagonal. 

7.21 a) 

b)  

c)  

7.22 a) 

Plot the functions [cok (L + 	for k = 0,1,2, and h in the 
L =4. 

range —10 to +6. 
By adding the above plots, obtain 	+ h,rj0,0 

ES* 	of (7.7.8) for n   
m= 0,1 and 2. 
Verify that in each case the above functions are strictly increasing 
for h > 0 and h < —4. 
For the discrete Legendre polynomials cp o(r) , (r), 2 (r) set r = p/L 
and let L 	thereby obtaining 

soo (P) 

1/ 2 3) 	- = e (1 2p) 

5)1/ 2 
(1 - 6p + 6p 2 ) 

2 
2 

b) Plot L/ [9 k ( 	for 0 < p < 1 and verify that the curve in 
k=0 

Figure 7.5 is obtained. Thus given L, we can use that curve to 
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obtain ES* 
+ h,n0,0 for any value of h. In a similar manner we can n  

obtain the curves for any of the diagonal elements of 5: + /2,z7  for 
any degree. 

c) Reconcile the end-point and center values of Figure 7.5 with the 
entries m = 2, i = 0 of Tables 7.2 and 7.3. 

7.23 a) Using Table 7.2, verify that for L large, the first-derivative updated 
estimate based on a quadratic has a V RF = 192/r 2L 3 , and hence 
that its variance is a7,2  (192/r 2L 3 ). 

b) Using Table 7.2, obtain the variance of a 1-step prediction of the 
second derivative, based on a cubic, for L large. 

Ans: Var = a 

v 
2 25920  
 r4L 5  

c) Repeat both of the above assuming smoothing to the center. 

12 720  a 2 
 Ans: a) Var = av2  

r2 L 3 	 r4 L 5  

Note how much smaller the variances are when smoothing is to 
the center. 

7.24 Let the input to a zeroth-degree filter be 7r(t) = t with r = 1. Then by 
(7 10.8) -n-L+r = n - L + r. 

a) Using (7.10.11) verify that 

C'Yo)„ = n - —2 

and hence show that (7.10.9) sums to 

Cyr)n  p . (r) = n — L + r 
=o  

b) Verify that (7.10.17) gives the bias error as 

[b*(r)] = (-L/2) [1 - (2r/L)] 

Hence infer that the bias error in the updated estimate is 
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[b*(L)]n  = L/2, and that the bias error at the center of the obser-

vation interval is zero. Note how [b*  (D] n increases with L. 

c) Verify that the zeroth-degree Fixed-Memory Polynomial Filter is 

1 x: _ 	 
+ 1 k=0 

3in - L k 

Show that for the observations yr, _ L + k = n - L +k, this gives 
o = n - (L/2). Verify that this implies a bias error equal to L/2 
if smoothing is to the end point and a bias error of zero if 
smoothing is to the center. Reconcile this with b) above. 

7.25 Assuming a filter which is first degree and that the input is 7(t) = t 2, 
with r = 1. 
a) Show that (7.10.11) leads to 

()%0).  = (n — L) 2  + (2n — L) 
L (L — 1) 

2 6 

(:1)1' 
2 

= — 	— L) 

L (L — 1) 

and verify that 

2 

(3  I) P (r) 
 = (n—L+ r) 2  

1=0 

b) Verify that the bias error is 

[bq 	L(L-1)  [1 6 r  +6  r  —  1)  
6 	L 	L (L — 1) 

and hence that [b*(L)] n  = [L (L - 1)1/6, and 
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[b* (11 Lai + 2) 

2 

 

12 

Note that the bias errors increase like L 2 . 

C) Verify that (7.13.5) gives the same answer as b) above. 
d) Infer that if the filter were zeroth degree with 77(6 = t 2, then the 

bias error would be 

. 7.) [V(rd 	_ (2n - 	2 	L (L - 1)  1 6 r  + 6  r (1. 1)  

	

'2 	 L 	6 	LL - 1) 

and that 

[b*(L] 	L (6n - 2L -  1)  

6 

Note that E)*(L)' n  is now a first-degree polynomial in n, whereas in 

b) it was a zeroth-degree polynomial in n. 
e) Starting from the zeroth-degree estimator [see Ex. 7.24c)] 

1 
Y \X°/n,n 	 n-L +k  r 

	

+ 	k=0 . 

verify directly that when the input is 77 (t) = t 2, the bias error 

[b*(Ll is as given in d) above. 
7.26 a) Verify that for a first-degree Fixed-Memory Polynomial Filter the 

updated position estimate has 

V2(2L + 3) 
epos L (L + 1) 

Let v v  = 200 ft. and compute o-pos  for L = 5, 10, 15, 20. 
b) Assume that 

R(t) = R o  + tho  + —t2  R o  
2 
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and verify that the systematic error in position is bounded by 

(L — 1) 

6 

For n = 32 ft/sect, r = 1, compute [b*(131 for L = 5, 10, 15, 20. 

Verify that the systematic error in position equals the lcr random 
error in position when L ::: 8. 
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8 
GENERALIZED 

FIXED-MEMORY 

FILTERING 
•.• 

8.1 INTRODUCTION 

In this chapter we consider a scheme which is the generalization of the 
Fixed-Memory Polynomial Filter considered in the previous chapter. We 
call the present technique the Generalized Fixed-Memory Filter, and we 
shall show how any or all of the following extensions can be incorporated. 
(The reader should compare the following enumeration to the conditions 
implicit in . Chapter 7, and he will readily observe how very much more 
flexible the present scheme is by comparison with the previous one.) 

A. The Observation Method 

1. Observation instants need not be equally spaced. 
2. A vector of observations of mixed dimensions can be made at 

each instant, and the entire vector can be incorporated into the formation 
of the estimate. 

3. Two or more instruments observing the same quantity can be 
employed simultaneously. 

291 
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4. The vector of observations made at each instant can be either 
linearly or nonlinearly related to the process state-vector. 

B. The Process Model 

The model on which the process is assumed to be based can be either a 
constant coefficient linear differential equation, which of course includes 
polynomial models, a time-varying linear differential equation, or a nonlinear 
differential equation with possibly time-varying parameters. 

C. Incorporation of the Data 

Observations can be incorporated into the estimate with differing emphasis, 
i.e. observations which are known to be high-quality can be stressed more 
heavily than observations which are known to be of low-quality. The latter 
need not be discarded, but can be incorporated precisely according to their 
merit. 

It is easy to see that the implementation of all of these possibilities into a 
fixed-memory scheme constitutes a significant generalization over the fixed-
memory filters of the preceding chapter. However, nothing so luxurious 
comes without a price, and in the present case the price will be three-fold. 

First, the filters will not emerge in the explicit form to which we became 
accustomed in the previous chapter, where the weight-matrix of numbers, 
W , could be computed off-line, once and for all, and used whenever required. 
The generalized filters will consist, rather, of an implicit algorithm, a sequence 
of mathematical operations, which 'will have to be executed repeatedly by 
the computer, on-line, once each time the filter is cycled. 

The second aspect of the price we pay for the extreme flexibility of the 
filters under development is the difficulty of performing a precise analysis 
on their properties. In Chapter 7 it was relatively easy, using the discrete 
Legendre polynomials, to analyze the Fixed-Memory Polynomial Filters. 
Such is not the case here, and we shall have to content ourselves with far 
fewer precise results, and perhaps a few more heuristic arguments about the 
nature of these filters. 

Finally, as will be readily noted, the generalized filters are computationally 
much more expensive than their simpler predecessors which we presented in 
Chapter 7. 

The generalized filters are based directly on the ideas developed in Chapter 
6, namely the minimum-variance and the least-squares theorems. We shall 
review these briefly in the next section. When either the process model or 
the observation relation is nonlinear, the filtering scheme which results is 
known as differential-correction, and has been used by astronomers since the 
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time of Gauss, who introduced the method, in virtually its present form, 
very early in the nineteenth century [8.1] . We will also discuss this 
technique in the present chapter. 

8.2 THE BASIC SCHEME 

Consider first the simplified case, in which the process satisfies a linear 
differential equation and in which the observations are linearly related to 
the state-vector. Thus, let X(t) be a state-vector for the model and suppose 
that X satisfies the differential equation 

d X(t) = Mt) X(t) 
dt 

(8.2.1) 

where A(t) is a square, possibly time-dependent, matrix of numbers, inde-
pendent of X( t). Also, let Y. be the vector of observations made on the 
process at time t., let N n  be the vector of errors in those observations, and 
assume that the observations are related to the model by 

Yn = M n Xn N n (8.2.2) 

where M n is a matrix of possibly time-dependent numbers. The components 
of Yn can typically be quantities such as position, velocity, acceleration, 
range, range-rate, azimuth, elevation, etc., and Y. at any time can be formed 
from varying mixtures of these. 

In Section 6.3 we considered the situation where observations were made 
at times tn , t. _ 1 , , t. _ L, and we showed that the total observation 
vector Y(n) could be related to X by an equation of the form 

Y = Tn Xn N (n) (8.2.3) 

in which Y(n) and N an)  were defined in (6.3.4), and where, as in (6.3.9), we 
define 

Mn-1 4)(t 11-1' tn) 

Tn 

(DO 	t n-L 	n-L' n 

(8 2.4) 
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Assuming that the elements of N (n)  are zero-mean random variables, with the 
known covariance matrix R (n)' and considering all estimates of X n derivable 
as linear transformations on Y o) , i.e. 

X*n,n = Wn Y(n) 
	 (8.2.5) 

then the covariance matrix of the random errors in the estimate will be 

S* T n,n = W n R (n) Wa (8.2.6) 

In Chapter 6, we studied the problem of selecting W. subject to the 
exactness constraint (6.3.16), so that the SLI  induced by (8.2.6) will have 
the smallest possible diagonal elements. This criterion gave rise to what we 
called the minimum-variance filter, i.e. 

3i3* = 	Y n,n 	n (n) 
(8.2.7) 

where 

if' E TaT  R;1) T 1  T aT R ;1) 	 (8.2.8) 

The induced covariance matrix n s was shown to be equal to n, 

g*nm  = (T aT  R -(-nl) T nr 1 
	

(8.2.9) 

These are the equations of the Minimum-Variance Generalized Fixed-Memory 
Filter assuming complete linearity in both the model and the observation 
relations. 

In case we wish to use the least-squares criterion, rather than minimum-
variance, we showed in Chapter 6 that this was accomplished by setting 

A 	A 
X*n,n 	Wn Y(n) 

where 

A 
Wn 	(T nT  T

n
)-1 T riT 

(8.2.10) 

(8.2.11) 

The induced covariance matrix of the errors in the estimate is then 

A 	A 	A 
Sn,n 

= Wn R (n) W nT (8.2.12) 
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However, if R 00  is of the form 

R = Qvl 

then the induced estimate covariance matrix simplifies to 

A 
= u 2  T  CT T n y r: 	v 	n 

(8.2.13) 

(8.2.14) 

which is also the result obtained from the minimum-variance approach when 
(8.2.13) holds. 

The actual implementation of either of the above twa algorithms is 
straightforward, and consists essentially of setting up the matrix T n  of 

A 
(8.2.4), followed by the computation of n  or Wn  as the case may be. In 
obtaining T n , the transition matrices shown in (8.2.4) must be computed 
using the techniques developed in Chapter 4. 

8.3 GENERALIZED FIXED-MEMORY POLYNOMIAL FILTERS 

The filters developed in Chapter 7 were based on the assumption that the 
observations were equally spaced in time. When this is not the case, then the 
techniques of that chapter become invalid, and we now discuss briefly the 
alternate procedure which we are forced to adopt. 

Assume that a sequence of scalar observations ... y n  , yn  . is being 
obtained from a process, and that we wish to fit a polynomial of given 
degree to a fixed length record of them. The observation instants are 
assumed to be unequally spaced and we store both these as well as the 
observations themselves in push-down tables of adequate length. 

As the state-vector for the polynomial model we take 

x (t) 

—
d 

x (t) 
dt 

Z(t) —1 —d2 x(t) 
2! dt2  

• 

\ 1 dln x (t) 

 m! dtrn 

(8.3.1) 
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where the factorial scale-factors are introduced for convenience. Assume 
specifically that we wish to fit a quadratic to the observations. Then the 
transition relation for Z(t) would be 

n 

(8.3.2) 

as is easily verified by the use of Taylor's theorem. The general ij th  term 
of the transition matrix is [see (4.2.15)] 

[0(4.1 = ()o 
	

0 —<<i,j Sm 
	 (8.3.3) 

For the quadratic case, each of the observations ... y. _ 1, y.... is related 
to X (t) by an equation of the form 

(8.3.4) 

and so Mn of (8.2.2) has the constant form 

M = (1, 0, 0) 
	 (8.3.5) 

for all n. 
Combining (8.3.5) with (8.3.3), it thus follows from (8.2.4) that, for the 

quadratic case, 

Tn 

/1 

1 

1 

—(t n  

—(tn  

- (t n 

0 

— to _ 1 ) 

— to -2) 

— t o -L ) 

(tn 

(tn 

(t n 

0 

— to -1
)2 

tn -2 )
2 

— 
to-L )2 

(8.3.6) 

Note that in the formation of (8.3.6), we have assumed that L + 1 observa- 

tions are to be used to obtain the polynomial estimate. Note also, that by 



3 t -,t n. 	- k ) E( 

1c=0 

L. L 

k=0 

1 - 

k=0 

(t n - tn _ 

L L 

T riT T n 
k=0 

(tn  t o  

k=0 

(t 	- n to -k )  

(ta - t o 
k=0 L  

) 2 
-k 3 to - k ) 

k=0 

(t - t n 	n- k • 
.k= 0 

L 

k —0 

(8.3.9) 
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including the scale-factors 1/m! in the definition of Z (t) in (8.3.1), we have 
avoided their occurrence in (8.3.6). This was purely a matter of personal 
preference. 

It now follows immediately from (8.2.11) that the least-squares poly-
nomial approximation to the sequence of observations 

Y(n) = (yn 7  yn -1 1  • • • 1  Yn-L )T  

will be 

_ 	 •.-• 	—1 z4. 	(TAT) 7-  
n,n 	n n 	n

Ty 
 (n) 

(8.3.7) 

(8.3.8) 

This is the state-vector of the estimating polynomial, and the validity instant 
is at the leading edge of the observation interval. It is readily verified that 
for a quadratic, (8.3.6) gives us the 3 x 3 matrix 

Obtaining the inverse of this matrix is the major computational problem in 
the derivation of (8.3.8). It is also easily verified that for the quadratic case 

( 1 Y n- k 
k=0 

L 

L 

T T  Y n n (t n - tn- k ) yn- k 
k=0 

(8.3.10) 

(t n - 

k=0 	
tn-k ) Y n - 
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and so the least-squares estimate of (8.3.8) can now be obtained. Extension 
to higher degree polynomials follows readily. 

In the event that R an)
, 

the covariance matrix of the errors in Y(n)' were 
available, we could, if we prefer, set up the minimum-variance polynomial 
estimator 

2 	(7-  TR-1  T 	T R -1  
n,n 	n 	(n) n 	n 	(n) (n) (8.3.11) 

where T n was given above. This, however, calls for additional computation 
in that R (n) must be inverted. But if this matrix happens to be diagonal, as 
is often the case, then the additional amount of computation is extremely 
slight. 

It is sometimes the case that we know the true differential equations of 
the process to which polynomial filtering is being applied. In that event the 
method of trend-removal which we developed in Section 7.14 is strongly 
recommended. As we pointed out there, for a slight increase in the amount 
of computation we can achieve a marked improvement in the properties of 
the filter. The systematic errors are reduced, and this in turn permits us to 
use greater memory lengths, thereby smoothing the random errors more 
heavily. 

We suggest then that the reader review the material of Section 7.14 and 
that he thereafter work Example 8.6 in which trend-removal is applied. 

8.4 NONLINEAR SYSTEMS 

Consider the following differential equation 

5e(t) + CD 2 X(t) = 0 
	

(8.4.1) 

If CO is a given constant then this is a linear differential equation, and of 
course defines the family of sines and cosines whose angular frequency is co. 

We now examine the situation where co is unknown, and is to be estimated 
along with x (t) and ac (t) by making observations on the process. 

We assume first, that from prior considerations, it is known that co remains 
constant with respect to time. What we then seek is the value of that con-
stant. Under these circumstances, we now think of co as the time function 
which satisfies the differential equation 

d
&(t) = 0 
	 (8.4.2) 

dt 
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and combining this with (8.4.1), gives us the extended differential equation 

x(t)\ 	/ ±(t) 

	

—d 
x(t) 	-6) 2  x(t) 

dt 

	

`w (t) 	\ 0 

This is a nonlinear differential equation, of the form 

d
[X(t)] = F[X(t)] 

dt 

(8.4.3) 

(8.4.4) 

in which the state-vector, X(t), has been augmented to include the parameter 
co. The latter has thus been converted into one of the state-variables. If we 
were now able to devise a method of applying estimation techniques to 
nonlinear differential equations, then clearly co could be estimated from 
observations. 

It is clear that the above approach is open to complete generalization. For 
example, on p. 105 we discussed the equations of motion of a body moving 
through the atmosphere, and we simplified the problem by assuming that the 
parameter a was a known constant. Now a very important class of problems 
arises in precisely the case where this parameter is unknown, and it is 
desired that its value be estimated by making successive observations on the 
position of the body. Studies on viscous motion provide us with some prior 
knowledge on the dynamics of a and its dependence on the state variables of 
position and possibly velocity. This gives us a differential equation, of the 
form say, 

d((t) 

dt 	(t) 	
F [x , 	, x2 , io  , x i , x2 , a( t), 	 (8.4.5) 

which can now be combined with the 6-vector of (4.8.11). The result is an 
8-vector of state-variables, which is then the candidate for our estimation 
procedures. Again the model differential equation is nonlinear. 

Nonlinearities can also enter through the observation scheme, and in fact 
it is more common in practice to encounter nonlinear, rather than linear, 
observation schemes. As a common example which occurs very frequently, 
the reader is referred to p. 168 where in (6.2.11) the equations are given 
which relate polar to Cartesian coordinates. They are clearly nonlinear. 
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A brief examination of the material of Section 8.2 shows that nonlineari-
ties in either the differential equations or in the observation relation will 
invalidate all of the estimation techniques thus far developed. In the former 
case the transition matrix is undefined per se, and in the latter the matrix M n 

 cannot be set up. Either or both will then rule out the formation of T., 
and so we are then unable to set up either the least-squares or the minimum-
variance filter algorithms. 

The remainder of this chapter is, accordingly, devoted to a discussion of 
how we estimate in the presence of nonlinearities. The procedure to be 
outlined is called iterative differential-correction and will be seen to be a 
fusion of our already developed methods together with numerical iteration. 

8.5 OBTAINING A NOMINAL TRAJECTORY 

Assume that a nonlinearity exists in either or both of the process differen-
tial equations and the observation relation. This invalidates our existing 
estimation techniques which were developed on the assumption of complete 
linearity. 

However, in Sections 4.8 and 6.2, we demonstrated that if a so-called 
nominal trajectory exists, i.e. one which is reasonably close to the true 
one, then by first order linearization techniques we can set up an associated 
differential equation and observation relation, both of which are linear. 
This then offers us the possibility of being able to apply our existing linear 
estimation techniques. In the present section we examine, precisely, how 
that nominal trajectory can be arrived at. In the next section we examine 
the details of the associated estimation procedures. 

As a first method of obtaining a nominal trajectory, it is possible that an 
approximation to the true process may already be available from prior 
knowledge. A common example of this situation occurs in satellite work, 
where the insertion parameters existing at the time of separation are known. 
These can be used to construct an estimate of the value of the state-vector 
describing the orbit in question, and this then constitutes the required 
nominal trajectory. 

When such prior knowledge does not exist, we must resort to constructing 
a nominal trajectory by the actual use of observations. Accordingly we now 
fall back, temporarily, on the method of polynomial approximation, as dis-
cussed in Section 8.3. This is admittedly a compromise, since, as we know, 
polynomial estimates contain systematic errors, depending upon the degree 
of the polynomial selected. However the indisputable advantage of poly-
nomial estimation is that our ability to apply it is completely unaffected 
by the presence of nonlinearities in the system equations. Polynomial 
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smoothing bypasses these completely, and very conveniently enables us to 
obtain the sought-after nominal trajectory. 

Specifically, assume that we are observing the range, p, azimuth, tfr, and 
elevation, 0, of a body in motion. These, together with the observation 
instants give rise to the sequences of numbers 

• • • 

Pn- 2' Pn - 	Pn' • • • 

V n - 	2 ' Vin - 1' 11  n' • ' • 

en - 2' en -1' en' " • 

to - 27 to  _ 1 , tn , 

which we store in four push-down tables, each of length L + 1. It is now 
decided that a quadratic shall be fitted to each of the three sets of observa-
tionst and so we form the matrix T n , as given in (8.3.6). This then, by the 
use of either the least-squares or the minimum-variance algorithms given 
in (8.3.8) or (8.3.11), enables us to obtain the three quadratic estimate state-
vectors 

P* n,n 

kb*) 	/6*) 
ir 	* 	0* 	6* 

n, n 	 n,n 

\* 	 \"d* n ,n 

(8.5.1) 

We accordingly assume that we now have the quadratic fixed-memory poly-
nomial estimates for each of the selected data sequences. 

We direct our attention next to the true observation relations, and show 
how the results of the polynomial estimation procedure discussed above 
can be applied. Specifically, let the state-vector be made up of the three 
position and three velocity coordinates of a body in motion, i.e. 

X(t) = (x0,  x1,  x2, ±071'2 ) 
	

(8.5.2) 

Then the simulated observation equations, relating the quantities under 
observation, namely p, VI, and 0, to X (t), are (see (6.2.11)) 

The decision as to what degree polynomial shall be fitted, is based on the considerations outlined 
in Chapter 7. 
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,p  (x02 + X 12 + x22) 112  

= 
talc,  (x i) 

xo  

0 = tan-1  
X2  

[(X02  + x 2) 1/2  1 

(8.5.3) 

 

 

Suppose that we were given a set of values for p n , i1ln , and 0.. Then, by 
inverting the above equations, we could solve for corresponding estimates of 
x0, x1 , and x2, valid at t = tn . However, these three quantities do not, as 
yet, constitute a nominal trajectory, since from (8.5.2) we see that we also 
require values of aco , ac l , and ac e . Moreover the latter three quantities are not 
present in (8.5.3). This last fact is equivalent to the statement that the true 
observation equations of (8.5.3), when written in terms of the entire state-
vector X( 0 in the form 

G[X(t)] 
(8.5.4) 

are singular, i.e. they cannot be inverted to give 

X(t) = G-1 (p,tfr,0), 	 (8.5.5) 

The singular nature of the set (8.5.3) is very common in practice, and 
arises out of the fact that, either by choice or by necessity, we are not 
observing a sufficient number of independent quantities. However the ap-
plication of polynomial filtering to the p, ;1i , and 6 sequences has provided 
us with estimates of the additional independent quantities (3, 1 .fr, and 6, 
quantities which we are not actually observing. These latter estimates can 
now be utilized to eliminate the abovementioned singular situation. 

First we invert (8.5.3). This gives us the three equations (see Ex. 8.13) 

x = p cos 0 cos 

x 1  = p cos 0  sin ̂i

X 2 = p sine 

(8.5.6) 
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Then, by differentiating these, three further independent relationships come 
about, namely, 

cose cost!' — 6p sin0 cost!' - tkp cos° sink 

5c i  = fi cos 0 sing — ep sine sin/i + lj.fp cos° cosh 
	 (8.5.7) 

= fi sin° + ep cos 0 

These six equations clearly give us the entire state-vector, X(t), in terms of 
p, t1f, 0, (3,0- and 6, and since estimates of the latter six do exist, an estimate 
of X (t) follows immediately. 

In this manner, by using the polynomial filters to give us 

fi* 	IA
* 	

Cb 
• * 	* 	al* 

n,n' 	n,n' 	n,n' 'n,n' n,n' 	n,n 

we have, in effect, augmented the number of observables, and this, in turn, 
has enabled us to remove the singularity in the basic observation equations. 
Once the augmentation has been effected, it then becomes a purely algebraic 
problem to obtain an estimate of X( t). (We have of course only shown the 
augmentation and inversion procedure to be valid for the above specific 
case, but we assert that it is possible to do in general what we have done 
above, if the observation scheme is adequately constructed.) 

The first of our tasks has' thus been carried out, and the sought-after 
nominal trajectory has been obtained. Errors will exist in that nominal 
trajectory, both random and systematic. In what now follows we show 
how those errors can be further reduced by iteration. 

8.6 ITERATIVE DIFFERENTIAL-CORRECTION 

In the final section of Chapter 4 we examined the case of the nonlinear 
differential equation 

—
d

X(t) = F[X(0] 
	

(8.6.1) 
dt 

where F is a vector of nonlinear functions of the state-variables making up 
the vector X( t). We showed that if there are two trajectories, X (t) and TC(t), 
both satisfying (8.6.1), with 

X (t) = Tc(t) + apt) 
	

(8.6.2) 
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then if SX(t) is a vector of sufficiently small functions relative to those in 
X(t), that to first order 8X (t) satisfies the linear differential equation 

d
SX(t) 	AP7(t)]8X(t) 

dt 

The matrix A ETCq is defined by 

(8.6.3) 

(8.6.4) 

It then also follows that there is a matrix (I), known as the transition 
matrix, such that 

8X(t n  + C) = (I)(tn  + C, tn ;706X(t n ) 	 (8.6.5) 

We showed in Section 4.7 that 4:1)  satisfies the differential equation 

a — (Dv + c,t n ;)7) 	A[Tect + Cdo(ta  + c,t.;7) ac  

with initial conditions 

t 	I n 

(8.6.6) 

(8.6.7) 

[see e.g. (4.8.25)]. 
In a like manner, in the second section of Chapter 6, we considered the 

case of nonlinear observation schemes. Thus let X(t) be a trajectory giving 
rise, at t = tn , to a vector of observations Y n , where 

Y n  = G(X ) + Nn  n (8.6.8) 

and where G is nonlinear. Let X(t) be a trajectory which is clo'se to X (t), 
in the sense that 

43X (t) 	X(t) — -g(t) 	 (8.6.9) 
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has small elements. Define the simulated observations based on X n , by Yn , i.e. 

1.77, GN 

and let 

Y Yn 	n  - Yn  

Then, to first order, (8.6.8) gives rise to the linear relation 

8y. = m(x)6X. + Nn  

where the matrix M is defined by 

agi (X) 
[M(27n)]ii  -  ax  

X = (t) 

Finally, consider the truly linear cases, namely 

d X(t) = A(t)X(t) 
dt 

and 

Y n = M n Xn 

and as before, assume that 

X(t) = X(t) + 

where by assumption X(t) also satisfies (8.6.14). Then by (8.6.14) 

d
TC(t) + —

d
5X(t) = A(t)5C(t) + Mt) OX(t) 

dt 	dt 

and so we have, precisely 

—
d

(VW = A(t)8X(t) 
dt 

(8.6.10) 

(8.6.11) 

(8.6.12) 

(8.6.13) 

(8.6.14) 

(8.6.15) 

(8.6.16) 

(8.6 17) 

(8.6.18) 
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Likewise (8.6.15) gives, precisely 

SY = M n  8X. + N 
	

(8.6.19) 

where 8Y was defined in (8.6.1 . 1): Thus truly linear systems can be replaced, 
without errors, by equivalent systems involving the differential vectors 8X (t) 
and SY . • 

In summary then, the systems which we can expect to encounter can be 
replaced by entirely linear systems a) which are first-order approximations, if 
they replace nonlinear equations, and b) are exact, if they replace linear 
equations. The replacement systems are equations in the vectors of differ-
entials, 8X (t) and SY., rather than in the entire quantities, X (t) and Y. 

Since it was shown in Section 8.5 that a nominal trajectory TC(t) can in 
fact be found, we are thus able to carry out any of the linearizations 
described above, and to set up the entirely linear system of equations in 
the vector differentials, 

—
d 

8X (t) = AP7 &X (t) 
dt (8.6.20) 

SY = mNsxr, +: N 

In order to estimate the true trajectory X (t), we now need only estimate the 
perturbation vector 8X (t), and we can then compute X (t) by simple addition, 
using 

X(t) = X(t) + SX(t) 	 (8.6.21) 

Now, (8.6.20) is of precisely the same form as (8.2.1) and (8.2.2), and so 
we see that 8X(t) and hence X(t) can in fact be estimated, by applying the 
methods developed in Section 8.2. The precise sequence of steps which 
must be followed is now given. 

Fixed - Memory Minimum -Variance Differential -Correction 

Assume that a nominal trajectory state-vector. Tc n  has been obtained,t 
either by the method outlined in Section 8.5, or some other means. Assume 
also that the differential equation of the model is 

f The vector kc ,r, is a nominal trajectory state-vector valid at some instant inside the interval 
to  - L  < t < tri , rather than at the leading edge, in order to keep the systematic errors down. One 
convenient point is the average of the instants to  _ L  - L  + 1, • , to - 1 , to  in the current obser-
vation window, which we designate as t 
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—d X (t) = F[X(t)] 
	

(8.6.22) 
dt 

For definiteness consider the case where X is a 3-vector. Then (8.6.22) will 
be 

—d x o(t) = fo [xo(t), x i (t), x 2 (t)] 
dt 

d 

- 

x 1 (t) = fl [xo(t), x i (t), x 2 (t)] 
dt 

dt x
2 (t) = /2  [x0(t), xi (t), x 2 (t)] 

(8.6.23) 

Also assume that the observation vectors are related to the true state-vector 
by 

Y n-k = G(Xn-k ) N n - k 
	0 < k < L 	 (8.6.24) 

For definiteness let Y be a 2-vector, i.e. 

(3,0)n  = go  Po (t.), x i (t.), x2 (tn)] 
	

(8.6.25) 

(3, 1) = g1  Fo(t.), x i (t.), X 2 (t 

(I) Differentiate each of the above functions with respect to each of 
the independent variables, and set up the following matrices, in functional 
form: 

i (x) 
[A(4,, -  	 (8.6.26) 

aX 

agi (X) 
[M (X)],. - 	

ax. 
1 

(8.6.27) 

(II) Using a sufficiently accurate numerical integration scheme ;  with 
appropriately chosen time intervals, obtain the nominal trajectory state-vector, 
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)7(0, for each of the observation instants to  _ L  , 	, tn . Do this by inte- 
grating the true process differential equations both forwards and backwards, 
using as initial conditions the nominal trajectory state-vector X cn . 

(III) Evaluate the matrix M (X) of (8.6.27) at each of the observation 
instants tn  _ L  , 	, to  using the numerical values of the nominal trajectory 
Ye(t), as obtained from. II above. 

(IV) Integrate the :  differential equations of the transition matrix, start-
ing from t = tnn  and working both forwards and backwards to each end of 
the observation interval. Thus, integrate (over 0 C 5_ to  — t n,n  and 
0 > C> tn-L — t c,n ) the matrix differential equation 

(I) n  + C, t n,n ; 	= Arat, + Cd4:1)(t. ,n  + C, t nn ; 50 	(8.6.28) ac 	c , 

using as initial conditions 

t c,n ;TC) = 	 (8.6.29) 
c,n 

The matrix A[X (t c,n 	is obtained by evaluating the function-matrix 

A (X) of (8.6.26), using the numerical values of the trajectory X(t) obtained 
from II above. 

(V) Evaluate the simulated observation vectors at each of the observa-
tion instants, i.e. compute the vectors 

G [Ye (t nd 
Y i,_, 	GP(tn _ i )J  (8.6.30) 

G X (t n  _ L d Vn - L 

where Tat n) . . . X (tn - L ) are obtained in II above and G is defined in (8.6.24). 
We call the above vector GV c,n). 

(VI) Assume that the actual observation vectors are 

Yn - L Y n - L +1' 	 Yn 

Compute 
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a 	Y Yn 	n — n 

n - 1
=

n - 1 
—

n - 1 

• 

SY 	Y 	— 7 n-L 	n - L 	•n-L 

(8.6.31) 

Then by (8.6.12), 

SY n = M n 	+ Nn 

SYn -1 = Mn-l an -1 + N n - 1 
	 (8.6.32) 

BYn-L = Mn -L SX n -L + Nn-L 

where the matrices Mn , 	M n - L were obtained in III above. Using the 
transition matrices obtained in N above, (8.6.32) can be written 

SYn = M n 4qt t n,n ; X a + Nn
c,n 

SYn - 1 = Mn _ 1 0(t n  _ t n,n ;Ye)ax, + Nn - 1 (8.6.33) 

= M n - L 4:114 (tn - L It c,n ; 	6X c,n. + N n - L 6Yn - L 

We write this as 

.6Y (n) = T c,n  8X c,n  + N (n) 

in which we have defined 

(8.6.34) 

M n 4qt n , t c,n ; 

T c,n 

(I) (t - 1 	n -  , t cn ; Te) 
(8.6.35) 

( tn - L '. t  c,n ;  



310 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

(VII) Compute the matrix T.. defined by (8.6.35) above. 
(VIII) Given that the covariance matrix of the vector N (n)  is R oo, then to 

first order, the minimum-variance estimate of 8X .„ of (8.6.34), is 

ax* 	w c,n 	n  BY (n)  

where 

w 

(

T T R-1 T r TT R-1 
c,n . (n) c,n c,n (n) 

and, to second order, the covariance matrix of 64, is 

s* 	(TT R-1 T yi  
c,n 	c,n (n) c,n 

(IX) Compute the estimate of X(t) at t = t cn , from 

x — c,n ax* c, n 	 c,n 

Combining this with (8.6.36) thus gives us 

(8.6.36) 

(8.6.37) 

(8.6.38) 

(8.6.39) 

X*  = X c,n 	c,n (TTc,,, R (n)T c,ny l  T Tc,R (;') [11 (n)  — G c, n 	(8.6.40) 

in which G(X..) is the vector shown in (8.6.30). The covariance matrix of 
X c n  is the same as the covariance matrix of ax* c n . Thus to second order the ,, 

covariance matrix of the estimate X* n 	n is s* computed in VIII above. 

The above method was based on the linearization procedures applied to 
the nonlinear functions F (X) and G (X) in the process and observation 
equations. Only first order terms of the Taylor's expansions were retained, 
and it was assumed that the differential vector 8X (t) was made up of ele-
ments small enough so that the higher order Taylor's expansion terms could 
be neglected. If Yew is in fact close enough to X (t), then the method will be 
found to operate successfully, and X: ,n  of (8.6.40) will be a better estimate 
of X (t c,n) than )7 cn was. We will in fact have reduced the systematic errors 
in the estimate. The key to success thus hinges on ensuring that X (t) is 
close enough to X (t), so that the higher order terms in the Taylor expansions 
can, in fact, be neglected. If not, X:,  will be a worse estimate of X (t cn) 
than Xcn  was, and so X c n  must be estimated as carefully as possible to ensure 
success. Assuming that X*., is an improvement of X we then proceed 
to iterate on the same set of observations. 
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Prior to discussing that iteration procedure, we point out that we could 
also perform least-squares differential correction if we so choose.t The 
only change in the above scheme would be steps VIII and IX where we 
would omit the matrix R 1  )* 

8.7 ITERATION PROCEDURE 

The basic differential-correction scheme has been outlined in the preced-
ing two sections. Starting from an initial estimate Ye ,, we obtained an 
improved estimate ecm . The thought now immediately occurs to us — why 
not next use X* n  as the initial estimate in place of X cn' repeat the differ-
ential-correction procedure using the same observations and obtain a further 
improvement, and so on? Specifically we do the following (refer to Figure 
8.1). 

Iteration Procedure (Differential-Correction) 

(I) Obtain 3?, (see Section 8.5). 
(II) Using the method of differential-correction as outlined in Section 

8.6, improve X.. thereby _obtaining 
(III) Now use X as the nominal trajectory in place of ;;., i.e. set 

n X* into X cn and return to step II above. Repeat the differential-correction c,  

process using the same set of observations to obtain a further improvement. 
We thus iterate the following algorithm [c/f (8.6.40)] 

(

C* 	 (k*  c,n„ 1 	c,n r 

 + [7*  (g.c,n) T  R (-n1)  T n,n)] 

   

- 1 

(g.  c,n)T R 	(n) 	G  (5-Cc,n)1 Xc,n = (x*.n), 
(8.7.1) 

   

in which T is shown to be a firr—tion of X.,. 
(IV) Iterate 	AR time permits, or include a test -4, terminate the 

process, e.g. 

Rec,n1 + 1  — (C *c,n1] Rec,n),  — (4 ,n)j < ? 

where E is an appropriately small positive quantity, and r is the iteration 
count-number. 

f Subject to the comments of Section 6.8 (see p. 200). 



Obtain nominal 

trajectory state-vector 

x c,-n 

	)0. 

312 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

Start 	I 

Y (n) 

Y(n) 
Use differential- 

correction to improve 

X c,n, obtaining X co  

)  No ). 

Yes 
Is II X*  — X 	< c,n 	c,n X = X*  

c,n 	c,n 

Halt 

Fig. 8.1 Flowchart for iterative differential-correction procedure. 



GENERALIZED FIXED-MEMORY FILTERING 	313 

The rationale behind the iteration procedure is that each member of the 
sequence of estimates 

ic,n 7  (x )i' x*c,n 2' • ' • / x*c,n , 

should be a better estimate than its predecessor. This will be true if the 
initial vector Y c n  is close enough to the truth. Thereafter the errors arising 
out of neglecting terms of order higher than the first in the linearization 
process, become rapidly smaller and smaller. The linearization procedure 
thus becomes more and more error-free with each cycle of the iteration, and, 
as time proceeds, the equations (8.6.20) on which we are estimating OX (t), 
become closer and closer to being exact. In the limit, the vector aX (t) tends 
to the null vector (in theory at any rate), and so the differential-correction 
added to cn , after each pass, eventually disappears. 

Of course the limiting value of the estimate (X*41 after an arbitrarily 
large number of iteration cycles, will not be exactly X (t c). This is so 

because we have only a finite number of observations on which that limiting 
value depends, and those observations contain observational errors. However 
that limiting value will certainly be the best that this particular set of obser-
vations can give. The iteration scheme serves to reduce the systematic 
errors as far as possible (but not to zero), and we are left with predominantly 
random errors in the estimate. Their covariance matrix is computed from 
(8.6.38) when the iteration scheme is terminated. 

The reader might well 'wonder if the limiting value 'of (X ) from the c op  
iteration scheme forms an unbiased estimate of X(tc,n)  if N (n) is a vector of 
zero-mean errors, i.e. we might ask whether 

Ef( can), " n)} = 
	 (8.7.2) 

The answer is unfortunately negative, and this is so because the process 
whereby 	 n  (X* )cc,  was obtained is nonlinearly related to the starting value Ye c,n c  

and so the errors in the limiting value (X* 11  ) are nonlinearly related to N co  

The limiting value (X* n) thus may not form an unbiased estimate of X (t cn) 

even though the observation errors N (n)  have zero mean. 
However, this is really of no consequence. From a practical standpoint, 

iterative differential-correction can be made to give good estimates and that 
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is all that matters. The method was. introduced by Gauss, more or less in the 
above form in 1795; he limited himself to uncorrelated errors, which is the 
case most frequently encountered in practice. The procedure is still in use 
today in almost any situation where estimation is being performed on a 
nonlinear process, or where the observations are nonlinearly related to the 
state or both. 

In Section 11.4 we discuss in detail what vector the iterative differential-
correction procedure converges to, assuming that convergence occurs. Not 
unexpectedly we will see that it is the nonlinear counterpart of the weighted 
least-squares criterion [see (6.9.5)] which is minimized. 

The scheme depicted in the flowchart on p. 312 shows how an estimate 
X*„. is obtained by iterative differential-correction on the data base given 
by Y(.) . That estimate defines a trajectory when considered as initial con-
ditions for the model differential equation. Hence, if at a later time a new 
observation vector, say Y(. + 1), is obtained, then the previous estimate, 
namely x*„. , can serve as the basis of a new nominal trajectory. From 
X* and Y in  + 1) we would then obtain a .new estimate X* and so on. con 	 c,n + 1 

8.8 COMMENTS ON COMPUTATIONAL PROBLEMS 

The Generalized Fixed-Memory Filters discussed in the preceding sections 
depend essentially on the equation 

= (7-  T R-1 T )7 1. T R 1 
n,n 	n 	(n) n 	n 	(n) (n) 

(8.8.1) 

We now consider some of the problems involved in actually carrying out this 
computation. 

As a start, it is necessary that we invert the matrix R (n)  . By assumption the 
observation errors are linearly independent, and so R an)  is positive definite. 
If it is a diagonal matrix, then inverting it is a trivial problem; we need 
merely find the reciprocals of each of those diagonal elements. However 
when R (n) is not diagonal, then recognizing that it might be a matrix of 
large order, its inversion ceases to be completely trivial. While extensive 
work has been done on the problem of numerical errors in matrix inversion 
we nevertheless make a few elementary comments here.t 

Inversion of positive definite matrices of large order is possible either by 
iterative methods or else by Gaussian elimination (see Ex. 5.11), and the 

tFor .  a detailed analysis of the problem of numerical inversion of matrices the reader is referred to 
[8.2] which is only one possible source in a very extensive literature. 



GENERALIZED FIXED-MEMORY FILTERING 	315 

amount of computation involved in most cases in practice, barring unexpected 
problems due to the matrix being nearly singular, is within reason on modern 
computing equipment. Of course in extreme cases the smoothing scheme 
under consideration may no longer be usable in real-time, but this would have 
to be determined on the basis of the details of the situation. The success of 
either the Gaussian-elimination or the iterative methods depends on the 
conditioning of the matrix, a concept which we now examine briefly. 

Consider the effect which finite-length arithmetic calculations can have on 
matrix inversion when the matrix is nearly singular. Thus, suppose that we 
form the sum 

s = 1 + 6 	 (8.8.2) 

on a computer which has 6 decimal digits in its arithmetic capability. If E 

is less than .00001, say .000008, then the computer simply ignores it, and 
instead of obtaining the correct sum, namely. 1.000008, we obtain instead 
1.00000. In a less severe case, assume that 6 is .000015. Then instead of 
obtaining 1.000015, we obtain 1.00001. Although. the - machine has in 

. ( 0 0005  
effect caused a 33-1/3% relative change in 6 i.e.,Le' 000015 , the relative 

( error in the sum is very small, being only about 5 parts in 10 6  i.e. •000005  •, 1.000015) 
At first sight this does not seem to' be at all serious. 

Suppose, however, that the term s. a-  1 + E is actually an element in a 
nearly singular matrix, e.g. 

A = (8.8.3) 

and suppose that A is to be inverted. Algebraically we have 

= 
1  ( 1 -1 

s - 1 -1 
(8.8.4) 

If there are no errors in s, then the matrix A -1  is obtained without errors. 
Thus if E = .000015 and there is no truncation in the formation of s, we 
obtain the correct inverse, namely 
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= 	
\ 

(1 1.000015 

1 	— 1 

0.000015 

( 6.66 — 6.66 

\-6.66 	6.66 
= 10 4  

(8.8.5) 

However if E was first truncated to .00001 in the formation of s, then we 
obtain 

A' = 

	

( - 1 

	—1 

	

 1 	1.00001 

0.00001 	 (8.8.6) 

( 10 	-10 
104  

-10 	10 

We now see that the 5 parts in 106  truncation error in s, which we thought 
was completely insignificant, shows up as a 50% error in the entire matrix 

What we have attempted to do was to show, by a . rather trivial example, 
how the errors of a finite-precision arithmetic computation can show up in 
the inversion of nearly singular matrices. The trouble can of course be 
cured by extending the precision of the arithmetic, but this is usually time-
consuming and we do not wish to do it unless it is really warranted. We now 
discuss one possible test which can be applied to a matrix to suggest, ahead 
of time, if numerical troubles should be anticipated during its inversion. 

Suppose that the matrix R, which is assumed to be positive-definite, is to 
be inverted. As a first step we form the diagonal matrix P comprised of the 
diagonal elements of R. The latter are all positive, and so their square roots 
are real. We are thus also able to form the real matrix P" 1/ 2  whose i, j th  
term is 

[p- 1/2] _ 	8 .  (8.8.7) ij 	([R]i y/2 xj 

We then form the product 

p - 1/2Rp-1/2 
	

(8.8.8) 
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and it is easily seen (see Ex. 8.14) that R' is positive definite with ones on 

its diagonal. Moreover it can be proved that the determinant of f?' lies 
between zero and one. This is done by the use of Lagrange's method of 
Undetermined Multipliers in Ex. 8.16, and as is also shown in that example, 
when 

deti?" = 1 	 (8.8.9) 

then R is a diagonal matrix and so it is perfectly conditioned for inversion. 
Also, when 

det R" = 0 	 (8.8.10) 

then R is singular and cannot be inverted. Thus the value of det le gives us 
an indication of how well R is conditioned for inversion, the closer to 
unity det R' is, the more easy the inversion of R will be; the closer to zero, 
the more trouble we can expect with round-off errors due to the finite 
word-length of the arithmetic. 

Our remarks have of necessity been extremely superficial.t The intent, 
however, was to alert the reader to the possibility of troubles and it is to be 
assumed that he will make it his business to ensure that the inversion of R 
(or any other matrix for that matter) is satisfactorily carried. out, making 
recourse as necessary to the large body of knowledge in existence relative to 
this problem. Without further ado, we now assume that R has been satis-
factorily inverted and that the product of R and the computed been 
obtained, and is equal to the identity matrix to within acceptable errors. 
We now turn our attention to possible further sources of trouble. 

The matrix T T will be positive definite if R -1  is positive definite and 
if T has full column rank (see Ex. 6.4). The question that we now address 
ourselves to is the rank of T. 

In theory, if the observation scheme gives us 

Y = TX+N 	 (8.8.11) 

then we saw in Chapter 6 that T must have full column-rank if we hope to 
estimate all of the elements of X. Suppose, for definiteness that X is a 6-
vector and Y a 30-vector. Then T will be 6 x 30. 

Consider first the question of the length of the observation interval. Thus 
suppose that the 30 observations in the above Y are all made on the same 

tThe reader is also referred to comments on ill-conditioned systems in [8.3, p. 100] and to Ex. 
8.17 and 8.18. 
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quantity in the process X(t), and are made within a span of time, designated 
At seconds. The matrix T relates all of those observations to the state-
vector at time to  , i.e. 

where T29  . . . To  are the rows of T. 
Now it is quite obvious that if At is reduced, the differences in the row-

vectors of T will become smaller, and a stage will be reached where, even 
with infinite precision arithmetic, the full-rank of T begins to become 
marginal. In practice we of course have only finite precision and so the prob-
lem is further aggravated, for now as the differences in the rows of T diminish, 
the precision of the arithmetic becomes insufficient to keep track of those 
small differences. Truncation will then cause those rows to start becoming 
batched into groups of identical rows, and this of course will lead to 
appreciable errors in forming (TT R -1  Tr 1 . Eventually as At continues to be 
reduced, the matrix T will cease to have full rank, there being not enough 
distinct rows remaining to form a nonzero 6 x 6 determinant. The com-
putational errors in inverting (TT R -1  T) -' now give way to outright impossi-
bility in obtaining the inverse. Thus by taking the observations over too 
small a time span At, we can invariably expect trouble. 

Of course, we now ask, "How small is a small value of At ?" Obviously 
the answer depends on the process under observation. From a heuristic 
standpoint however, it is clear that unless we can space our observations 
far enough apart in time so that the process has changed by a meaningful 
amount between the first and the last of those observations, then we really 
must admit that we have not gathered data on all of the state variables in an 
adequate way. 

We recall that in the above discussion we assumed that all of the observa-
tions were on the same quantity. This led to a similarity in all of the rows of 
T. It is now obvious that the situation will be drastically improved if we use 
mixed observations whenever possible,f since this will have the immediate 

e.g., instead of observing only range, say, we observe range, azimuth and elevation. 



GENERALIZED FIXED-MEMORY FILTERING 	319 

effect of introducing basic differences into the rows of T. We see that with, 
say three different types of observations, there are then three essentially 
different types of rows in T, and so T has at least rank 3. This will be true 
regardless of how close the observations are spaced. 

In summary then, observations should be well spaced, and should be made 
on as many independent quantities as possible in order to ensure that the 
full rank of T is strong and not weak. Only then will we be able to carry out 
the estimation satisfactorily. 

Next we examine the question of what is commonly termed unfavorable 
geometry. Consider the sitt:Stion depicted in Figure 8.2 in which a body is 
moving according to some law along the x-axis. Observations are being 
made from point A on the y-axis and the intention is to determine the 
state of the system, i.e. position, velocity, etc., of the body. Suppose first 
that we make only range-measurements, and assume that, for some reason 
beyond our control, we were forced to locate A at some distance up the 
y-axis. Then we see that as the body passes through the origin, the range-
measurements (p) will change very little with time. Hence the situation will 
not be perceptibly different than if the body were completely stationary. 
When the body is close to the origin then, making only range-measurements 
will give very poor estimates of position, velocity, acceleration, etc., and we 
say that the geometry is very unfavorable for range-measurements in that 

Fig. 8.2 Geometrical consideration& 
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region. As the body leaves the origin and moves further along the x -axis, the 
range-geometry consistently improves. 

Suppose on the other hand we were measuring only the azimuth angle IA. 

(See Figure 8.2.) Clearly if we were now forced to locate A close to the 
x-axis, the azimuth measurements would be less valuable when the body is 
far from the origin and would be of most value when it is passing through it. 

The above two cases demonstrate how the geometry of a process can 
influence the value of some of the measurements and can make them 
almost worthless under certain circumstances. Note that the geometry we 
considered above took place in a simple two-dimensional space defined by 
the x and y axes. However spaces can be considerably more complicated in 
practice, being the hyper-spaces in which the state-vectors of the processes 
are defined. These involve variables which are not normally thought of as 
forming spaces, e.g. velocity, temperature, mass, etc., as well as the values of 
any parameters which we are attempting to estimate. The question of 
unfavorable geometry is thus seen to be nontrivial in these more complex 
situations and becomes much more difficult to envisage and hence to analyze. 

The course of action needed to minimize the deleterious effects of poor 
geometry is clearly to make as many "orthogonal" measurements as possible. 
In the above example, if we were simultaneously to measure both range and 
azimuth, then we see that in the very region where the geometry becomes 
bad for the one, it is best for the other. 

In constructing an observation scheme we must thus bear in mind that 
unfavorable geometry can and will arise in individual measurements. Thus 
redundancy of types of measurements must be provided in order, to ensure 
that all of the measurements are never confronted by poor geometry at one 
and the same time. 

We now close this chapter with a brief analysis of a fundamental relation-
ship between M and (1) which ensures satisfactory operation of the filter. 

8.9 RELATIONSHIP BETWEEN M AND (I) 

In constructing an observation scheme the approach which is usually 
adopted is to observe as many different quantities as possible. Intuitively 
this is obviously the best course, and in the discussion given in the preceding 
section we attempted to show why this is the case. We now turn our atten-
tion to a brief study of the following strongly related question: Given the 
model on which the filter is based, i.e. given the form of the differential 
equation, what are the constraints on the choice of the matrix M for 
satisfactory operation of the filter? 
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We recall that the least-squares estimate is given by 

X* ,n = 	rIT  T nr TnT  Y (n) n 

and the minimum-variance estimate by 

,n 	
(TnT R - 1 T 

n  )
-1  TnT T R-1 y 

 (n) (n) 

(8.9.1) 

(8.9.2) 

These estimates exist if, respectively, T nT  Tn  and T nT fi';21)  Tn  are nonsingular, 
and in Ex. 6.4 we saw that this is true in both cases, if and only if Tn  has full 
column-rank. Our investigation in this section is accordingly directed 
towards developing the necessary and sufficient constraints on M, given (1), 
so that Tn  does have full column-rank.t 

When we use the term full column-rank, what we mean is that the columns 
of Tn are linearly independent. Thus, letting U be a non-null vector, if Tn 
has full column-rank then this means that for any such U, 

Tn 	0 
	

(8.9.3) 

We shall restrict our discussion to the case 1) where the observation matrix 
M does not vary with time, and 2) where the differential equation of the 
model is constant coefficient linear. Then [see e.g. (8.2.4)] , 

T 

    

(8.9.4) 

    

      

\M(1)(—L)/ 

We now prove the following very useful result. 
Let A be the matrix appearing in (4.6.27). Then: 

Theorem 8.1 

The matrix T of. (8.9.4) achieves full column-rank for L sufficiently large 
if and only if the matrix 

The question is closely related to the concept of observability which appears in the Control Theory 
literature (see e.g. [8.4] ). 
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MA °

\ MA 
G ----- --- 

( 

MA' 

(8.9.5) 

has full column-rank, where i + 1 is the degree of the minimal polynomialt 
of A. 

Proof 

By (4.6.27) we have 

c(k) = exp (kA) 
co 

= I  ki Aj  

i=o i! 

(8.9.6) 

But as is pointed out in [8.5, p. 609] , this infinite series in powers of A 
collapses into a finite series in terms up to A', i.e. there exist coefficients 
a . (k) such that (8.9.6) can be written 

ck) 	I a j (k) Ai 
j=o 

From this it follows that (8.9.4) becomes 

i 

I a .(0)Mili 
j = 0 

T = 

—a .( L)MAI 
j = 0 

tSee [8.6] for a defmition of minimal polynomial. 

(8.9.7) 

(8.9.8) 



Suppose for simplicity that i = 

a o (0)1 	al (0)1 
	r- 
ao  (-1)1 	(-1)1 

	

T'= 	
•  	

•  

( 	
4- 

a ° (—L)1 	a l (—L)1 I 
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1. 	Then (8.9.8) can be written as 

MA ° 

 MA' 

323 

(8.9.9) 

Call the first matrix on the right J and the second K. We thus write (8.9.9) 
as 

T 	JK 
	

(8.9.10) 

which means that 

T T T  = K T JT JK 	 (8.9.11) 

Now, it is also shown in [8.5, p. 609] that the numbers a o(k) and a i (k) 
are linearly independent for k in any interval of nonzero length, and so it 
follows that the matrix J above has full column-rank for L sufficiently 
large. Hence J T  J is positive definite. This then means (see Ex. 5.7) that 
TT T is positive definite if and only if K has full column-rank. Finally then 
T has full column-rank if and only if K has full column-rank. This completes 
the proof. 

The above theorem is very useful in that it provides us with a readily 
implemented test to establish whether or not the observation scheme and 
the model are properly matched so that a successful estimation algorithm 
can be set up. 

Example 1 

Suppose that M = (1, 0, 0) and 

1 

A = 	0 . (8.9.12) 

0 
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Then G of (8.9.5) becomes 

/1 0 0\ c G . 0 1 0 

0 0 li 

(8.9.13) 

which clearly has full rank. (In this case i = 2 .) This implies that T of 
(8.9.4) will have full column-rank if L is large enough. 

In fact, from (8.9.12) and (4.6.28), 

k 2 /2\ 

(I)(k) = 	1 	k 	 (8.9.14) 

and so 

T 
(8.9.15) 

\1 -L L 2 /2 

which has full column-rank for L 2. 

Example 2 

As an example where M and A are not properly matched, take M = (0, 1, 0) 
and A as in (8.9.12). Then the reader can verify that in this case 

/0 	1 0\ 

G = 0 0 1 

\O 0 0/ 

(8.9.16) 
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which only has rank 2, implying that T cannot attain full column-rank. In 
fact, for this M and (1)(k) of (8.9.14), we obtain 

(8.9.17) 

1 	0 

0 1 —1 
T 

■0 

whose rank never exceeds 2, regardless of how large we take L to be. 
We now state an alternate set of necessary and sufficient conditions rela-

ting M and the model, so that T will have full column-rank for L large 
enough. 

Theorem 8.2 

The matrix T will attain full column-rank for L large enough if and only 
if M does not annihilate any of the eigenvectors of (1). The proof is quite 
straightforward but is unfortunately too lengthy to be included here. We 
accordingly sketch out a proof in Examples 8.19 through 8.21. 

Since both theorems in this section state necessary and sufficient condi-
tions for the same result, it follows that those conditions are equivalent and 
can be used interchangeably. 

We conclude this chapter with two simple examples demonstrating 
Theorem 8.2. 

Example 3 

Let 4:1)(k) be as given in (8.9.14). Then (1) has a single eigenvector, namely 

(8.9.18) 

where a is nonzero but otherwise arbitrary. Assuming that M = (1, 0, 0) we 
see that 

MV = a 	0 	 (8.9.19) 
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which means, by Theorem 8.2, that T should attain full column rank. This 
is in fact the case, as we saw in (8.9.15). 

In the event that M = (0, 1. 0) then 

MV = 0 	 (8.9.20) 

and again, by Theorem 8.2, we expect T to have less than full rank. This is 
the case as we saw in (8.9.17). 

Example 4 

Let 

(

cos cok 
(I)(k) = 

—co sin cok 

—1  sm.  cok) 

cos wiz 

(8.9.21) 

This is the transition matrix associated with the systemt 

2 

x(t) = —(0 2  x(t) 
dt2  

I(k) has two eigenvaluest namely e1  and e-j'', and in general 
The matrix CI has two eigenvectors, namely 

1 	 1 
Vo  = a 0( . . 	V i  = a l ( 

ico 	 — jci 

(8.9.22) 

(8.9.23) 

Thus if we take either M = (1, 0) or M = (0, 1), then both MV 0  0 and 
MV 1  0 and so, by Theorem 8.2, T will have full column-rank. This 
means that it is sufficient if we observe either one of the state variables. 

In the case where co is a multiple of Tr however, then both eigenvalues of 
(13,  become equal and, as is easily verified, every nontrivial 2-vector is now an 
eigenvector. By the statement of Theorem 8.2, we then require that M shall 
not annihilate any vector in the entire 2-space, and so this means that M 
must have rank 2. Thus for example 

tSee Ex. 8.2 and Ex. 8.22. 
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M = 
( 1-o 

0 

1 

(8.9.24) 

will be satisfactory to ensure that T attain full column-rank. 
In closing we point out that precisely the conditions of Theorem 8.2 (and 

hence by implication Theorem 8.1) also ensure that the estimate covariance 
matrix Sn goes to a null matrix as L is increased without bound. This will 
be proved in Chapter 14. The reader is referred to Examples 8.22 through 
8.27 where we consider further applications of Theorems 8.1 and 8.2. 

This concludes our brief discussion. We have only examined the case 
where M and A are constant matrices but the time-varying cases are sub-
stantially more difficult and beyond the space limitations of the present 
work. We now leave the topic of Fixed-Memory Filters and turn to a dis-
cussion of the Expanding-Memory schemes. 

EXERCISES 

8.1 A sinusoidal process (period T) is observed and the sequence of scalar 
observations 

Y (n) = (Y 	Yn -1' • • •' Yn - L )T  

is obtained. The inter-sample spacing is not necessarily constant. We 
wish to fit the function 

f(t) = a0  Coscot + a 1  silica 	 (I) 

to the data, in a least-squares sense, where a) a- 277/T is known. 
a) Set up the least-squares error criterion 

L 

 [Y
en = 	n k 	

f (tn - k — tn )J 2 

Ir=0 

and minimize it over « 0  and a 1 . Hence set up a linear algorithm 
for a o  and « 1  in terms of the observations. 

b) Set up the linear algorithm which gives the updated estimate of the 
process and its first derivative in terms of the data. 
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8.2 a) Verify that the differential equation 

—d2 x(t) = —0 2  x(t) 
dt 2  

(I) 

has as its transition relation 

(x(t n  + C) 	coscoC 	—1  Sinco)(X(t. ) 
co 

i(t + C) 	—to sin WC 	coscoC 	t(tn ) 

where x(t n) = ao  cos can  + a 1  sincotn . 

b) Assume that we observe x(t) at times tn, to _ 1, • , to - L  (not 
necessarily equidistant), thereby obtaining the sequence of numbers 

Y in) 	(Yn' yn - 1' 	' ' Yn - L )  T  

Set up the matrix T n  such that 

Y (n) = Tn X (t n) + N (n) 

c) Now set up the least-squares algorithm 

X*  n,n W Y 
n (n) 

based on (II) above. 
d) Reconcile (III) with part b) of Ex. 8.1. 

8.3 Repeat Ex. 8.1, but 
a) Assume that the covariance matrix of Y (n) namely R(n), is given, 

and obtain the minimum-variance algorithms for the quantities 
f and f. [R (n)  diagonal.] 

b) Can a) above be carried out for Ex. 8.1 if R (n, is not diagonal? 
8.4 a) Repeat Ex. 8.2 assuming that R an) , the covariance matrix of Y (n) , 

is given. [R (n)  diagonal.] Obtain the minimum-variance estimator 
for X(t n) and reconcile the resulting algorithm with that of Ex. 
8.3, part a). 

b) Extend the above to the case where R (n)  is not diagonal. 
8.5 a) Write a computer program which generates a sinusoidal signal plus 

random errors whose standard deviation is about 1% of the peak 
value of the sine wave. 
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b) Obtain a sequence of 30 unequally spaced observations, 1  recording 
both their values and sampling times. 

c) Program and run the filtering algorithms obtained in the preceding 
four examples and estimate the state-vector of the true process. 

d) Predict forward using the appropriate transition matrix (see Ex. 
8.2 part a) and compute the prediction errors. 

8.6 a) Repeat Ex. 8.5, but use instead, a quadratic Fixed-Memory 
Polynomial Filter to estimate x(t) and i(t). Use a memory length 
equal to about 1/4 period of the sine wave and about 30 observa-
tions. 

b) Compare the polynomial estimate state-vector with. .that obtained 
in Ex. 8.5. 

c) Predict forward using the polynomial transition matrix and com-
pute the prediction errors. Compare these with the errors obtained 
in Ex. 8.5 part d). Observe that using a sinusoidal model rather 
than a polynomial one enables us to predict much more effectively. 

d) Now apply trend removal to the data being fed to the filter (see 
Section 7.14). (Make use of the fact that the differential 
equation of the true process is given in (I) of Ex. 8.2.) 

8.7 Assume that we are observing a sinusoidal process whose angular 
frequency, co, is an unknown constant. 
a) Verify that the state-equation is 

d 

dt 

/ x(t)\ 	/ i(t) 

(t) 1  = 	-(0 2  x(t) 

\ (t)/ 	0 
(I) 

b) Assuming that we fit a quadratic polynomial to the data, using a 
Fixed-Memory (least-squares) Polynomial Filter, show how the 
elements of that polynomial state-vector can be used to give an 
estimate of the state-vector X(t) of (I). 

c) Using the program of Ex. 8.6, carry out b) above on a computer 
and obtain a nominal trajectory X (t). 

8.8 Assume that 

d2  — x(t) = -[z(t)] 2  
dt2  

(I) 

f About 120 observations per sine-wave period. 
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a) Show how a least-squares polynomial estimate can be used to 
obtain a nominal trajectory. 

b) Using a computer, generate a sequence of observations using (I) 
plus a noise generator. 

c) Fit a quadratic polynomial with the aid of a Fixed-Memory 
Polynomial Filter. 

d) Make predictions by using the polynomial directly and then by 
first obtaining a nominal trajectory based on that polynomial, 
followed by integration of (I) above. Observe how much better 
the latter approach is. 

8.9 a) Assume that 

d2 
x (t) = — k ()CU)] 2 	(k > 0) 

dt2  

where k is unknown, but constant. Show that a quadratic least-
squares polynomial estimate can serve as the basis of a nominal 
trajectory for the state-vector 

b) If k were a function satisfying 

—
d

k(t) = cok(t) 
	

co >.0 
dt 

where co is known, verify that a quadratic polynomial can still be 
used to form a nominal trajectory. What must we do if. (0 is an 
unknown constant? 

8.10 a) Carry out part b) of Ex. 8.9 above using a computer to generate 
noise free data from 

d2  
X(t) = -k[i(t)] 2  

d t2  

—
d 

k(t) = wk(t) 
	

co > 0, constant but unknown) 
dt 

Obtain a cubic polynomial estimate on the data. 
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b) Make predictions using the cubic polynomial obtained in a) above. 
c) Make predictions using the nominal trajectory obtained from the 

polynomial in a) above. Note the improvement over b). 
d) Add random errors to the data and repeat a), b) and c) above. 

8.11 Program and run (on a computer) a complete iterative differential-
correction algorithm for the system of Ex. 8.8. Generate first noise-free 
and then noisy observations and obtain a nominal trajectory. Correct 
the latter by iterative differential-correction. Vary the amounts of 
noise added and the number of iteration cycles used. 

8.12 Repeat Ex. 8.11 but use the system of Ex. 8.9, part a). 
8.13 Verify that (8.5.6) is the inverse of (8.5.3). 
8.14 Verify that R' of (8.8.8) has ones on its diagonal. 
8.15 Starting from the eigenvalue equation 

AX = AX 

where A is a matrix, X a vector and A a scalar, verify that 

a) Tr(A) = 	A l  

i.e., the trace of A equals the sum of its eigenvalues. Also verify 
that 

b) Det(A) = fi Al 

i.e. the determinant of A equals the product of its eigenvalues. 
8.16 Considering the 3 x 3 positive definite matrix 

1 1 	r01 	r0 

R' = r01 	1 	r12 
\r02 	r12 	1/ 

we see by Ex. 8.15 that 

A l 	A. 3  = 3 	 (I) 
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i.e. the sum of the eigenvalues of fiv  equals 3. The determinant of Fe 
is positive. We are interested in finding out how large det R' can be 
subject to (I). By Ex. 8.15, 

det(R') = Al A 2  A 3 	 (II) 

and so the problem reduces to one of maximizing (II) subject to the 
constraint (I) above. 

Using Lagrange's method of undetermined multipliers (see e.g. 
p. 187) show that the above problem leads to the maximum values 

A2  = A3  = 1 

and hence that 

0 < det(R') 1 
	

(IV) 

In general then, if R' is positive definite with ones on the diagonal, 
we have proved that (IV) must hold. 

Verify that det(R') = 1 if and only if R' is an identity matrix. 
8.17 a) Test the conditioning of the matrix 

(5+a 	4+a 	3+2a\ 
A(a) = 4+a 	5+a 	3+2a 

3 + 2a 	3+2a 	2+ 4a1 

for the three cases a = 1, a = 0.1, a = 0.01, by the method dis-
cussed in Section 8.8. 

b) In each of the three cases, invert the matrix A (a) by Gaussian 
elimination (by desk calculator) using two-digit truncated precision. 
Multiply the "inverse" into the matrix A in each case and com-
pare the result to the identity matrix. 

8.18 a) Test the conditioning of the coefficient matrix of the linear 
algebraic system 

10000x + 20000y = 30000 

20000x + 39999y = 59999 



exp [6.1(y i) 1 
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b) Verify that the solutions are x = 1, y = 1. 
c) Making the very slight modification 

10000x + 20000y = 30000 

20000x + 39998y = 59999 

verify that the solution becomes x = 2, y = 1/2. Clearly then the 
solution is extremely sensitive to errors in the fifth place of 
significance, a consequence of the very poor conditioning of the 
system matrix. 

8.19 Given the model g(t) = AX(t), assume without loss of generality that A 
is in Jordan normal form, i.e. A is the direct sum of matrices J (y o), 

J(y 1 ), . . . , where each of the blocks J has the form 

7x 	
1  

J(yi) = 

Using CO = exp (CA) prove that (1)(C) is the direct sum of matrices of 
the form 

yi (I) 

  

  

where we have shown a 2 x 2 for definiteness and where A i  = exp (y i). 
8.20 Assume that (I)(C) is 5 x 5, consisting of the direct sum of a 3 x 3 and a 

2 x 2 matrix of the form shown in (II) of Ex. 8.19 above. Verify 
that (1) has only two eigenvectors, V. (1, 0, 0, 0, 0) T  and 
V3  r=.- 	

' 
(0, 0, 0, 1 1, 0) T . Show that the vectors V 1  E (0, 1, 0, : 0, 0) T  

 T and V 2  = (0, 0, 1, 0, 0) form a hierarchy with V., in the sense that 
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V o  = Ac1 1/ 0  

CC) V i  =A o^ (V 1 CV0 ) 

1  (1) (4. )17 2  = 	17  (2 + C17 1  + 4- 2  Vo) 

Verify that a similar hierarchy exists between V3  above and 
V4  a. (0, 0, 0, 0, 1) T . 

8.21 The matrix T of (8.9.4) has full column-rank if and only if for any 
vector U, TU A 0. 

a) Considering a typical block from T, namely MO (- k), and writing 
any vector U in the form 

u = V i 
i= 0 

where the V. were defined in Ex. 8.20, verify that 

[

M(1)(-k)U = A. 0-k  (u o  - ku 1  + 2  u) MV0  + (u 1  - ku2 )MV 1  + u2 MV 2 

 + Ai ' [(u3  - ku 4 ) MV 3  + u4  MV4] 

b) Infer first that if A. 0  Al  then MO (-k) U 0 if and only if MV 0  A 0 

and MV3  A 0 (except perhaps for a few values of k). Now infer that 
if A O = A l then M(1)(-1?)U A 0 if and only if M does not annihilate 
any linear combination of V o  and V3 . (Note that the latter is also 
an eigenvector of 1.) 

c) By comparing the above two results to the statement. of Theorem 
8.2, verify that the theorem is true. 

8.22 a) Verify that (8.9.21 .) is the transition matrix of (8.9.22). 
b) Verify that the eigenvalues of (8.9.21) are e 10' and e -j', and that 

the eigenvectors are as given in (8.9.23). 
c) Find a matrix M which annihilates V o  of (8.9.23), and hence 

verify that for this M the resultant T does not have full column-
rank. 
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d) From (8.9.22) find the matrix A for this system, and using the 
same M as in c) above, apply the test given by Theorem 8.1. 

8.23 For the transition matrix 

 

c 
1 	0 (I) (C) = 

  

verify both by the use of Theorem 8.2 as well as directly that 
a) M - (1, 0, 1) will not give a T with full column-rank, whereas 

( M- 1 0 1 
will give a T with full column-rank. 

1 0 0 
b) Verify that the A which gives rise to (I) above is 

/0 1 0\ 

A = 0 0 0 

\O 0 0/ 

Apply the test of Theorem -8.1 for both M's in a). 
c) Verify by the use of (8.9.4), that if in a) above we were to use 

instead the time-varying matrix Mn  (n, 0, 1) then T would have 
full column-rank. 

8.24 Investigate the class of observation matrices which must be used in 
conjunction with 

1 - 

41)(C) 

so that T has full column rank. 
8.25 a) Prove that 

C 

(I)(C ) 0 1 0 

  

C I 
is a transition matrix. 



Iy 

A = 

■ 

a n  + al t + a 2 t 2 /2\ ( 

X(t) = + a2 t 
	,fi t 

a2 

336 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

b) Verify that it ha.s eigenvalues all equal to unity. 
c) Verify that it has two linearly independent eigenvectors. Hence 

infer from Theorem 8.2 that for T to have full column-rank, M 
must have column-rank of two or more. 

d) Verify directly by the use of (8.9.4) that if M = (1, 0, -1) then T 
has column-rank 1, and that if M = (1, 0, 1) then T has column- 

( 0 1 
0 -1) 

rank 2. However if M = 	, then T will have column- 

rank rank 3, i.e. full column-rank. Does this agree with c) above? 
8.26 a) Consider the constant coefficient linear differential equation 

—d X(t) = AX(t) 
dt 

(I) 

Let the initial conditions be X(0) = (a n , a l , a 2 ) T  and assume 
that A has the form 

1 0 

y  1 

y 

Prove that 

where 	e7 . 

Infer that the solutions to (I) die out as t 	if and only if 
Rey < 0. Thus (I) is a stablet system if and only if A's eigen-
values are in the left half of the complex plane. 
Verify that the transition matrix for X (t) of (II) is 

to system is said to be stable if its natural modes (i.e. solutions to the homogeneous part of its 
differential equation) die out as t or n co. 
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C C 2 /2\ 

1 	C 

1 l 

 

and hence infer that this system is stable if and only. if I 's 
eigenvalues are within the unit circle. 

d) Verify that if all three of A's eigenvalues are distinct, i.e. A's 
Jordan form is 

Y 1  

Y2/ 

then (II) above becomes 

X(t) = a i  A i  

where A. 0 	, etc. Show also that (III) above becomes diagonal. 
8.27 a) Examine part d) of Ex. 8.26 above if y 0  = y i  = y2 . What re-

quirements must we place on M so that T has full column-rank in 
(8.9.4)? 

b) What forms do X and (I) assume if 'y o  = y i  = y2  = 0, i.e., A = 0? 
8.28 a) Generalize Ex. 8.26 to the case where A is initially not in Jordan 

normal form and has more than one Jordan block. Verify that 
with an appropriate extension, the same results hold concerning 
stability. 

8.29 a) Verify that if 

—d X(t) = AX(t) 
dt 

then X(t) is a polynomial state-vector if and only if all of A 's 
eigenvalues are zero. 
Hint: See Ex. 8.26 part a). 

( ao Aot\ 

t  

a 2 A2 ti 
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b) Infer that 

X(t n + C) = CC)X(t ) 

is a polynomial transition relation, if and only if all of (1:1's eigen-
values equal unity. 

8.30 a) Let 

X(t. + C = (l)(C)X(t.) 

and suppose that (I) has all of its eigenvalues on the unit circle. 
Verify that X (t ) has, for its elements, sums of sines and cosines, 
possibly multiplied by polynomials in n. 

b) Under what conditions will the polynomial multipliers be present 
or absent? 
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PART 3 
EXPANDING MEMORY 

FILTERING 

The schemes that we have considered up to now have been characterized by 
the fact that estimates were repeatedly obtained on the basis of a fixed-
length record of observations. 

Consider a function such as silica. If we select a fixed-length record out 
of it, then it is easy to see that if that length is small enough, we can fit a 
parabola to it very satisfactorily. We imagine a chain that is essentially 
flexible, subject to the constraint that its form is always parabolic. We now 
drag this chain along the curve sixica, and imagine that it fits itself to the 
curve in the least-squares sense. Heuristically, this is the concept of the 
Fixed-Memory Polynomial Filter discussed in Chapters 7 and 8. 

As we lengthen the chain, the systematic errors worsen. However the 
smoothing effect of the filter depends only on the length of the chain 
without regard to the form of the signal — a direct consequence of the 
linearity of the algorithms which we developed — and so as we lengthen 
the chain, the estimates become smoother. This trade-off between smooth-
ness and systematic errors was what, in the final analysis, fixed the length 
of the smoothing interval. 

Fixed-memory filtering is ideally suited to a number of situations. As a 
first example, suppose that the signal entering such a filter changes abruptly 
from time to time, and so when one of these changes occurs, the filter 
output suddenly acquires errors. However because of the fixed length of the 
filter memory, these errors persist for at most one memory-length in time, 



and thereafter they are completely eradicated since the prevailing estimates 
are then based on memory-lengths containing completely new data. In fact, 
we might say that "transient" phenomena in fixed-memory filters disappear 
completely in a finite amount of time equal to the memory-span. 

A second case to which they are well suited is the situation where the 
true process model is either unknown or is excessively complex. It is 
generally possible, over short enough record-lengths, to find simpler functions 
which adequately describe the true process. Increasing that length causes 
the fit to become unacceptably bad, while decreasing it causes the estimate 
to become excessively sensitive to the random fluctuations caused by the 
observational errors. 

These facts that 
a) Transient phenomena caused by abrupt changes in the input die 

out completely in a fixed time, 
b) Simple functions can effectively describe complex ones over short 

enough record-lengths, 
are where the true efficacy of the fixed-memory schemes reside. 

However, those schemes also possess two very serious drawbacks. First, 
the observations made over the entire memory-span must always be retained, 
and we can only delete data when they are staler than the memory-length. 
It is easy to see that this could lead to excessive memory requirements, 
particularly if the observation interval is very long or if the number of 
filters being operated in the computer becomes large. The second drawback 
is the amount of computation involved, since the entire memory-length of 
data must be reprocessed every time an estimate is derived. In the case of 
differential-correction this amount of computation can be large. 

If these factors do not constitute drawbacks in a given situation, then the 
fixed-memory filters should definitely be used. However when these draw-
backs become serious we begin to look about for methods of reducing the 
memory and computation requirements, and it is in this quest that we 
consider the possibilities offered by filters with an expanding memory-
length. 
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9 
THE 

EXPANDING-MEMORY 

POLYNOMIAL 

FILTER 

9.1 INTRODUCTION 

Consider the situation where it has been decided to obtain an estimate by 
using a least-squares polynomial fit to, say, 100 equally spaced observations. 
Initially none of these observations has been obtained, and at some time, 
t = 0, the observation period commences. 

As the data begin to arrive the question arises as to whether anything can 
be done to process them immediately, rather than to wait until they have all 
been received, and doing no processing in the interim. It is conceivable 
that an appropriate algorithm might be found, so that as soon as a datum 
has been received it could be immediately processed and then discarded. 
This would necessitate only one data storage location as against one hundred, 
called for by the alternate method of doing nothing until all hundred are in. 
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342 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

The question of whether or not something can be done immediately the 
data begin to arrive is particularly important in tracking systems. In such 
schemes the observation instrument has a limited field of view (e.g. a high-
powered telescope or a tracking radar), and unless a method is devised 
whereby the instrument can be pointed approximately at the object being 
observed, the object disappears from the field of view and is lost. Further 
observations thereupon cease until the system reacquires the object. 

The scheme which we now describe, known as the Expanding-Memory 
Recursive Polynomial Filter, is the first of a series of algorithms intended 
specifically to cope with such situations. 

Essentially we will be performing a least-squares polynomial fit to the 
data in a manner very similar to that used in the Fixed-Memory Polynomial 
Filter. One major difference however is that the memory-length of the 
present filter will be steadily increasing, so that as each new observation 
arrives it will be incorporated, together with all of its predecessors, into the 
formation of a new estimate. This estimate is then immediately usable, if 
need be, to assist the observation instrument in its tracking function, in 
order that further observations can be made. 

The second major difference will be that the algorithms will be recursive; 
the new estimate will be a linear combination of its predecessor and the 
latest observation. As a result only one datum need be retained, and when 
the recursion is cycled, that datum can be discarded and room made for its 
successor. Only one memory location is thus needed for the data. 

After we have synthesized the algorithms we shall analyze their properties. 
Their covariance matrices and systematic errors will be seen to be closely 
related to those of the Fixed-Memory Polynomial Filters of Chapter 7. 
However, because of the steadily increasing data-base, we will find that the 
estimates produced by the present filters become steadily smoother as time 
passes. In this sense the filters of this chapter differ markedly from those of 
Chapter 7. 

The present chapter is founded on the discrete Legendre polynomials 
discussed in Section 3.2, and we will assume complete familiarity with that 
material. 

9.2 THE APPROXIMATING POLYNOMIAL 

Assume that scalar observations are made, all on the same quantity in a 
process, at equally spaced instants, r seconds apart. We call the first of 
them yo  and at time t = nr, measured from time of starting, our data 
record consists of the set of numbers 

yo ,  yl ,
Yv • • • Yn -1' Yn 
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In Figure 9.1 we depict the situation showing the time axis quantized every 
r seconds. 

The n + 1 observations of the above sequence are to be used to form an 
estimate of the process, and we choose as the model a polynomial in the 
continuous variable r. The r-axis is shown in the figure, its origin located at 
n = 0, and r increasing positively with time. The estimating polynomial, by 
assumption of degree m, is designated [p*(rd n , the subscript of course being 

intended to show that this is the polynomial computed on the basis of the 
sequence y o , y1 , 	yn  _ 1 , yn . A completely new polynomial will be com- 
puted when y. ÷1  arrives, based on the sequence 3 0 , y 1 , • • . 	n  1 , and 
it will be designated [p*(r)]. 1 . 

Just as we let p* be the estimate of the process function, so we decide 
that the time-derivatives of p* will serve as estimates of its derivatives. 
Reference to Figure 9.1 shows that 

t = rr 	 (9.2.1) 

and so 

d 1 d ,— 
dt 	r dr 

Hence we see that 

(9.2.2) 

(9.2.3) 

We write the state-vector of successive time-derivatives of I p*(r) as X* n . r, 
Thus 

ci[p*qn = 
r dr [p*idn dt  

r,n 

(9.2.4) 

and we now show how the state-vector X* n  defined above can be obtained 
by the use of the least-squares criterion. 
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In Section 3.2 we derived the discrete Legendre polynomials which 
satisfy the orthogonality condition 

p(r; i,L)p(r; j,L) = 	i#j 
	

(9.2.5) 
r=0 

Assume that time is frozen just after the n th  sampling instant and so, for 
the present, the quantity n is a fixed integer. This freeze is maintained 
throughout this section. We select as our interval of orthogonality the range 
0 5_/-5..n, i.e. we set L in (9.2.5) equal to n, where n is the temporarily 
frozen time-index shown in Figure 9.1. Equation (9.2.5) then becomes 

p(r;i,n)p(r; j, n) = 0 
	

i 	j 	 (9.2.6) 
r=0 

From (3.2.20) the polynomials satisfying this condition are given explicitly 
by 

(-1)  

v=0 	

7, 
p(r; j,n) 

(v)(1  : 11) nr ((vv: 
(9.2.7) 

Also, the quantity c (j, n), defined by 

[c(j, n)1 2  = I [p(r; j,n)12 	 (9.2.8) 
r= 0 

is given in (3.2.30) as 

[c(j,nn 2  = 	+ j 	+ 1.) 

( 2j + 	n (j)  
(9.2.9) 

Equations (9.2.7) and (9.2.9) define a separate set of orthogonal polynomials 
for each given value of n. 

We commence the estimation process by writing the estimating polynomial 

[p*(r)] n  as a linear combination of the first m + 1 of the above orthogonal 

polynomials. Thus, letting p o , p i , 	, p. be a set of (as yet unknown) 



Y 
 k  0)

p(k; j,n) p(k; n) = 0 • n  

n [ 	m 

k=0 	j=0 
0 < i < 	(9.2.14) 

346 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION- 

constants, we write 

[P* (ii  = 	(13 i)n
p(r; j,n) 	 (9.2.10) 

j=0 

Note that the p's in the above sum have been subscripted with an n to show 

their association with [p*(r1. 

From Figure 9.1 it is seen that the difference between the k th  observation 

and the estimating polynomial is yk  — [p*(k)]. . This is the residual as 

defined in Section 6.5, and so the sum of the squared residuals is 

en = 	{Y k  — [p*(q 
k=0 

(9.2.11) 

We have decided to use least-squares and it thus follows that Lp*(r n  must be 

chosen so as to minimize this scalar. 
First we set (9.2.10) into (9.2.11) thereby obtaining 

en  [yk  — 	Olp(k; j,n) 
k=O 

	

	
] 

J =o 

2 

(9.2.12) 

which is now seen to be a function of the p's. We differentiate e with 
respect to each of those parameters, setting the result to zero, i.e. we set 

ae n 
— 0 	0<i<171 (9.2.13) 

a  (On 

 

and the solution of these m + 1 equations then provides us with the p's 
which minimize (9.2.12). 

Performing the indicated differentiations gives 
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which can be written 

n m 

(13 	p (k; i,n)p(k; j,n) = 	p (k; i,n)y k  
k=0 1=0 	 k=0 

0 < i < m 

(9.2.15) 

We interchange the order of summation on the left, obtaining 

j) 	 p(k; i,n)p(k; j,n) = I p(k; 	 y k 	 (9.2.16) 
.1=0 	k=0 	 k=0 

and then, by invoking (9.2.6) and (9.2.8), this gives us 

(p) [c(i,n)]2  = 	p(k; i,n)y k  
k=0 

0.2.17) 

Now dividing through by [c(i, n)] 2 , we obtain an explicit form for the compu-
tation of the i th  constant p i  , used in (9.2.10). Thus, 

p(k; 	 yk  

k=0  

[c(j, n)] 2  
0 < j < m 

(9.2.18) 

Finally, using this result in (9.2.10), the estimating polynomial is given 
explicitly in terms of the observations as 

[ p 	n  = 

m p(k; j, 
k=0 

k 

	 p(r; j,n) 
(9.2.19) 

   

j=0 [c (j, n)] 2  

 

Comparison' with (7.3.14) shows that we have obtained precisely the fixed-
memory polynomial estimate, with the exception that the L in (7.3.14) has 
been replaced by n to give us (9.2.19). 
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This usage of n is not a case of mistaken identity of symbols. We have 
deliberately used n both as the counting symbol for the data as well as the 
memory-length designator. Our intention was to develop an algorithm which 
gives us the fixed-memory estimate over n + 1 observations, with .n steadily 
increasing. That is precisely what (9.2.19) does in fact provide. 

Returning to (9.2.4), we are now able to write 

(Dix*) r,n = Ti 
1-0 

p(k; j,n)y 
k=0  

[c(j,n)]2  

di 
p(r; j, n) dr' 

(9.2.20) 

which, by an interchange in the order of summation, gives us 

(Dix*) r,n 
1 

 

p(k; j,n)(cli/dr')p(r;  j, n)  (
m 

 
Y k 

j=0 	 [c(j,n)]2  

(9.2.21) 
ri k=0 

 

From this last result it is clear that any estimates obtained from this scheme 
will be linear combinations of the observations. This linearity property 
will be present throughout our discussion and will form the basis for some 
of our proofs. 

9.3 RECURSIVE FORMULATION 

The expression for (Dix*),. given in (9.2.21) requires that all of the data 

y 0 	y . be stored and available. Moreover the n + 1 weights multiplying 
the data in (9.2.21) must either be stored or else computed on-line. Finally 

n + 1 multiplies are required to form (D iX*) rn . All of these objections can 

be largely overcome by developing a recursive formulation for [p*(r)]n which 

relates it to its predecessors [p*(r] [p*( etcn - 1' - r - 2' . 

We shall see in Chapter 10 that the carrying out of this task, for the 
algorithms under discussion, could be treated as a special case of the very 
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powerful procedures to be developed in that chapter. However, unless we 
go from the special to the general we will fail to acquire an intuitive appre-
ciation of what it is that we are really doing. Accordingly we shall proceed, 
step by step, at times perhaps a trifle heuristically, and obtain a set of 
results which we will have the satisfaction of generalizing when we reach 
Chapter 10. 

The first of our heuristic decisions is that we will consider only the 1-step 
predictors, i.e. we shall limit ourselves to the case 

r = n + 1 
	

(9.3.1) 

We note however that this is in reality no restriction, since if we have the 
1-step prediction of the estimate state-vector of (9.2.4), then we can readily 
obtain its value at any other validity instant by the use of the appropriate 
polynomial transition matrix, i.e., by the use of 

X 	= 
n + h,n 

where the matrix 
By (9.2.19) 

[p*(r)] 	= 

and so, setting 

[p*(n + 

01:0(h — 1)X *  

(1) is given 
we have 

[r 

1 =0 	k.o 

r = n + 1 

n2 

= 
j=0 

n + 

in (4.2.5). 

p(k; j,n)yfr 

gives us 

n 

p(k; j,n)y 
k=0 

p(r; j,n) 

(9.3.2) 

(9.3.3) 

(9.3.4) 
k 

[c(j,n)] 2  

p(n + 1; j,n) 

[C 

Now, it is possible to show either by direct algebraic means or else by the 
use of the hypergeometric series of Gauss (see [9.1] ) that 

p(n + 1; j,n) 	(-1) 1 (2j + 1) 

[c(j,n)]2 	n + 1 
(9.3.5) 



m = 1: 

[p*(n + 1) 

m = 2: 

[p*(n + n 

[k=0

Yk  

	 I Y k 
n + 1 k =0 

2 -k)y] 
n k  

- 3 /- 2 -I) y k  
k=0 

(9.3.8) 
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Making use of this result, (9.3.4) becomes 

mn 
[p*(n.+ 1d n  = 1 E p(k; j,n)y] (-1)j(2j  

[ 

	

 J=0 k=0 	 n + 1  

We write this out for m = 0, 1, 2. Thus: 

m = 0: 

[p*(n + 1d n =  1 	ill  
Y k 

n + l k=0 

(9.3.6) 

(9.3.7) 

5  
k=0 

6  11 	6  k(k — + 

Y  k} n 	n(n - 1) 
(9.3.9) 

and so forth. 
Multiplying both sides of the above three equations by (n + 1)(m + 1) we 

now obtain 

m = 0: 

(n + 1)[p*(n + 1) = 
k=0 

yk  (9.3.10) 

m = 1: 
n 

(n + 1)n p*(n + 1) 	= n 
k=0 

Y  k 
k=0 

(n - 2k) yk  (9.3.11) 



=v2 ( k=0 

yk) - V2 [3 	- 2k) y] 
k=0 
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m = 2: 

(n + n(n - 1)[p*(n + 	= n (n - 	yk  - 3 (n - 1) E(n - 2k) yk  
k=0 	 k=0 

+ 5 
	

[n(n - 1) -6(n - 1) k + 6k(k - 1)] y
k 

k=0 

(9.3.12) 

and in general 

(n + 1) (m +1) [p*(n + 	= L (data) 
. 	. 
(9.3.13) 

where L(data) is an appropriate linear combination of the data. 
If we examine the right-hand sides of (9.3.10) through (9.3.12) then we 

see that in each case they are polynomials of degree m in the discrete 
variable n. In Section 2.5 we showed that if fn  is a polynomial of degree 
m or less in n, then 

yr" + 
	

(93.14) 

(see (2.5.20)). We apply this result as follows. 
Specifically, consider (9.3.11) where m = 1. By forming the second 

backward difference of both sides with respect to n, we obtain 

V2 {(n + 1) n[p*(n + 11} 

Yk] 

	

n-1 	 n - 2 

y - 2(n - 1) 	y k  + (n - 2) 
k = 0 
	

k=0 	 k=0 

	

n- 	 n-2 

-3E k=o - 2k) y k  - (n - 1 - 2k) y k  + 	(n - 2 - 2k) yk  [ 	
k=0 k=0 
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n-2 

= n ()i n  yn  _ 1 ) - 2(n - 1)y. _ 1  + (V2 n) 	y k  
k=0 

- 3 [-ny. + (-n + 2)yn  _ 1  + 2(n - 1) y. _ 

n-2 

P 21/2 — 21ed y k  
k=0 

/2-2 

= 4nyn  - 2 (2n - 1) yn  _ + (72 n) 	yk  — 3 E [V 2(n - 	Y k  
k=0 	k=0 

(9.3.15) . 

But now, by virtue of (9.3.14), this reduces to 

V2 {(n + 1)n [p*(n + 11} = 4ny n  - 2 (2n - 1) y. _ 1 	 (9.3.16) 

This is a recursion in [p*(n + 11, a fact which is more easily seen if we 

expand the left-hand side, i.e. 

(n + 1) n[p*(n + 	= .2n (n - 1) [p*(n]. _ 

- (n - 1) (n - 2) [p*(n - 1]. _ 2 	 (9.3.17) 

+ 4ny n  - 2 (2n - 1) y. _ 

It is now evident that [p*(n + 1] n  can be obtained from a linear combination 

of its two predecessors and the two most recent observations. Regardless 
of the value of n, we need thus retain only the three numbers 

[p*(n n  _ 1 , [p* - 1d n - 2' yn - 1 

and as soon as y n  arrives, the new value of the 1-step prediction [p*(n + 1] n  

can be computed by the use of (9.3.17). 
The same argument that took us from (9.3.11) to the recursive form 

(9.3.16) can, naturally, also be applied to (9.3.10) or (9.3.12). Correspond-
ing recursive algorithms would result. It is thus easily seen that the general 



form (9.3 13) would give 

V' 	[(n + 1) (m  + 1)  p*(n 

where L is also a linear combination 
We return to (9.3.17). 

zn + 1,n * 	[p*(n + 

Then (9.3.17) becomes 

1 	r 
Z * 	= [2n 

rise to the 

+ 1) 

Define 

(n 	1) z 4  

— Dye  
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form 

L (data) 	 (9.3.18) 

data. 

(See Note) 	(9.3.19) 

— (n — 1)(n — 2) z* n - 1, n - 2 

(9.3.20) 

error En , defined by 

(9.3.21) 

n +1,n  
(ii + 1) n 

+ 4ny n  — 2(2n 

At this stage we introduce 

y n  = z* 	+ E n, n - 1 

Thus E n is the difference between what is actually observed at time n 
(namely y e ), and what was predicted for time n based on observations up to 
time n — 1 (namely z* _ 1 ). By substituting (9.3.21) into (9.3.20) it is 
now easily verified that the latter gives 

z* 	= 2z* 	— z* 	4 	2(2n — 1) 
 n + 1,n 	n,n - 1 	n - 1, n - 2 

n + 1 n 	(n + 1)n 
n - 1 

(9.3.22) 

This form is particularly well-suited to a tracking situation where it is 
precisely the prediction error that is measured by the observation instrument. 

Equation (9.3.22) is a linear difference equation with homogeneous part 

v2 z*  
n + 1,n = 0 

and a forcing function of the form 

(9.3.23) 

fn 	an  En +  bn En - 
	 (9.3.24) 

Note: Up to now [p*(n + 1] n  has been called 4 + Ln  (see e.g. (9.2.4)). It will soon become 

clear why we have introduced the symbol z. (See (9.4.1).) 
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This is consistent with what we expect when the prediction errors are zero 
for all n. For example, suppose that the input was a series of error-free 
samples of a first-degree polynomial. We are then consistently able to 
predict the inputs without error, and so those predictions would also 
constitute a sampled first-degree polynomial in n. That is precisely what 
(9.3.23) implies. When prediction errors are present however, then the 
forcing function of (9.3.24) is nonzero, and this serves to modify the 
prediction as soon as the latest observation is obtained. We shall consider 
this further in the next section. However, prior to proceeding with that 
discussion we list the algorithms corresponding to (9.3.22), obtained by 
applying the same approach, for each of the cases m = 0, 1, 2, 3 (see Ex. 
9.4, 9.5 and 9.6). 

m = 0: 

1 
z* 	= n+1,n 	n,n-1 	 En 

n + 1 
(9.3.25) 

m = 1: 

4 	2 (2n - 1) 
z* n +1,n = 2z* n,n-1 — z* n-1,n-2 	n + 1 

En  
(n + 1) n E

n - 1 

(9.3.26) 

m = 2: 

z 	= 3z 	- 3z* 	+ 2* 
n + 1,n 	n,n - 1 	n-1,n-2 	n-2,n-3 

918 (n - 1) 	3 (3n 2  - 9n + 8) 
+ 	c   c 	+ 

	En 
n + 1 n 	(n + 1)n n  - 1 	(n + 1) n (n - 1) n  - ' 

(9.3.27) 

m = 3: 

z* 	= z 	- 6z* 	+ 4z* 	- Z*  
n + 1,n 	n,n - 1 	n - 1,n - 2 	n - 2,n - 3 	n-3,n-4 

16 	24 (2n - 3) 	48 (n 2  - 4n + 5) 

n + 1 n 	(n + 1) n 
E

n , + (n + D n(n - 1) 
n - 2 

8 (2n 3  - 15n 2  + 43n - 45) 

(n + 1) n (n 	1) (n - 2) 	
n 3 

 

(9.3.28) 



(9.4.1) 

n,n 

Z *  n,n 

z* m 
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9.4 COUPLING PROCEDURE 

The algorithms given in (9.3.25) through (9.3.28) provide us with recursion 
formulae for the 1-step predictions of the zeroth derivative. We now show 
that very compact recursive algorithms can be obtained which compute the 
entire state-vector of the estimating polynomial, rather than just its zeroth 
derivative. 

First, define the scaled-derivative estimate vector 

Tln  
En— D 

n,n 

Suppose that the process giving rise to the observations is in fact a quadratic 
in t, and assume initially_ that we are able to observe it without errors. Then 
the sequence of estimating polynomials 

• • • [P*(rd n - 3' [P*qn - [2*qn - 1 

will be one and the same polynomial, and we would expect that 

[P*(n)]n = [P*(nd n - (9.4.2) 

i.e. the updated estimate at time t o  would equal the 1-step prediction based 
on observations up to t o  _ 1. Clearly, if (9.4.2) holds, then so will 

Z* = Z* 	 (9.4.3) n,n 	n,n -1 

Using the transition matrix for Z:n  as defined in (4.2.15) we have 

Z*  = ( -1) Z*  n,n 	 n+1,n (9.4.4) 

which we combine with (9.4.3) to give 

(1)(-1)4 +1,n  = Z *  n, n - 1 (9.4.5) 
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Consider next the observation errors. The polynomial E3 (r) 
on the set of observations 

-1 is based 

 

YO' Y1' •• 1  yn - 2' yn-1 

and [p*q n  is based on 

yo, Y1' • • • yn - 2 ,  yn-1' yn 

They share all data in common, except for y n . Thus if yn  is precisely what 

is predicted on the basis of Pqn  _ 1, i.e. if 

yn = [P*(nd n-1 
	 (9.4.6) 

then the two polynomials [p*(d n  and [p*(r1 _ 1  will in fact be the same. 

However -if (9.4.6) does not hold, i.e. if the prediction error 

En = y n — [p*(nd n -1 
	 (9.4.7) 

is not zero, then [p*(d n  will differ from [p*(rd n  _ 1. Moreover all derivatives 

of [p*(rd n  and [p*(d n  will differ when en  is nonzero, and so (9.4.3) will 

not hold true. 
We now postulate that the vectors en, and er: n _ i  will differ by a vector 

which depends linearly on the prediction error en . Thus we assume (c/f 
(9.4.5)) that 

C-1) Z* 	= Z* 	+ H E n+1,n 	n,n-1 	11 n 
(9.4.8) 

where Hn  is a vector of weights, as yet unknown, which possibly depend on 
n, and e n  is of course the scalar prediction error defined in (9.4.7) which we 
rewrite as 

E n 	yn 	(Z0  n,n-1 
	 (9.4.9) 

The vector of weights H n  will now be derived by making (9.4.8) consistent 

with the algorithms on p. 354 for each chosen degree m. 
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First we write (9.4.8) as 

[10(-1) - qI] Zn + 	= Hn en 	 (9.4.10) 

where q is the backward-shifting operator. Assume that m = 1. Then 
(9.4.10) can be written out as 

(1 — q 	—1 )(zt 

0 	1 — q z*. 
n + 1,n 

ho  
E  

h 	n  
n 

(9.4.11) 

Solving for the vector on the left results in 

(

z*0 	 1 	 - q 	1 	h 

z*
1 n + 1,n 	

(1 - q) 2 	0 	1 - q 	h 1 	 n
n 

and the first line of this equation then gives 

( 1 — 	(z0. + 1, n = (1 — q) [(ho)n cni (h i)n  en 

i.e. 

(9.4.12) 

(9.4.13) 

02 

 (

z* 
0)n  4. 1 , , Rhe)n  (// i)je n  - (h o) n-l En -1  (9.4.14) 

We now compare (9.4.14) to (9.3.26), and we choose (1/01 and 0 1)n  so 
as to make both equations identical. To do this we set 

RhOn  + (h1),1 En  — (11 ) 	
2 (2n — 1)  4 

	 E 	 E 0 , 	 , - i f  n - 1 - 
n + 1 	(n + 1) n n  - ' 

(9.4.15) 

and by equating coefficients of e n  and en  _ 1 , we then obtain the two equations 

(10)n  + 	= 
4 

(9.4.16) 
n + 1 

2  (2n  — 1) 
(1 0)n  - + 1) n 

(9.4.17) 



(

Z 810:\ 

Z* 
n, n - 1 

/2 (2n + 1) 

(n + 2) (2  ) 

6 

(n + 2) (2  ) 

(9.4.20) 
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Setting n to n + 1 in (9.4.17) now gives us the result 

(ho) 	2 (2n + 1)  

\ 	(n + 2)" ) 

and finally, using (9.4.18) in (9.4.16) results in 

6  01) = 
n 	(n + 

2)(2) 

(9.4.18) 

(9.4.19) 

These are the required expressions for the vector H. when m = 1. We set 
them into (9.4.11), thereby obtaining 

which is the required recursion for rn  +1, in terms of e 	assuming n, n - 1 ,  
least-squares polynomial estimation. 

As the next step we rearrange (9.4.8) into a form more suited to efficient 
computation. Thus, let m = 2. Then (9.4.8) becomes (c/f (9.4.20)) 

—1 1\ Let, \ 	69,;\ 	(0\ 
1 —2 	z* 	

▪ 	

1 	h i  En 1 

\Z tin  
+ 1,n 	n - 1 	h2/n 

(9.4.21) 

where the vector Hn can be derived by a method analogous to the one 
which yielded the weights in (9.4.20). (See Ex. 9.7.) Now, starting from 
the bottom line in (9.4.21), we obtain, by simple transpositions: 

= (z*) 	0217  en  2)„ 1 , , 	2 n,  - 

Cz 	 = (Z *, 	+ 2 (z z) 	+ ( Il l En  1)n  ÷ 1,n 	n - 1 	 1,n 

. (Z*0) 	

▪  

(Z *,) 	(

- 

Zt) 

	

n + 1,n = (1)n,  n - 1 	\ 4  n + 1,n 	4  n + 1n + 	n 

(9.4.22) 

(9.4.23) 

(9.4.24) 

which is the form in which the actual computation is best carried out. 
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Observe that the computation starts with the three quantities 

(

z* z* z* 0 ,  1, 1,n-1 

already in memory. The observation yn  is then received, and we immediately 
form the further quantity 

E n 	Yn 	(Zt)n,n- 1 
	 (9.4.25) 

Four memory locations are required to hold these four numbers. We then 

compute (z) 
n + 1 n 

using (9.4.22) and we store it into the same location that 
\ 2i, 

(

en 	was contained in, i.e. (9.4.22) is a replacement operation. Next, 
in,n -1 

we execute (9.4.23) and this is again seen to be a replacement operation, 

since (*) 	can be discarded once this computation is completed. 
n, n - 1 

Finally, the same is true for (9.4.24) and we see that we never require more 
than four memory locations to execute the quadratic algorithm, three 
permanent ones to hold the state-vector e and one temporary storage 
location to hold E. 

For completeness, the coupled algorithms for m = 0, 1, 2, 3 are displayed 
in Table 9.1 (see over). 

Observe that by defining e as we did in (9.4.1), the resultant algorithms 
are independent of the intersample time r. Hence we are able to give their 
forms in Table 9.1 in which r does not appear. Of course, r must eventually 
be taken into account, and this takes place when we form the unscaled-
derivative state-vector 

+ 1,n 

X*  

X* 

 

(9.4.26) 

 

Drnx* + 1,n 

 

This is related to en+  1,n  by the use of (4.2.18), i.e. 

X* 	= D (r) Z *  + 1,n 	 n + 142 

at which time r must be specified. 

(9.4.27) 
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Table 9.1 The Expanding-Memory Polynomial Filter 

Define: 

   

 

r2 
— 
2!  

* 
3!  n + 1,n 

en 	yn - (Zt) n, n - 1 

Degree Of 

1  
(Z'On + 1, n 	(Z*°)n, n - 1 	n + 1 n  

Degree it 

6  
(z* -,)n + 1,n 	(Z*\ 1)n, n - 1 (n + 2) (11 + 1) n  

(z*,, 
+ 1,n 	n, n- 1 

(e) 	+ (z*) 	2 (2n + 1) 
en 0 A  

Degree 2t • 

(On  1,n 
= (z*\ 21n,  n  - 

30  

(n + 3) (n + 2)(n + 1) n  

+2 (zt) 	
18(2n + 1) 	

E n n + 1,n 	(n + 3) (n + 2) (n + 1) 

(z *,) 	- .Z*) 
1 n + 1,n 	\ 2 /n + 1,n (71 + 3) (n + 2)(n + 1) 

1 ,n 

3 (3n 2  + 3n + 2) 

fin all cases n starts at zero. 



Degree 3t 

= (el) n, n - 1 
+ 
 2 (

e) 2 n  + 1 ,n  

(z*,. 
u)n, n - 1 

(er) 
\ Ain 1-  1,n 
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Table 9.1 The Expanding-Memory Polynomial Filter (Continued) 

140  
= (z*) 

inn-1 	(n + 4)(n + 3)(n + 2)(n + 1) n  

120(2n + 1)  
) 

= (Z4) 	
+ 3 (zsi 

2  n, n - 1 	3  n + 1,n 	(n + 4) (n + 	(n + 2)(n + 1) " 

3  ( 3)ri +1,n 

20 (6n2  4- 6n + 5)  

(n + 4) (n + 3) 	+ 2) (n + 1) En 

( 2)n + 1,n ± ( 3)n + 1,n 

8 (2n 3  + 3n 2  + 7n + 3) 

(n + 4) (n + 3) (n + 2) (n + 1) En 

tIn all cases n starts at zero. 

The weight-vectors Hn  of the algorithms given in Table 9.1, if derived by 
the method used to obtain (9.4.18) and (9.4.19), would cause-us to expend 
a considerable amount of effort. This amount of effort increases rapidly 
with each increase in the degree of the estimating polynomial. We now give 
the general form for those weight-vectors, derivation being deferred.t 

Define the square (m + 1) x (m + 1) matrix P (n), whose i, j th  term is 

[P(n)] = 	-c/ 

p(r- j,n)  

	

. 	7 

j 	z! dr' r = n 

0 < i, j < m 	 • 	(9.4.28) 

   

Also define ..the (m + 1)-vector K, whose j th  term is 

[K (n)] (- 1)'  

[c(j,n)] 2  
0 < j < m 	 (9.4.29) 

where of course p(r; j, n) and [c (j, n)] 2  are as defined in (9.2.7) and (9.2.9). 
Then the weight-vector H. of (9.4.8) is given by the (m 1)-vector 

Hn 	P(n)K(n) 
	

(9.4.30) 

t The derivation of this general form is given in the examples for Chapter 12. (See Ex. 12.3) 



f 
K (n) = 

3n 

(n + 2) (n + 1)J 
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As an example, let m = 1. Then by (9.4.28), 

Hence (9.4.30) gives 

Hn 

(9.4.31) 

(9.4.32) 

2 (2n + 1) - 

(n + 2) (n + 1) 
(9.4.33) 

6 

1 —1) 

P (n) = ( 2 0 — 

n 

and by (9.4.29) 

n + 1 

3n 

(n + 2) (n + 1) 	+ 2)(n + ly 

which is in precise agreement with (9.4.18) and (9.4.19). 
The attention of the reader is directed to the fact that forming the matrix 

P, defined by (9.4.28), will be difficult when m exceeds 3, since the poly-
nomials p (r; j, n) are not differentiated easily. This problem occurred in 
Chapter 7 and was solved by the use of (7.4.15). 

9.5 STABILITY 

Having shown that recursive algorithms can be set up which perform 
least-squares polynomial estimation on an expanding data base; we now 
turn our attention to a very fundamental question concerning recursive forms, 
namely their stability. We shall define the concept of stability in a precise 
manner presently, but for now we give an intuitive account of what it is we 
have in mind. 

The recursion algorithms which we have created, in themselves constitute 
self-contained systems. They are in each case a difference equation, which, 
like a differential equation, possesses a characteristic behavior and natural 
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modes. This behavior is unrelated to the data being processed, and unless it 
is kept under adequate control it can easily make the algorithm's outputs 
completely useless. What we thus require is that the natural modes, if ever 
excited, should of their own accord die out in time. A recursive algorithm 
whose natural modes eventually die out is then said to be stable and if they 
fail to die out or if they build up the algorithm is called as unstable. 

We now present, as a simple demonstration, a recursive algorithm whose 
natural modes never die out, thereby making it unstable. As we show, this 
also makes it of questionable value as a practical filter. 

Example: Consider the Fixed-Memory PolynOrnial Filter of degree zero, 
discussed in Chapter 7, namely 

L 
1 

X *  nn 	 Yn-L +k 
L + 1 k=0 

(9.5.1) 

The predecessor of this estimate was 

L 

X* - 1, re - 1 n - L + k - 1 
k=0 • 

(9.5.2) 

and so, by subtraction, we obtain 

1  
X 	 (ya 

	
y n - L - 1) * = X*  n,n 	n - 1, n - 1 L .  + 1  

(9.5.3) 

This is a recursive form, and in theory, gives the same answers as (9.5.1). 
Quite evidently,. (9.5.3) is computationally far more efficient than (9.5.1). 

However, suppose that an error enters, at some time, into xlc, in (9.5.3). 
Then it is readily verified that such an error will never die out. However, 
in (9.5.1) it disappears the very next time the algorithm is cycled. Thus 
(9.5.3), despite its being computationally more compact than the non-
recursive form given in (9.5.1), suffers from this very serious defect of 
being entirely unable to eliminate any past errors in its output. 

The property to which we are alluding is evidently completely contained 
in the homogeneous part of the algorithm, which, in the case of (9.5.3), is 

X* — X* 	 = n,n 	n - 1, - 1 (9.5.4) 

Suppose we assume this system to be completely relaxed, and then at some 



8n,k 
1 	n=k 

{0 	nAk 
(9.5.7) 
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instant assume it to be excited by a Kronecker delta. We thus have 

with 

x* 	x* 	= 
n,n 	n - 1, n - 1 	n,k (9.5.5) 

xn,n = 0 	n<k 
	

(9.5.6) 

The Kronecker delta is of course defined by 

Then the solution sequence would be 

X * 	= 10,0,0,0, ..., 0,1,1,1, ... n,n 
(9.5.8) 

Clearly the sequence of 1 's initiated by the Kronecker delta never dies out. 
Since (9.5.8) is a time-sequence of a natural mode of the algorithm, it is 
clear that stability (or instability) is thus a property which resides in the 
homogeneous part. 

We now present a formal definition of the concept of stability. 

Definition 

An algorithm is said to be stable if the solution sequence, generated by 
the completely relaxed homogeneous part being stimulated by a Kronecker 
delta at any time, tends to zero as n 00. If it does not tend to zero the 
algorithm is said to be unstabk.t 

As a further example, it is shown in Ex. 9.9 that the counterpart of 
(9.5.3) for a first-degree polynomial, has as its homogeneous part 

x — 2x* 	+ x* 	= 
n,n 	n - 1, n - 1 	n - 2, n - 2 

(9.5.9) 

Subjecting this to a Kronecker delta at some instant gives the solution 
sequence 

x*
,n 

= 10, 0, 	, 0, 1, 2, 3, 4, . . .1 
n 

(9.5.10) 

t The reader is referred to Section 2.8 in which we examined the impulse response of a linear -
difference equation. 
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and in this case, as n 	, the solution becomes unbounded. The algorithm 
is thus unstable. 

An unstable algorithm is obviously of marginal value as a practical pro-
cedure, for if once errors arise in the output, as they invariably will sooner 
or later, then the effects of those errors fail to die out. In most cases the 
effects build up (see (9.5.10)) and soon completely swamp the legitimate 
output. For this reason we restrict ourselves to only stable recursion 
formulae, and the onus is on the analyst to verify that any recursive form 
which he creates is stable, in addition to being correct. We accordingly 
examine the algorithms given in Table 9.1 and verify that they are, in fact, 
stable. 

The algorithms in question are algebraic restatements of the recursive 
formulation first obtained in Section 9.3. The homogeneous part of the 
general case is seen, from (9.3.18), to be 

(See Note) 	(9.5.11) 

If this is stable then so are all of the algorithms of Table 9.1, for their 
stability properties are one and the same as those of (9.5.11). 

We accordingly excite (9.5.11) by a Kronecker delta at time n = k, and 
obtain 

"(72 + 1) (m  " (x*) 
n + 1,n] = n,k 

To solve this, we set 

n + 1) (m  + ) (x*) o, n +i ,„ 

(9.5.12) 

(9.5.13) 

and then (9.5.12) becomes 

8  n,k 
(9.5.14) 

Note: Observe that (9.5.11) is a linear difference equation with time-varying coefficients. The ele-
mentary approach to the stability of constant-coefficient systems is based on the location of their 
eigenvalues. If these are within the unit circle, then the natural modes will die out in time and so the 
system is stable. However, we have deliberately defined stability on the basis of the natural modes 
themselves, and have thereby also included lime-varying systems such as (9.5.11), which do not possess 
eigenvalues. 



n  {n — k + 1 	n> _ k 
= 

0 	 n < k 
(9.5.18) 
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Now Cr,  is identically zero for n < k, since, by assumption, the system is 
initially completely relaxed. For simplicity, let m = 0. Then (9.5.14) is 

8  n,k 
(9.5.15) 

whose solution is 

0 
	

n < 

1 	n> _k 

Suppose next that m = 1. Then (9.5.14) is 

C n 2Cn - 1 + Ca - 2 = 8  n,k 

whose solution is 

(9.5.16) 

(9.5.17) 

Finally, for the general case, it is easily verified (see Ex. 9.10) that the 
solution to (9.5.14) is 

0 

=1(n—k+m) 

n <k 

n> k 
(9.5.19) 

It then follows by (9.5.13) that the solution to (9.5.12) is 

(On + 1,n 

(9.5.20) 

But (n—k+m) 
 is a polynomial in n of degree m, whereas (n +1)(m + 1) is a 

polynomial in n of degree m + 1. Hence 
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Em 
n -)00 

- 0 

(9.5.21) 

and so all algorithms developed in this chapter are stable. (See Ex. 9.11.) 

9.6 INITIALIZATION 

A recursive algorithm must be initialized. Thus, if the degree-1 algorithm 
of Table 9.1 is being employed, initial values must be specified for the 

- • 	• - 	- 
position and scaled-velocity variables (44) 	and (z 4c) 	 0. 

n, n - 1 	1 n, n - 1 

One approach to this problem might be to perform an interpolation on the 
first few observations using the Lagrange interpolation method of Section 
4.5. The resultant state-vector could then be used to initialize our recursive 
algorithms. However, a much more direct approach is possible. Thus, it is 
completely immaterial what initial values are chosen for Z *  , _ 1 at n = 0, in 
the case of the Expanding-Memory Recursive Polynomial Filters, for after 
precisely m + 1 cycles of the M th  degree algorithm, those initial values will 
have been completely dropped, and the algorithm will have automatically 
performed a least-squares fit on the m + 1 data points presented to it. 
Thereafter the output continues to be precisely the least-squares polynomial 
fit, based on the input data. 

Prior to proving this assertion, we give an example. For m = 0, the 
algorithm is (see Table 9.1) 

011 + 1,n = (14(;) n, n - 1 + 	

1 

n + l[y  17, n 

When n = 0, suppose we set 

/n, n - 1 =
a 

(9.6.1) 

(9.6.2) 

where a is some arbitrarily chosen number. Then on the first cycle of (9.6.1) 
we obtain 

(x*) = a + (yo  — a) 
0)1,o (9.6.3) 

yo 
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Thus the initial value used for (X*„ 
n - 1 

has been completely deleted and 

the correct zeroth-degree 1-step prediction, based on least-squares, has been 
made. The reader should now cycle the degree-1 algorithm of Table 9.1 
using pencil and paper (see Ex. 9.12), and convince himself that a similar 
process occurs, i.e. that the initial values assigned to the vector en  n  _ 1  on 
the right-hand side will also disappear completely after precisely two cycles. 
We now prove that our assertion is also true in general for degree m. 

From (9.3.18) we recall that 

Vm  +1 (n + 1) (m  + 1) (x*) 
n + 1,n = 

L (data) 
	 (9.6.4) 

where the term L(data) means a linear combination of the data. But then, 
by (2.5.14) we can restate this as 

m +1 

i.e. 

(-1) k  (1 1 k  1)(n + 1 - k)(m 
+ 1) (xt) 	 = L (data) 

n + 1 k, n k 
k=0 

(9.6.5) 

( + 1) ( m  + 1)  (X*) 
° n + 1,n 

rn 1-1 

E (_i)k(in +1)(n + _ om+i)(x*0) 	 + L (data) + 1 - k, n - k 
k=1 	 (9.6.6) 

Then when n = m, each of the terms in the sum on the right is nulled out by the 
factor (n - m) contained in (n + 1 - 	+1)  for each of k = 1, 2, . , m + 1. 

Thus for n = m, (3c*,) 	will correctly depend only on the data and not 
n + 1,n 

on the initial-value terms. Thereafter, the correctness of the output is 

maintained by the remaining factors in (n + 1 - W in  + 1)  which become 
zero at appropriate times. (See Ex. 9.13.) 

What is true for xt must also be true for the remaining elements of the 
polynomial state-vector X: +1,, since these other elements are, after all, 
the derivatives of the estimating polynomial on which xt is based. 

Thus after precisely m + 1 cycles the initial values will have been com-
pletely discarded, and the estimating polynomial will be based solely on the 
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data by least-squares. We are thus free to set whatever values we please into 
the predecessor terms of the algorithms given in Table 9.1. From a practical 
standpoint these initial values may then as well be zeros, and the schemes 
are thus all completely self-starting. ••• 

9.7 VARIANCE REDUCTION 

The covariance matrix of the estimate vector 	+ 1,n' Z* 	obtained by the  
algorithms of Table 9.1, is of interest in determining how well the algorithm 
is performing its smoothing function. However, the Expanding-Memory 
Polynomial Filter output, for each value of n, is identical to the output of 
the 1-step predictor Fixed-Memory Polynomial Filter, for `an equivalent 
length data-base. Thus everything we need to know about the output 
covariance matrix for the filters of the present chapter is already available 
from Chapter 7. 

As a start, let R (a)  be the covariance matrix of the input errors. Then by 
(7.5.4), the covariance matrix of the output errors for the Expanding-Memory 
algorithms will be 

n + 1,n 	n) = W(1)R W(1) T 
( 	 - 

(9.7.1) 

where W(1) is defined in (7.4.10), and where, in computing the matrices 
P, C and B in that formula for use in (9.7.1), an n must now be substituted 
for L wherever it occurs. Thus en+ 1,n  above is time-varying since its 
elements are all functions of n. 

When the covariance matrix of the input errors has the form 

R (n) = a 21V 	 (9.7.2) 

then the simplifications noted in Chapter 7 all apply here. By (7.5.22) we 
now have 

en  + 1,n  = w Q(n + 1) Q(n + 1) T 	 (9.7.3) 

where the matrix Q(n + 1) is obtained using (7.5.11) with r = n + 1. The 
reader can now use (9.7.3) to set up the covariance matrix en +1 , for any 
degree. Recall that en  + is the covariance matrix of the scaled-derivative 
state-vector Z*,, +1 , n , used in Table 9.1. If it is the covariance matrix of the 
unscaled state-vector which is needed, then the matrix D (r) of (4.2.19) must 
be used, giving 

S* 	D (r) S* 	D (r) T  n+1,n 	n+1,n (9.7.4) 



12 
(9.7.8) 

/2(2n + 3)  

(n + 1)n 

6 
S *  n + 1,n 

= 	
2 a7. 
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As an example, by the direct use of (7.5.25) we can write, for the first-
degree Expanding-Memory Polynomial Filter, 

S* n + 1,n 
=  Q2 

 

/2(2n + 3) 6 

(9.7.5) (n + 1) n 

6 

(n + 1) n 

12 

(n + n 
	

(n + 2)(n + 1)ni 

This is the covariance matrix of the scaled-derivative state-vector Z *  n + 1,n 
defined in (9.4.1) as 

Z*  n + 1,n 
(9.7.6) 

The covariance matrix of the unscaled estimate vector, namely 

X*  + 1,n 

	(X) 

 
n + 1,n 

	 (9.7.7) 

is then obtained, using (9.7.4). This gives us 

	

\r (n + 1) n 	r2 (n + 2)(n + 1)n 

In Table 9.2 we give the diagonal elements of the covariance matrices for 
the unscaled estimate vector, up to degree 3. In each case the reader will 
observe that the terms go to zero as n increases. This was proved, in general, 
in Section 7.6 where we showed that the entire covariance matrix goes to a 
null matrix as L, or in this case, as n goes to infinity. In Table 9.3 we give 
the same terms as in Table 9.2, but on the assumption that n is very large. 
These are the asymptotic forms to which the diagonal terms of the covari-
ance matrix + 1,n S* tend as n The rows of Table 9.3 should be com-
pared with the first four columns of Table 7.2 on p. 258. 
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Table 9.2 VRF for Expanding-Memory 1-step Predictors 1 
 (Diagonal elements of .S: + ) 

Degree (m) Output VRF 

0 x* n + 1,n 
1 

(1) - 
(n + 1) 

1 

5c* n + 1,n 

X*  n + 1,n 

' 
12 

r2 (// + 2) (3)  

2(2n + 3) 

(n + 1) (2)  

2 

Y* n + 1,n 

5c* n + 1,n 

x*  n + 1,n 
, 	• _ 	.  

720 

r4 (n + 3) (5)  

192n 2  + 744n + 684 

r 2 (n + 3) (5) 	. 	. 

9n 2  + . 27n + 24 

(n + 1) (33  

3 

1* n + 1,n 

Y* n + 1,n 

7.C*. n + 1,n 

7C * n + 1,n 

1200n4  

100800 	- 

+ 23200 

r 6 (11 + 4) (7)  

25920n2  + 102240n + 95040 

T4 (71 + 4) (7)  

+ 10200n 3  + 31800n2  + 43800n 

r2 (7/ + 4) (7)  

16n3  + 72n2  + 152n + 120 

(n + 1) (4)  

tSee p. 257 for a definition of Variance Reduction Factor (VRF). 

The behavior of the output covariance matrices as we vary the degree 
(m), the inter-sample time (r), or even the validity instant, using a poly-
nomial transition matrix (see (9.3.2)), was discussed in depth in Chapter 
7. We leave it to the reader to obtain the required information by re-
examining that material, replacing the parameter L by an n wherever 
appropriate. 
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Table 9.3 Asymptotic VRF for Expanding-Memory 1-step 
Predictors (n large) (Diagonal elements of S: +  i.n  as n 

Degree (m) x* n + 1,n ±* n + 1,n 
— 

Y* n + 1,n 
, 

.1* n + 1,n 

0 
1 
n 

1 4 1 	12 
n r2 	n 3 

2 9 1 	192 1 720 
r2 	n 3 	. r4 	ns n 

3 16 1 	1200 1 25920 1 	100800 

r 2 	n 3 . ra 	n5 r6 	n 7 n 

9.8 SYSTEMATIC ERRORS 	. 

As with variance reduction, discussed in Section 9.7, the problem of the 
systematic errors of the Expanding-Memory Polynomial Filter has essentially 
been covered in detail in Chapter 7. Little more need be said, and the reader 
can review that material, setting n in place of L and recalling that the 
algorithms of the present chapter are nominally 1-step predictors. 

Of particular interest is the discussion given in Section 7.13, where we 
examined a method by which the systematic errors can be balanced against 
the random errors by the choice of L. In the present instance, this means 
that some value of n will be reached beyond which the systematic errors 
will make the filter outputs unacceptable. This then shows that the 
Expanding-Memory Polynomial Filters should not be cycled indefinitely.t 
They are intended essentially only for short-term use, and where a long-term 
recursive polynomial filter is called for, the Fading-Memory Polynomial 
Filters of Chapter 13 should be used. As we point out there, the Expanding-
Memory Polynomial Filters of the present chapter are ideally suited for 
initialization of the algorithms of Chapter 13. 

EXERCISES 

9.1 Following the method by which (9.3.17) was obtained for the first-
degree case, obtain the equivalent results for the zeroth-degree and 
second-degree cases. 

-Unless of course the true process really is a polynomial of degree no greater than that of the filter 
model. 
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9.2 Verify that (9.3.21) in (9.3.20) gives (9.3.22). 
9.3 Using the results of Ex. 9.1 together with (9.3.21) obtain (9.3.25) and 

(9.3.27). 
9.4 Obtain (9.3.26) as follows. Start with Wen  + n  = an En  + brz  E n  _ 1 . 

Then write En  as yn n — z* , n - 1 (see (9.3.21)). Now collect terms in 

zn + 1,n, • • • , z* _ n  _ 2  and solve for an and b n so that (9.3.13) is 
satisfied. 

9.5 Repeat Ex. 9.4 to obtain (9.3.27). 
9.6 Repeat Ex. 9.4 to obtain (9.3.28). 
9.7 Obtain the vector Hn of (9.4.21) by the method with which (9.4.18) 

and (9.4.19) were derived. Compare the result to the degree-2 
algorithm of Table 9.1. 

9.8 By making use of (9.4.30) verify the results of Ex. 9.7 above. 
9.9 a) Starting from (7.3.20), verify that for first-degree 

L 	1 

(

C*)n,„ = 	 Cpj  (k)9j (L) y n  _ L +k  0  
k=0 1=0 

L -1 1 

Cpi  (k + thpi (L) y n  _ L +k  
k=-1 i=0 

L -2 1 

(C *0
) n - 2, n - 2 
	 cej  (k ± 2) (pi  (L) yn L  k  

k=-2 1=0 

b) Now form 0 2  (3c*) and verify that the sum over k on the right 0 nn 

disappears, leaving an algorithm of the form 

V2  /x4A = 0)„,n  Yn + a lYn - 1 + 42 2 Yrz - L -1 + a 3Yn-L - 2 

c) Verify that this recursive algorithm for (C*) is computationally 0 , 
far more efficient than (I) above, but that it is unstable. (See p. 
364.) 

9.10 a) Verify that n  (1  + m  1= C+ 771  — 1). (By Vn we mean the back- 

ward difference with respect to the variable n.) Hence infer that 
7/ + rn) 	n 

V m ( 	= (0). 

(I) 

(X*0) 
n - 1, n - 1 



x* = 	x* n,n 
n + 1 n -  1' n  

(I) 
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b) Prove that 	 = V(0n) 8 	and so verify that v nal  + ( 
77/ 

m ) n  + 
- n0 	 n,O. 

(Note: (on) is 0 for n < 0 and 1 for n _. 0.) 

c) Infer that V in  ÷ 1 (n - h  + 1 = 8n ,k thus verifying (9.5.19). 
n 	 m 

9.11 a) Starting from (9.3.18) verify that the homogeneous portions of 
the zeroth and first-degree algorithms are 

m = 0 : 

m = 1: 

n - 1 __,„ 	(n 	1)(n - 2) x* = 2 	 n - 2, n - 2 n,n 	 n 1, n 1 	(n + 1)n n + 1  

b) Starting from x: 0  = 1, verify that (I) above gives the sequence 

xtn  = )1, 1, 

c) Starting from xt 1  = 1/2, verify that (II) gives the sequence 

xt n 	... 

d) Reconcile b) and c) above with (9.5.20). 
e) Infer from the above that the zeroth and first-degree algorithms 

are stable. 
9.12 a) Let x o  = a, x 1  = p. Verify that the 1-step predictions based on 

interpolation are 

x 2,1 = 2/3 - a 

r5c* = 	a 21 

b) Letting y o  = a, y 1  = p, cycle the degree-1 algorithm on p. 360 
and verify that, for any choice of initial values, the output is 

(1) 	(0 - a 

2p - a) 
1  2, 1 
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Thus the correct state-vector is obtained, regardless of the initia-
lizing vector. 

9.13 a) Consider the term (n + 1 - k) (m +1)  in (9.6.6) for m = 3. Since 
k goes from 1 to m + 1 in the summation, we thus have the terms 

n (4)  , (n - 1)
(4)  , (n - 2) <4) , (7/ — 3) (4) 

	
(I) 

appearing in (9.6.6). Verify that the first of these is zero at 
n = 0,1,2,3 and the second at n = 1,2,3,4, etc. Hence infer that 
when n = 3, the entire summation term in (9.6.6) is zero, making 

(

x*) on the left depend only on the data and independent of 
4,3 

the choice of initial values. 
b) Verify that when n = 4, the summation term contains only 

0)4.3  and that the values chosen for (c:0 3,2  ... (x'0 43, _i  are still 
nulled out by the zeros contained in the factors in (I) above. 
Infer that this nulling out continues appropriately, so that the 
chosen initial values never enter the estimate which thus depends 
only on the data. 

9.14 Let the input sequenpe to a first-degree Expanding-Memory Polynomial 
Filter be a Kronecker delta at n = 0, i.e. 

yll = 8n, 0 
	 (I) 

a) Starting from (9.3.6) prove that 

(c*) 	
2  

n  + 1 ,n  n + 1 

b) Cycle (9.3.20) using (I) above as the input and verify that the 
output is (II) above, regardless of the choice of initial conditions. 

c) Repeat b) above on (9.3.26). 
d) Cycle the first-degree algorithm of Table 9.1 using (I) as the input, 

and verify that the output is (II) above, regardless of initial 
conditions. 

9.15 Repeat Ex. 9.14 but use instead a second-degree filter. 
9.16 Verify that for very large 7/, Table 9.3 approximates Table 9.2. 
9.17 a) Plot the square-root of the degree-1 VRF's of Table 9.2, multiplied 

by 3, for r = 1, as a function of n. 
b) Use a computer to generate a sequence of zero-mean uncorrelated 

Gaussian random numbers whose variance is constant. Feed these 
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numbers into the degree-1 algorithm of Table 9.1 and plot the 
absolute value of the output. Verify that this plot is satisfactorily 
bounded by the plot of part a) above. 

9.18 a) Assuming that (9.7.2) holds true, obtain the expression for the 
covariance matrix of a filter made up of two Expanding-Memory 
Polynomial Filters arranged so that the position output of the 
first is the input to the second. 

b) Verify your results by the use of a computer, making a number of 
runs and estimating the variances of the outputs for successive 
values of n. 

9.19 a) Generate the sequence of numbers 

2 rr 
y. = sinn — 

100 

using a computer, and feed it into the second- and third-degree 
algorithms of Table 9.1. Observe that the systematic errors are 
quite small initially but eventually become quite large. 

b) Assume that random noise is present in the observations above, 
whose covariance matrix has the form R an)  = aI . Using the 
method outlined in Section 7.13, calculate the permissible smooth-
ing interval so that the bias errors never exceed the 0.1 a value of 
the output errors. Retain a as a parameter. 
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10 
GENERALIZED 

EXPANDING-MEMORY 

FILTERS 

THE BAYES 

FORMULATION 

10.1 INTRODUCTION 

We now turn our attention to a filtering technique which is the generaliza-
tion of the recursive scheme considered in the previous chapter. 

We saw there that the recursive structure of the Expanding-Memory 
Polynomial Filter gives rise to algorithms which are extremely desirable 
from both a storage and a computation standpoint. Moreover the expanding 
memory inherent in those algorithms leads to a steady improvement in the 
smoothness of the estimates. However if the true process is not really a 
polynomial, then the systematic errors in those estimates increase steadily, 
and after a while, even though the estimates are extremely quiet, they are 
in all likelihood in serious error due to bias. 

The scheme which we consider here has most of the advantages of the 
filters developed in Chapter 9 with few of the drawbacks. What we now 

377 
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consider is a set of recursive expanding-memory algorithms which use an 
arbitrary linear differential equation as the definition of the model. If the 
true process equations are known then they can be used in the filter, and 
the systematic errors, formerly associated with lengthening memory times, 
are entirely avoided. 

Just as the filters of Chapter 9 were derived by recasting those of Chapter 
7 into a recursive form, so the present ones are essentially obtained by 
recasting the Generalized Fixed-Memory Filters of Chapter 8 into a re , 

 cursive form. 
We direct the attention of the reader to a distinctly new concept which 

arises in the present filters and some of those to follow, and that is the 
idea of the a priori estimate. Briefly, the algorithms to be developed will 
have the predictor-corrector structure 

X*+ 1 n = '(n + 1, n) XL, 
, 

X n+1,n+1 — X* n + 1,n + Hn (Yr: — MX: + 1,d 

When the first observation vector Y 1  is obtained, we see that in order to 
cycle the second of these equations an initializing vector 4 ,0  must be 
provided. In the preceding chapter a similar situation arose, but we saw 
there that the initializing vector could be chosen in a completely arbitrary 
manner since it had no effect on the resultant estimation process. Hence 
very little attention had to be given to the problem of how to obtain that 
vector. 

In the present case, however, we will have the choice of whether or not 
we wish to have the initializing vector affect the subsequent estimate. Thus 
suppose that nothing whatever is known about the true state of the process 
at the time of initialization. Then the initial vector 4 0  will have to be 
chosen completely arbitrarily, and we would not want it to affect the esti-
mate thereafter. On the other hand if X*10  can be chosen as a result of 
some definite a priori knowledge of the true state, then we might wish to 
have that knowledge incorporated into the subsequent estimate. The 
filtering scheme which we now develop gives us the option of having either 
choice. 

In addition to examining the case where the differential equation des-
cribing the evolution of the process is assumed to be linear, we also examinet 
the nonlinear case. We show how the results of the linear case can again 
be incorporated into an iterative differential-correction scheme, thereby 

tin Chapter 11. 
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permitting us to handle the situations most frequently encountered in 
practice, namely processes defmed by nonlinear differential equations or 
systems involving nonlinear observation relations. 

10.2 THE BAYES FILTER—LINEAR CASE 

Suppose that a process under observation is modelled by a linear dif-
ferential equation of the form 

—d X(t) = Mt) X(t) 
dt 

(10.2.1) 

and assume that a number of vectors of observations are made. Let these be 
called 

Y , Y 	Y n 	a " • / 

assumed to have been made at times t n , ta , 	ty , and let them be related 
to the state-vector X (t) by the linear observation relations 

Just after time t o we assemble Y n , 

Y n = MX N n n 	n 

= Ma  Xa  + Na  

Y . M 'Y X 'Y +N 

Y (n) 

(10.2.2) 

, 	, Y.y  into the single vector 

(10.2.3) 

Then, letting 1(m, n) be the transition matrix derived from (10.2.1), we see 
that Y(n)  is related to X. by 
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M n 

M a  st (a,n) 

  

Y (n) = X n N (n) 
(10.2.4) 

    

WITTly nV ' 
Defining the matrix on the right of (10.2.4) as T n  , enables us to write that 
equation as 

Y(n) = Tn Xn N (n) 
	 (10.2.5) 

Note that at no stage have we stated that the instants t a , 	, t,), are 
distinct, and in fact this is not required. They may be assumed to lie on the 
time-axis in a completely arbitrary fashion, but as a matter of convenience, 
we regard to  to be the most recent in the set. 

Assume that all of the observation errors have zero mean with covariance 
matrix R (n) Then we know, from Chapter 6, that the minimum-variance 
estimate of Xn , based on (10.2.5) is given by 

(10.2.6) rt,n = Wn Y (n) 

where 

o 
n 	R - 1  T 	T 1? -1  

n 	(n) n 	n 	(n) 

Moreover, the covariance matrix of the random errors in .k* is n, n 

§* ,n 	
(T n  T R (n) n)

-1 
n  

(10.2.7) 

(10.2.8) 

This formed the basis of the Generalized Fixed-Memory Filter algorithms 
which were discussed in Chapter 8. 

We now pose the following problem. Suppose that the above estimate 
X*  n and its covariance matrix S: n  have been obtained, based on Y (n) . At n, 

some time later a further vector of observations, which we call Y (n +1) , be- 
comes available. By assumption the observation errors in Y (n +1)  are statisti-
cally uncorrelated with those in Y (n) . We wish to incorporate Y (n  + 1)  into 



T 
(Tn (I)(n, n + 1)) 

Tn + 1 
(10.2.12) 
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our existing estimate of the process. What is the most efficient way in which 

to proceed? 
As a first course of action, we might consider repeating (10.2.6), replacing 

	

(10.2.5) by the augmented relation

•Y (n + 1) 	 Tn + 1 	
X 	

+ (N (n + 1) ( ) 
(10.2.9) — 	 ) n + 

 
1 

Y(n) 	(Tn 49 (n ' n + 1) 	 N (n) 

This is of the form 

	

Y = TX n 	+ N 	 (10.2.10) 

where we have defined 

(11(n + 1) 	
N 	

(n + 
---- 

Y (n) 	 N (n) 

and 

(10.2.11) 

Since N (n + 1) and N (n) are by assumption uncorrelated, we also see that 

1 
N(n + 1)  (N( + 1)  I NT ) 	 1- ) 	R(n- 1) 	"0 ) (n — 	 

N (n) 	 0 	IR (n) 

(10.2.13) 

and so, by virtue of (10.2.10), we are able to write, as the minimum-variance 
estimate of Xn 1' 

n + 1, n + 1 = (TTR-1T)-1 TT  R-1 Y 
	

(10.2.14) 

where Y and T are as defined and where, by (10.2.13), 

R
( 
n.

+ (  
0 	R 

(n) 

0 + 3.) (10.2A5) 



is given by 

= clo(n + 1, n)i*  n + 1,n 	 n,n 

Associated with this is the error equation 

gi* 	(1)(n + 1, ar *  n + 1,n 	 n 

0 
and so the covariance matrix of N *  n + 1,n 

= 1(n + 1, n) g n  0:1(n + 1,n7 n, 

(10.2.17) 

(10.2.18) 

(10.2.19) 
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While the above scheme would certainly give the correct value for 
+ 1, n + 1 X 	we see that it is costly in memory space since both Y(n +1) and n 	1  

Y(n)  are required for its execution. Moreover the effort that went into 
obtaining rnn , prior to the arrival of Y(n + 1), is seen to have been completely 
wasted. Equation (10.2.14) makes no use of it whatever. 

The information in the vector Y (n)  was reduced, so to speak, into the 
much more compact vector by (10.2.6). What we now show is how 
Y (n) can thereafter be dropped from memory, and that X: n  can be used in 
its place. Considerable memory and computational savings will be accomp-
lished. 

First we examine the errors inl *nn , Y(n)  and Y (n +1) . These are respectively 
Nn n N (n) and N (n + 1). By assumption N (n) and N(n + 1) are uncorrelated. 
Hence 

	

E gin,n Nrn + 1) = 	N (zo  N + 

	

= 	E 1N rn)  N(Tn + 1) 
	 (10.2.16) 

= 0 

Thus 	 n  and d N (n + 1) are also uncorrelated. Nn  
Next, consider the unbiased minimum-variance linear prediction of X n +1 

 based on observations up to tn . By (6.7.21) we compute it from the transi-
tion relation 

Since the vector 	n gi* n,  is uncorrelated with N (n + 1)/ it follows from 
(10.2.18) that /V : + 1,n is also. This in turn means that the covariance matrix 
of the vector 



{  1:144n + 1,n Vin 1,n 

N (n + 1) 

E 
N T  (n +1)) ( g*  n  + 1,n 	0 

(10.2.20) 

I 0 (n + 1) 
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will be 

Returning now to the main problem in hand, we know that i *  n + 1,n and 
Y(n + 1) are related to the model state-vector X n 1 as follows: 

x 	gr* n+ 1,n 	n +1 	n + 1,n 

Y(n + 1) = T n +1 X 	+ N n+1 	(n + 1) 

• 

(10.2.21) 

(10.2.22) 

These now provide the basis of our required procedure. Define 

( y  5  : i 	 5 n + 1,n )C   

Y  (n + 1) 
Tn + 1 

(10.2.23) 

r§:*  

	

I 	ci  

	

n+1,n I 	- (10.2.24) 
0 	R (fl + 1) 

Then using Y, T and N so defined, enables us to combine (10.2.21) and 
(10.2.22) into the single equation 

Y 	TXn + 1 + N 
	

(10.2.25) 

where we note from (10.2.20) that the covariance matrix of N is the block-
diagonal matrix R of (10.2.24). 

From (10.2.25) it follows immediately that the minimum-variance esti-
mate of X n + 1 will be 

5)eicn + 1, n + 1 = (TT R
- 1 T)ll TT 	y 	 (10.2.26) 

and its covariance matrix will be 

n +1, n+ 1 = (TT R-1 n-1 
	

(10.2.27) 

We expand (10.2.26) and (10.2.27). 

N 	 
( Ng*  1  

n + 1,n 

(n +1)1 
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Consider first, by (10.2.24) 

R -1  - 
(10.2.28) 

Hence 

(§)* +1  yi 

1 
T T R -1  = 	1 T T 	 "  n + 1 

0 
(10.2.29) 

= ((`S* 	
-1 

T I  n + 1,n) 	n + 1 R-1  (n + 1)) 

and so 

TT R -1  T = On' .1.  I TT 
i  1 R + 

T n + 1 (10.2.30) 

= (69: + 1,n) 

-1 ± TT R-1 
+ 1 (n +1) Tn + 1 

Hence by (10.2.27) 

 

+ T T  R-1  
n + 1 , n + 1 = 	+ 1 , nr 	n + 1 (n + 1) Tn + 1 

(10.2.31) 

  

This will be the covariance matrix of the random errors in i*  n + 1, n + l• 

Next, using (10.2.29) and (10.2.23), 

I 	 )c)C4'  n + 1,n n + 1,n= (04: ÷  ion).- 	
T + 1 

R-1 
(n + 1) 

Y (17 + 1) (10.2.32) 
\-1 

X* 

 

= 	+1,n) 	n + 1,n + TT R 1  Y n + 1 (n + 1) 

and so, inserting (10.2.32) and (10.2.30) in (10.2.26) gives us 
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n + 1, n + 1 

- 0 

+ = 	 + 
n+1  R

-1 T 	 1? -1  y 
(n+1) n+d Pn+1, 0 i  x:+1,n 	n+1 (n+1) (n+1) 

(10.2.33) 

This can be simplified as follows. 
First, we observe, by the use of (10.2.31), that (10.2.33) is just 

-1 o * 
n + 1 (n + 1) (n = 	[0* 	X n + 1,n + T T  1?-1  n + 1, n + 1 	n + 1, n + 1 	n + 1,n) 

We now add and subtract the quantity TnT+ 1 R (211  + 1) Tn + 1 Y(*n + 1,n inside the 

final bracket on the right of the above expression. Thus 

,oc* 	 - 1 o 

• + 1, n + 1 g*n + 1,n 	X* 	 T 	-1  n + 1,n + T 	R 	T n n + 1, n + 1 	 n + 1 (n+1)  + 1) 	-1- 1 Fri + 1,n 

+ TT 	1 	 - TT fri T n + R -(n +1) Y(n + 1) 	n + 1 (n + 1) 

• o * 

 + 1X n + 1,n1 

§ n + 1, n + 1K + 1,n)

-1  
+ TT n + 1 R -1 	* (n + 1) T n + 11X n + 1,n 

=  

( 	 ) + gi'n + 1, n + i T /T+ 1 R(r11 + 1) Y (n + 1) - Tn + 1 in + 1,n 

(10.2.35) 

Then by the use of (10.2.31) this becomes 

)3C14  n + 1, n + 1 = * 

	

in + 1,n + §31' 	 T  n + 1, n +1 TrI-F1R(ni.  +1) Y (n+1) 	Tn+ 1 	+ 1,n 

(10.2.36) 

which gives us the new estimate X*n + 1, n + 1 as a linear combination of the 
prediction X: + 1,n' and the vector of observations Y (n + 1)' 

Using (10.2.17), we note that X: +1  is easily computed from Yc' , 	 and so 
we have thus obtained a predictor-corrector type recursion algorithm, namely: 

+ 1,n X 	= (I)(n + 1, tan,n 	 (10.2.37) n  

+ 	 — T 	Yif* 	(10.2.38) 
n+1,n+1 	n+1,n 	n + 1 	(n+1) 	n+1 n+1,n) 
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where 14n+lis  seen from (10.2.36) to be defined by 

fin+1 	 TT R -1  n+1 (n+1) (10.2.39) 

This is the sought-after method of combining knn  with Y (. +1)  in order to 
obtain X* n+1,n+1* 

The above recursive algorithm provides us with a set of equations known 
in the literature as the Bayes Filter, since it can also be derived using Bayes 
theorem on conditional probabilities [10.1, p. 63] . We now give an explicit 
itemization of the steps needed to perform one pass of the Bayes recursion 
algorithm. 

Assume that X*  and g* have been obtained and that a new observation 
vector Y (n +1) 	

n 	nn 
with covariance matrix R (n + ) are then received. The obser-

vation errors in Y(n+1) are assumed to beu
1
nco rrelated with the errors in all 

of the observations on which n X* was based. Then the following algorithm 
serves to incorporate the new observations recursively into the estimate: 

Bayes Filter (Batched Observations) 

n Xn+1,n 	 n = (I)(n + 1 , n) 2°C* 	 (10.2.40) , 

§n+1,n = ft 1 ) (n + 1, n) g*, 4) (n + 1, n) T 	 (10.2.41) 
1-1 

gn+1,n+1 = R g*n 4. 1,  ry + TT: +1 R nl i_ i) T n .F d 	 (10.2.42) 

n' 	ck* 	TT R 1 	 (10.2.43) 
n+1 = sn+1,n+1 n+1 (n+ 1 ) 

t +1,n+1 	t+1,n + hn+1(Y(n+1) — Tn+1t+1,n) 	(10.2.44) 

Using this set of equations we are able to process the batch of observations 
Y(n +1)' with only n n X*  and S* ,n  being retained from the preceding compu-
tations.  Once Yo + 1)  has been processed, it too can be discarded and we 

then need retain only X: + 1,n+1 and Sp +1,n+1* * 	We see that we will be in a n  
position to cycle the algorithm once more, should a further batch of observa-
tions become available. 

It is now a simple matter to extend our thinking as follows. Assume that 
successive batches of observations 

Y(1)' Y(2)' • " 
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are arriving and assume that their error vectors 

N(1) , N(2) , ... , N(n) , 

are all uncorrelated with each other, i.e.. that their overall error covariance 
matrix is of the block-diagonal form 

/R (n) 
R (n - 1) 

(10.2.45) 

This characterizes the observations as being batch-wise uncorrelated. 
Suppose, first, that we process Y (1) using a Generalized Fixed-Memory 

Filter, thereby obtaining - 

and 

(
T  TR1 

T-1 
 7- TR-1 y 

	

1 	(1) 	1 1 	1 	(1) 	(1) 

gri): 	(T 
1 	(i1) 
TR- T

1 )
-1 

(10.2.46) 

(10.2.47) 

Then by (10.2.16), N1 1 	N (2)  are uncorrelated and so we can use 

the Bayes algorithm to combine X *2,1 , S* (31,17 Y(2)  and R (2)  to obtain 5)(4'22  
and S*2,2 . Clearly, since the data are batch-wise uncorrelated, we can 
continue to cycle the Bayes algorithm every time the next batch of obser-
vations arrives. The resultant estimate XL, will be precisely the minimum-
variance estimate which could also have been obtained by using a single 
pass of the minimum-variance filter of (6.6.29), i.e. 

= (TTR -1 	TTR - i y 
n,n 

(10.2.48) 

R 

where 



Y 

 

T 
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Tn 

Tn -1 0  (n — 1,n) 

(10.2.49) 

Y(2) 	 T2  (2, n) 

Y 	 T (1)(1, n) (1) 

and R is the matrix of (10.2.45). (See also Ex. 10.1.) However, using the 
Bayes scheme, the amount of memory space required to operate the filter 
is substantially less and the computational load considerably lighter than 
that required for (10.2.48). This becomes of greater and greater significance 
if n is increasing and (10.2.48) must be recycled over and over, with an 
ever increasing amount of data and a rapidly expanding computational load. 
Thus, as the memory expands and the data-record lengthens, the Bayes 
scheme is seen to require essentially a fixed amount of storage and a fixed 
amount of computation for each cycle. 

If the data are not batch-wise uncorrelated, then in general the only way 
to obtain the truly minimum-variance estimate is to use the method of 
equation (10.2.48), repeating it with more and more effort as n increases. 
If the correlation between batches is only slight, then of course we can, if 
we so choose, treat them as though they were uncorrelated, and process 
them using the Bayes scheme. The estimates would not be truly minimum-
variance, but at least we would have the satisfaction of having a workable 
scheme. Subject to certain conditions, even with batch-wise correlation, it 
is possible to obtain the minimum-variance estimate using a modified Bayes 
scheme.t However, since space is limited, we will not detail that procedure. 
In practice it is very frequently the case that the data are in fact batch-wise 
uncorrelated and then, clearly, the Bayes scheme is of tremendous advantage. 
It will serve as the basis for a considerable number of extensions which we 
present in the work to follow. 

Finally, we note that if all of the observation instants in (10.2.2) are con-
current, then Y (. )  of (10.2.3) can be written simply as Y. and so (10.2.4) 
becomes 

Yn = Mn Xn  N n (10.2.50) 

tA. J. Claus, Unpublished Memorandum, Bell Telephone Laboratories, Whippany, New Jersey. 
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Then, assuming as before that we have stage-wise uncorrelated errors, the 
Bayes Filter on p. 386 reduces to the following: 

Bayes Filter (Concurrent Observations) 

= 4)(n + 1,n)Yee  n,n 

= 4)(n + 1,n):t.(1)(n + 1,n) T  

n + 1, n + 1 = [('S 	MT  R 	M  + 1,n 	n + 1 n + 1 n + 1 

(54:  44 2, 	R -1 
n + 1 	n + 1,n+1 n+1 n+1 

.5 	0 
n +1, n + 1 	

k7)* 
n + 1,n + H n + 1 (Yn + 1 	M  n + 1 n + 1,n) 

n + 1,n 

,§)* n + 1,n 

(10.2.51) 

(10.2.52) 

(10.2.53) 

(10.2.54) 

(10.2.55) 

In the remainder of this chapter, we analyze the filter on p. 386, but almost 
without exception every comment we make also applies to the filter given 
above. 

The reader is referred to the fmal paragraphs of Chapter 5 where we 
discussed some applications of the Chi-squared distribution function. Two 
tests were described there, both for off-line use, to be applied during the 
computer program debugging phase. The first was for verifying whether or 
not an estimate state-vector was consistent with its error covariance matrix. 
This can be applied to testing (10.2.44) in relation to (10.2.42). The second 
test concerned the validity of a prediction and its covariance matrix. This 
can be used to test (10.2.40) relative to (10.2.41). It will be shown in 
Chapter 12 that the Kalman Filter has a structure which is very similar to 
the Bayes, and so these tests should also be used there. 

The CM-squared tests are perhaps most useful when applied to the de-
bugging of the iterative differential-correction schemes based on the Bayes 
and Kalman filters, to be described in Chapters 11 and 12. As will be seen, 
the nonlinearities are handled by the use of first order approximation 
techniques, and so a method of verifying the validity of these approximations 
will be sorely needed. The Chi-squared tests are ideally suited to that task, 
and we cannot stress their value sufficiently. 

10.3 THE A PRIORI ESTIMATE 

The set of equations on p. 386 which defines the Bayes Filter, assumes 
the prior existence of knn  and sg*,, n . When Y in 	and R an 	become 

available, a new estimate j'en +1, n +1  and covariance matrix .§): +1,  n 1  are 
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obtained. As long as new data (whose errors are assumed to be uncorrelated 
with the errors in all the preceding data in the estimate) keep arriving, the 
filter equations can be recycled. The algorithm is, in fact, self-sustaining. 

In order to use the recursive procedure when Y (1)  and R(1)  first arrive, it 

is necessary that we have a set of values for .X7 0  and S*° 10 . Suppose that 
nothing whatever is known initially about the state of the process. Clearly 
then, any vector of numbers which we choose for X *10  will have to be 
completely arbitrary. Thus, for example, we might simply choose to set all 
zeros or any other set of values into 4 ,0 . Obviously we cannot have any 
confidence whatever in this choice, and we would not want it to affect the 
subsequent estimate. This zero-confidence can be conveyed to the filter 
equations as follows. 

The covariance matrix of the a priori estimate, namely g°Ki.0 , is inverted in 
order to commence computation of (10.2.42). Suppose we arbitrarily 

0 
assign to (SI)

-I  
 the null matrix. Then (10.2.42) becomes 

1, 1 (0 + T 1 T  1?-1  (1) T  1 (10.3.1) 

(T TR-1 7- 1 -1 
 1 	(1) 	1' 

The matrix of weights H of (10.2.43) now becomes 

8* T TR_ i  
H1 	 1,1 1 	(1) 

= (T 1T R I.) T 1 ) -1  T 1 T R (i) 

and so we obtain finally, 

=+ 	- T 1,0 	(1) 	1 X 1,0) 

= 3)C*1,13 
4.  (7- TR-1 7- ) --1 T T 	 - T 

1 	(1) 	1 	1 	(1) 	(1) 
 1 Lo 

which reduces to 

(10.3.2) 

(10.3.3) 

k*1,1 
= TR -1  T 	T TR 1  1 	(1) 	1 	(1) Y(1) 

(10.3.4) 

We will have thus obtained the minimum-variance estimate X 1 
0* 

1 based solely 

on Y(i)'  and the a priori estimate X1 0  is seen to have been completely 
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ignored. t  Also, from (10.3.1), we see that the covariance matrix of the 
errors in X*  ° 1,1  is independent of the covariance matrix kio . Clearly XD *13  and 
g*, i  are the correct minimum-variance values based on Y (1)  and R (1) , and so 
we see that we are able, if we so choose, to start the recursion process with 
an arbitrarily chosen vector ki0  which does not, in any way, affect subsequent 
estimation. 

Heuristically the notion of 	 o making (g* r the null matrix makes good making It 
sense. Thus, suppose that we were able to estimate a number perfectly. 
The estimates would have zero variance. The less perfect our ability to 
estimate a number, the greater would be the variance of those estimates and 
in the limit, complete inability to estimate the number would lead to an 
infinite variance in the estimates. Reversing the argument, we see that if we 
assign a variance to an estimate, then we are expressing a certain degree of 
confidence in the accuracy of that estimate. Assigning zero variance implies 
that we believe our estimate to be perfect, and the larger the variance we 
assign, the less faith we have in that estimate. In the limit, to convey the 
idea of zero confidence, we assign infinite variance. 

In the case of the initializing estimate X3 T.0  , in which we supposedly have 
zero confidence, we assign a covariance matrix which is say diagonal, with 
"infinities" on each of the diagonal elements, i.e. 

,§)* 
10 

(10.3.5) 

Then the algebra of the filter takes over and correctly gives us (10.3.1) and 
(10.3.4). Thus the indicated technique of conveying zero confidence in the 
initializing vector makes sense heuristically as well as giving us the required 
answer. 

Suppose, next, that something meaningful is known about the process 
state-vector at time zero. As an example, let the state-vector be the six 
numbers 

X = (x, y, z, 	&. 
	

(10.3.6) 

defining position and velocity in cartesian coordinates. Then the knowledge 
about these quantities must also, in some way, be accompanied by information 
which enables us to assign variances to those estimates, for if not, then in 

tNote that the existence of It, 1  in (10.3.4) depends on whether or not T( 1)  has full column-
rank. If it does not, then (10.3.4) cannot be executed. Under these conditions we could not 
start the algorithm in this way. This will be discussed again later. 
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reality we cannot have any confidence in the estimates, and infinite variances 
must be assigned. 

Suppose that our a priori knowledge permits us to assign variance 0- 2  to 
each of the position estimates x0 , yo  and z0 , and the quantity or as the 
variance of the velocity components, i o , 5,0  and io . We thus have 

a  21 1  0 

0 	a 2 r v 

(10.3.7) 

where each of the indicated submatrices is 3 x 3. This matrix, together with 
the vector chosen for X*10  are now sent to the filter and the first estimate, 
after Y (1) has been processed, will be (see (10.2.33)), 

- (s* 
	-1 o 

1,1 - L 71,0/ 	-4-  T 1 2.  R (-11) 71 	. 1 7.  R (-11) Y  (1) + 01,0) X*1,0] 

(10.3.8) 

This is seen to be a weighted combination of Y (1) and X* 0 , with the 1  
weighting being essentially "inversely proportional" to the covariance 

matrices R (1) and §* 	Depending on the matrices T 1 T R (-11) and (§* 10- 	 10 	2  

the vectors Y (1) and 	0 X1  will be stressed lightly or heavily in the formation 1, 
of )°C*  If for example T T  R -1  has very large terms in relation to ( K  )-1  11. 	 (1) 	 1,0 	2  

then X1 1  will be essentially based on Y (1) . On the other hand if T IT R(11)  is 
\ 

comparable to (S1 0)-1 , then I1 1  will depend equally on Y (1)  and X% and 

so forth. We are thus able, by the choice of the matrix g *io , to influence 
the subsequent estimate to a greater or lesser extent, and to cause it to 
depend heavily, lightly or not at all on X1 ,0 . 

It is clear then that the Bayes algorithm provides us with a mechanism 
for making use of any prior knowledge which we might have about the 
process, at the time we start observing it. However the reader should 
recognize that unless some effort is put into the selection of X7 ,0  
difficulties could be encountered in operating the filter. 

As a few examples in which troubles might occur if we are not sufficiently 
careful, we consider first the case where the user hopes to start the filter 
with no prior knowledge. Reference to (10.3.1) shows that if we set 

04,10 	0 then, for an estimate to exist, T must have full column-rank. , 
Only then will we be able to start up in this way. (See Examples 10.5 and 10.6.) 

and §i,o ,  
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Consider next the case where prior knowledge exists about some of the 
state-variables and little or nothing about the remainder. For example let 
aP in (10.3.7) be relatively small and CT 2  very large. Again troubles could 
be encountered because we are now essentially asking the filter to estimate 
velocity from only the first observation vector Y (1)  and this may or may 
not be possible. The problem will show up as a difficulty in inverting 

(Si 0 	+ T1  R -1  T1  in the execution of (10.2.42). 
(1)  

In conclusion we point out that unless there are strong reasons to the 
contrary, the reader should use only diagonal matrices for Si 0 . If off-
diagonal terms are included, then they convey that the errors in the estimate 
X*10  are correlated, and it is difficult enough to estimate X *10 , let alone esti-
mate the correlation coefficients of its errors., This last comment should be 
viewed in the light of the comments made on the Chi-squared density 
function in Section 5.6, where we demonstrated how strongly the likelihood 
of an error vector can depend on the off-diagonal terms of its covariance 
matrix. 

10.4 BASIC STRUCTURE OF THE BAYES FILTER 

The Bayes Filter equations which we derived in Section 10.2, serve to 
combine the vectors 3"c* n  and Y in + 1)' in order to form the minimum- n  

variance composite estimate X*. +1, +1 . The covariance matrices 	n §* and 
R an + 1) were also used as inputs, and the matrix gn + 1, n + 1 * 	was obtained 
along with +1,  n 	We We now show that those equations are only a special 
application of a more general method, and that an understanding of the 
latter will provide us with a very flexible technique which can be modified 
in many ways to suit a large range of situations. 

The present chapter, like Chapter 8, is an extension and application of 
the very basic concept of minimum-variance estimation as developed in 
Chapter 6. In Chapter 6 we also showed how the inverse covariance matrix 
serves as a very natural weighting function, by which we can stress high 
quality data more heavily than low grade data. We continue to utilize the 
same basic ideas, but now, by a slight extension in our thinking, we will be 
able to derive a much more widely usable set of algorithms, the Bayes 
filter of Section 10.2 being just one of them. 

The basis of the derivation in Section 10.2 was the pair of equations 
(10.2.21) and (10.2.22). We rewrite them here: 

=  n + 1,n 	X n + 1 	n + 1,n (10.4.1) 
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Y( n +1) = Tn +1 Xn + 1 	N(n +1) 
	 (10.4.2) 

These were then combined into the single relation 

(31*  n+ 1,n 
Xn +1 

Tn +1 	N (n + 1) 

(10.4.) 

The two equations (10.4.1) and (10.4.2) show that the vectors Yen +1, and 
nn + 1) are related to the state-vector X n +1  by the linear transformations 
I 	 + 1,n and Tn + 1 	 n respectively, to within their respective error vectors N * 	and 
N (n + 

Suppose we now consider any two linear transformations, say T A  and T B  
and let 

VA  = T A  Xn  NA 	 (10.4.4) 

VB = T B  Xn  + NB 	 (10.4.5) 

These can initially be thought of as two linear observation relations, where 
VA  and V B  are the observation vectors, and NA  and NB  are the corresponding 
error vectors. We shall show additionally, however, that V A  and VB  may 
also be estimates of the state-vector X n , and it is this generalization which 
forms the basis of the present section. Combining (10.4.4) and (10.4.5) gives 

T VA 

	

 T B  V 

	= (— 	÷ \ 1 

	

V 	 n 	NB  
(10.4.6) 

We now make the basic assumption that NA  and N B  are uncorrelated. Let 
the covariance matrices of NA  and NB  be SA  and SB  respectively. Then the 
covariance matrix of the vector 

(NA  N5) 
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is clearly 

SA  i 0 
R( 0— -- 1 SB--) (10.4.7) 

Now, (10.4.6) is of the form 

Y = TX,, + N 	 (10.4.8) 

We thus see that the minimum-variance estimate of Xn , based on the vectors 
V A and VBl iS 

= (TT R -1  T) 1  TT 	Y 	 (10.4.9) 

where 

Y = (10.4.10) 

and R is defined in (10.4.7). The covariance matrix of the estimate will be 

= (TTR-1 T) 1 	 (10.4.11) 

If we substitute (10.4.7) and (10.4.10) into (10.4.9) and (10.4.11), then 
it is easily verified (see Ex. 10.12) that the result is the pair of equations 

and 

=T 
A 

 Ts  A 1  T A  + T  BTs 1 T j_ 
	B (10.4.12) 

X*  = S*  (T A T -1 V + T TS 1  A A A 	B B B (10.4.13) 

The Bayes Filter derivation in Section 10.2 was just a special application of 
this result, obtained for the case where 



396 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

VA "7-.  

T A  = 

NA 1.÷:  
• 

SA =1-7  

17)*n + 1,n 	V B =  Y (n + 1) 

1 	 T B = T n  

+ 1,n 	NB =  N (n + 1) 
cfico 
'3n + 1,n 	S

B 
F-- R (n + 1) 

(10.4.14) 

but it is clear now that any vectors VA  and VB  related to the state-yector by 
relations of the form of (10.4.4) and (10.4.5) can be combined by the use of 
(10.4.12) and (10.4.13) to yield a composite minimum -variance estimate. 
We now demonstrate the above technique by applying it to a few cases of 
practical interest. 

Example 1 

We wish to combine a minimum-variance prediction of X n with an obser-
vation vector, to form the composite minimum-variance estimate. Thus we 
have, as the "observation" relations 

= X + gi* n,n - 1 	n 	n,n - 1 
(10.4.15) 

and 

Y (n) = T n Xn  N (n) 
	 (10.4.16) 

where 1** - 1 and N (n) are, by assumption, uncorrelated with each other 
n,n  

and where S*°,,. _ 1  and R (n) are their respective covariance matrices. Then 
the composite minimum-variance estimate is, by virtue of (10.4.13), 

[ 

1 0 *  

= tn On, n - 1)

\- 

 X  n, n - 1 ± Tnr R (-ni) Y(n) 

where by (10.4.12), 

n, n - 1 = Kg* 	r T
n 
TR-l

(n) 
 T 

(10.4.17) 

(10.4.18) 

This last pair is seen to be precisely the same as (10.2.34) and (10.2.31) 
respectively, and so they are the basis of the Bayes Filter as obtained in 
Section 11.2. 
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Example 2 

Let the two "observation" relations be 

X = X + N*  A 	n 	A (10.4.19) 

X*B  = Xn 	 (10.4.20) 

i.e. we have two estimates of Xn which we wish to combine, and assume that 
their errors are statistically uncorrelated. Then the composite minimum-
variance estimate based on these two relations is 

Yc* 	= 	[(e * (A,B) 	(A,B) )-1 	(s* 	x A 	B 	131 

where 

sg( ,B ) = PicAr 1  + (S* 1 — 1  
B' 

(10.4.21) 

(10.4.22) 

Now let a further estimate become available, i.e., 

X *c  = Xn  + N*c 	 (10.4.23) 

whose errors are assumed to be uncorrelated with those in X*A  and X (and 
hence also with 
including X*c , will 

= (A,B,C) 

where 

— (A,B,C) 

those in 
be 

44  § (A,B,C) 

[69* 	r (A,B) 

X7A,B) ). 

[(§* 	r 1  1*  (A,B) 

1  + (S* ) —  C 

Then the overall composite estimate, 

(AB) ± 1-12c1 	 (10.4.24) 

T 1 	 (10.4.25) 

(It is shown in Ex. 10.13 that these two results can be further reduced. 
See also Ex. 10.3.) 

Basically two types of vectors have been considered in the above examples, 
namely estimates, characterized by a relation of the form 

X*  = X n + N * 
	

(10.4.26) 
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and observations characterized by 

Y(n) = T n Xn N(n) 
	 (10.4.27) 

The former have been vectors which are defined in the state-space of the 
process, and the latter were vectors defined in an observation-space related 
to the process state-space by the linear transformation T. We have seen 
that the method of combination can be generalized at will, and among those 
possibilities, the Bayes Filter of Section 10.2 was only one example, char-
,acterized by the fact that precisely one process state-space vector, namely 

n  _ I, was combined with one observation-space vector, Y oo  . It was this 
particular choice which permitted us to go from (10.2.34) to the very 
simple recursive form of (10.2.36). However, for any particular problem in 
hand the reader should always bear in mind that that choice was just one of 
many possible, and that some other form may well be better suited to his 
particular need.i .  

In the final analysis, nothing really new has been added, other than a few 
additional ideas on manipulation. The basic concept is still that of minimum-
variance estimation as discussed in Chapter 6, and all that we have done is to 
draw the attention of the reader to simplifications which occur when the 
total observational error vector can be partitioned into statistically uncor-
related sub-vectors. We have also pointed out that estimates of the state-
vector can themselves be treated in the same way as observation vectors, in 
the combination process of obtaining a composite minimum-variance esti-
mate. 

10.5 PROPERTIES OF THE COVARIANCE MATRIX 

For the Bayes Filter, the covariance matrix of the composite estimate is 
given by (10.2.42) as 

-1 s
n, n 

-t: 	-1 
= [O 	± rzr R  (n) T  ni n,n (10.5.1) 

We consider briefly some of the properties of this equation. 
As a start we note that, just prior to incorporation of the data, the 

covariance matrix of the estimate is 	 n - 1' §* 	and just after incorporation it  
is kn . If something meaningful has been added to our knowledge of X n by 
the most recent observations, then in some sense tn  must be "smaller" 

tFor an application of these techniques, the reader is referred to [10.2] . 
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than 	 n - 1• S* 	By (10.5.1) we see that n,  

= (§)* 	y 1 + T  R _ i T  ,n)- 1 	
n, n - 	n 	(n) n 

(10.5.2) 

and so because of the addition on the right, the inverse of kiin  is, in some 
way, "larger" than the inverse of n - 1 §* 	. If the above matrices were scalars,  
then clearly we could state outright, by virtue of (10.5.2), that 

g
n, n 

* < g * 

n, n - 1 (10.5.3) 

However, being matrices, we cannot write anything as trivial as this, and a 
more detailed study of the relationships between the cbViiiiiice matrices of 
the estimate before and after data-incorporation is called for. We accord-
ingly analyze (10.5.1) in some depth and we will prove the following: 

Theorem 10.1 

At least one diagonal element of t n  is strictly less than its counterpart 
in 	n - 1 S* 	with the remainder of the diagonal -elementsin the former being  
less than or equal to their counterparts in the latter. 

To carry out this task a -tool known as the inversion lemmat is required. 

Lemma 

Let S and R be positive definite matrices and let R be possibly of different 
order than S. Let T be a matrix such that TT R -1  T is of the same order as S. 
Then 

(S-1  + TT R"' T) -1  = S - ST T  (R + TST T ) 1  TS 	 (10.5.4) 

Proof 

Form the product 

( S-1  + T T R -1  [S - ST T (R + TST 	TS] 

Then by direct expansion and a small manipulation (see Ex. 12.1), it becomes 
a simple matter to verify that the above is precisely equal to the identity 
matrix. This proves the lemma. 

The origins of this lemma are somewhat obscure. 'However, the left side of (10.5.4) emerges 
naturally in the Bayes derivation (c/f (10.2.31)) whereas the right side emerges in the derivation of the 
Kalman Filter (see Ex. 12.6), and so this is probably the way in which the lemma originated. 
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We now return to the proof of Theorem 10.1. First we apply (10.5.4) to 
(10.2.42). This enables us to write the latter (after setting n to n - 1) as 

Sn,n T 	T §* 	(10.5.5) - g* 

	

=.7  5̀n,, n - 1 	n, n - 1 T 	T n 	(n) 	n n, n - 1 n 	n n, n 1 

which in turn means that 

,§* 	- 	§* 	 T n n  _ T n  T)
-1

T 
o 

n S:, n - (10.5.6) 

	

n,n 	n, n - 1 n 	(n) 

Now both R (n) 	n and §* , n - 1 are positive definite. Hence so. is (R n 

Tn 61:, n - 1 TnT) and hence the matrix on the right of (10.5.6) is non- , 

 negative definite. (See Ex. 10.26.) Moreover it is not a null matrix unless 
T n is null, a possibility which can be ruled out. 

The above argument thus proves that the difference kn, n _ 1  — §41n,n  is non-
negative definite. But this then means that its diagonal elements are 
nonnegative, i.e. 

o L n, n - 1 - n,n 

and so we must have 

• 	
5_  [1§)*  

n, n - 

(10.5.7) 

(10.5.8) 

Moreover, since §*, _ 1  - gt, is not a null matrix, then, being nonnegative 
definite, at least one of its diagonal elements must be strictly positive (see 
Ex. 10.17). Thus in (10.5.8), strict inequality holds for at least one value of 
i and so the theorem is proved. 

It follows then that the variance of at least one, and possibly more than 
one, of the elements of the estimate vector is definitely reduced by incor-
poration of the observations, with the variances of the remainder at worst 
remaining unchanged. A definite improvement thus always occurs when 
(10.5.1) is cycled. 

Having considered the relationship between k„ „ and 	n  _ /, we now 
0 

examine the somewhat larger problem of how S* is related to 

0 _ 1, n 1 . 

S*- 1, n - 1• 

n 	n There are two stages in the computation of g* from S* 	The n  
first is the predictor equation, namely 

n, n - 1 	clo(n, n - 1 )

_1, n - 1

0(n n - 1)
T 	 (10.5.9) 
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which is then followed by the corrector equation 

n,n n, n - 1
) 1  + T n T _ R1(n) T 

-1 

ni (10.5.10) 

Now it is a fact that with most practical systems, when we make predictions 
out of the observation interval on which the estimate is based, one or more 
of the diagonal elements of , 10: usually increases as the errors are propagated. 
This is readily understood when we recall that the estimate was obtained by 
a curve-fitting process in which a model trajectory was selected that best fits 
the data over the observation interval. Outside of that _interval vat. placed no 
constraints on the fit, and so it is natural to expect divergence between the 
model and true trajectories, increasing in size the further we move our pre-
diction point out of the observation interval. It should be pointed out that 
the divergence we refer to here is not in the nature of a bias, for we assume 
that the chosen model matches the true process precisely. It is present 
because of the zero-mean random errors in the observations and it too is a 
vector of zero-mean random variables, satisfying the propagation equation 

N*, 
n-1 	to-1 

= 4:1)(tn-1 + 	tn-d N
tn-i, tn-1 ‘  

(10.5.11) 

Then as is increased and these random variables propagate forward, it is 
usually the case that we get an increase in uncertainty, manifested by a 
growth in some or all of the diagonal elements of the covariance matrix of 
(10.5.9). 

We are of course not claiming that the uncertainty always increases for all 
systems as we predict forward, and it is in fact quite easy to demonstrate 
systems in which et...1+  ta _ i  0 as O. (see Ex. 10.19). We are merely 
pointing out that in general prediction leads to an increase in uncertainty 
although in very special cases it may reduce it. 

Returning now to (10.5.9) and (10.5.10) we thus recognize that the 
former usually causes an expansion in at least some of the diagonal elements 
of s* (although it is possible that a contraction occurs), whereas by (10.5.8) 
we know that (10.5.10) causes a definite contraction in some of the ele-
ments and leaves the remainder unchanged. Clearly then, only if the net 
contraction on the average exceeds the net expansion in every one of the 
diagonal elements of Sn will this matrix approach a null matrix as the 
filter is cycled, and only then will our knowledge of the true state ultimately 
become perfect. However, it is certainly possible that the degradation caused 
by prediction consistently exceeds the improvement wrought by the 
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incorporation of the observations. In this case one or more of the diagonal 
elements of Sn n  will increase without bound with n . . The operation of a 
predictor/corrector pair such as (10.2.40) and (10.2.44) is thus usually a 
see-saw battle between the losses due to prediction and the gains due to 
observation. 

The ultimate objective in expanding-memory filtering is to obtain an 
estimate of the true process to within errors that go to zero as n goes to 
infinity. This is equivalent to having the covariance matrix it n  shrink to a 
null matrix as n is increased. In practice this is not easily accomplished, but 
it serves as an ideal towards which we strive. In the light of the comments 
given above on the gains and losses made by correction and prediction we 
now make the following further statements. 

As a start, it is clear that we should try to avoid having the intervals 
between observations excessively large in order to curtail the degradation 
caused by prediction. Secondly, the quality of the observations must be as 
high as possible so that the improvement induced by their incorporation is 
large enough to more than overcome the losses caused by prediction. How-
ever, even assuming that we have met both of these requirements a further 
and perhaps dominant aspect of the problem must be properly handled. 

In Section 8.9 of Chapter 8 we examined the conditions needed to ensure 
that the fixed-memory algorithms could be executed. This reduced to 
developing the necessary and sufficient conditions for the matrix T of 
(8.2.4) to have full column-rank and led to Theorems 8.1 and 8.2. The 
discussion centered around the concept of observability, taken from the 
Control Theory literature. 

In the present chapter we have developed recursive methods for obtaining 
precisely the same results as the algorithms of Chapter 8 provide. It would 
be upsetting, to say the least, if our new techniques were able to succeed in 
situations where those of Chapter 8 fail. However this is not the case, and 
complete consistency prevails between the two approaches, as we now show. 

The general case of time-varying or nonlinear models is beyond our scope 
and we shall have to satisfy ourselves with an analysis of the constant 
coefficient linear model and observation scheme, as we did in Section 8.9. 
From this it is hoped that we can gain some insight into the more general 
problems which, in practice, we are usually forced to handle. 

The recursive method differs from the fixed-memory method in that the 
former includes the possibility of the incorporation of a priori information. 
We now consider a simple example in order to contrast the two procedures 
against each other. As our model we take a first-degree polynomial, exempli-
fied by the state-vector 



X( t ) 
5c (t) 

and differential equation 

X (t) = AX(t) 

where 

GENERALIZED EXPANDING-MEMORY FILTERS—THE BAYES FORMULATION- - 403 

(10.5.12) 

(10.5.13) 

A = • (10.5.14) 

Then the transition matrix is readily shown to be (see (4.6.28)) 

b(0 = 

As our observation scheme we take the scalar equation 

y n  = MX. + v n  

in which 

M 	(0, 1) 

(10.5.15) 

(10.5.16) 

(10.5.17) 

Then either by Theorem 8.1 or 8.2 the reader can verify that the fixed-
memory scheme is inoperable since T will not have full column-rank. In 
fact by (8.2.4), assuming three observation instants, we get 

TT = 
(0 0 0 

1 	1 	1 
(10.5.18) 

If we now take as our covariance matrix for the three observation errors 

/1 0 0\ 

R = 0 	1 	0 
	 (10.5.19) 

\O 0 1/ 



(1 0 

0 	1 
2 
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then we see that 

(0 0) 
TT R-1 T 

0 1 
(10.5.20) 

which is singular. Thus the fixed-memory algorithm cannot be executed. 
Consider now the recursive method and assume that we have, as the 

covariance matrix of an a priori estimate, the matrix 

1 0 
§*1,0  = 

0 1 
(10.5.21) 

Then (10.2.53) gives us 

-1 
)-1 

1 	13o 

	o 1 (0, 1) 

 1 	1 

(10.5.22) 

in which we have used the 0,0 element of R in (10.5.19) as the variance of 
the first measurement error. This now means that the entire Bayes algorithm 
can be executed, giving us the estimate X *11 . We thus begin to wonder 
whether the recursive method with an a priori estimate can succeed despite 
the fact that the fixed-memory method is inoperable. 

If the above situation really were the case, then we would have grave 
cause for concern, but fortunately the contradiction we seem to have arrived 
at is only illusory. In fact even though the recursive method is capable of 
putting out estimates, we find that it soon begins to degenerate because its 
covariance matrix develops diagonal elements which become unbounded. 
This means that the confidence which we can have in those estimates must 
soon diminish to zero. 

In Chapter 14 we will study the behavior of kri n  of the recursive algorithms 
of this chapter. We will show that in general, in the case of the linear 
constant-coefficient model and observation scheme with stationary error 
statistics, precisely the same conditions as were developed in Theorems 8.1 
and 8.2 are also necessary and sufficient for tn  to go to a null matrix as 
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n ..t For the present however, we must merely content ourselves with 
demonstrating that this is true in the case of the above simple example. 

The reader can readily cycle (10.2.52) and (10.2.53) by hand, starting 
from (10.5.22). He will find that the 0,0 element of 

n S*  rapidly begins to 
grow and continues to do so without bound. In Figure 10.1 we show the 
result of a computer run in which such a procedure was carried out, and in 
it we see how the 0,0 element of 

n 
S* tends to infinity as the algorithm is 

cycled repeatedly. (By contrast in Figure 10.2 we show a run of the same 
situation with the exception that M of (10.5.17) is taken to be (1, 0). In this 

We will also show at that time, that this behavior of §,* 4, constitutes proof that the algorithm is 
stable. 

t Note that these two equations can be cycled independently of the rest of the Bayes algorithm. 
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0,0  vs. n, using M = (0,1). 
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§:,. went to zero.) 
In summary then, if the fixed-memory method is inoperable because 

Theorem 8.1 or 8.2 is not satisfied, then the recursive method, even though 
formally operable, eventually becomes meaningless as an estimation pro-
cedure. 

The treatment here has, of necessity, been very brief, and once again, as in 
Chapter 8, the concept of observability in the sense used in Control Theory, 
emerges as the key to a satisfactory match between the observation scheme 
and the model. (See [10.3] , [10.4] , [10.5] .) If the conditions of observa-
bility are met, then the recursive filter operates properly, and if not then it 
fails. Thus complete consistency prevails between the fixed-memory and 
recursive methods. 

Returning briefly to the time-varying or nonlinear cases, we recognize that 
these are much more difficult to analyze. Intuitively however, in order to 

case we see that [g* ,z1  0,0 
goes to zero. For both runs, the 1,1 element of 

ri  
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ensure that in all cases 	0 as n 	we see that attention must be 
given to the following three problem areas. a) First and foremost, the 
observation scheme must be so arranged that the process is being "properly 
observed." This is a subtle question that will have to be tackled by a mixture 
of intuition (gained from the constant-coefficient linear case) and simulation 
studies. b) Second, the observations should be made sufficiently frequently 
so that the losses due to prediction do not become excessive. c) Finally the 
quality of the observations must be good enough so that a large enough 
improvement does indeed result every time the algorithm is cycled. 

The stability properties of the Bayes recursive algorithm will be investi-
gated in Section 7 of Chapter 14. 

10.6 COMPUTATIONAL ASPECTS 

From a computational standpoint, the only equation in the Bayes Filter 
algorithm on p. 386 which offers any problems is (10.2.42), namely 

§34. = [ 
	

1 

Cs: - 1)- 
+ T Fri T 

- 

n,n 	 n 	(n) 
(10.6.1) 

This equation calls for Ole inversion of three matrices, one of the order of 
the observation vector and two of the order of the state-vector. As a result 
it generally constitutes a large part of the total computational load of the 
algorithm. In a later sectiont we will show how, under certain circumstances, 
we can reduce the number of matrix inversions to two, thereby effecting a 
large saving, but for now we discuss (10.6.1) as given. 

The first stage of the computation of. (10.6.1) requires that we evaluate 
R (ly  In Chapter 8 we made some comments on possible matrix inversion 
problems, and naturally they apply here. The matrix %) may be of large 
or small order and may be easy or hard to invert, depending on how well it 
is conditioned. We do not dwell further on this problem here and turn our 
attention to other aspects of (10.6.1). 

Unlike the filters of Chapter 8, the matrix T.  above need not necessarily 
have full column rank. However, whether it does or not, the product 
T n(n  T  R -1  T

n 	 n is nonnegative definite. Then since (g* n - 1)
-1  is positive definite, ) 	 ,  

we see that the sum 

0: 	-1 	
T 

 17 1) 

+ T 	T 
n 	(n) n 

t Section 11.3. 
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will be positive definite, since the sum of a positive definite and a non-
negative definite matrix is again positive definite. (See Ex. 10.26.) Hence 
in the normal course of events, the matrix kenn  will be well defined and, 
subject to the usual problems of matrix inversion, fairly easily obtained. We 
consider now a number of extreme situations which could give rise to 
computational difficulties. 

Suppose first that a set of very precise uncorrelated observations is 
presented to the filter. In this case R oo  will be a diagonal matrix of small 
numbers, and we can write it as 

R() = EQ (n) 
	 (10.6.2) 

say, where E is a small scalar and C/ (n)  is diagonal. For simplicity we assume 
for the present that Q uo  is the identity matrix. We thus have 

T 1 Tn  /2 -1. T = — T: Tn (n) 11 
(10.6.3) 

which is a matrix whose elements become larger as E becomes smaller. 
Suppose now that T does not have full column-rank, as it may well not. 

Then the above matrix which we add to 	 n - 1 (§* 	)-1  is a singular matrix, and n,  

even though the latter might be a well-conditioned positive definite matrix, 
their sum will be badly behaved for 6 very small. To see this we have 

(

§* 
T 

1[04. + T  TT

J  n - 1 n n n, n - n 
(10.6.4) 

and so without loss of generality, we in fact need only examine a matrix 
sum of the form 

E(14*  n, n - 1)-1 TnT  Tn 

where E is small. Now as E diminishes this sum approaches T: T n  , and so, 
since the latter was assumed to be singular, the sum becomes increasingly 
difficult to invert. This means that, for sufficiently small E in relation to 
the precision of the arithmetic, the, sum on the left of (10.6.4) will be 

badly distorted by the machine, the terms of 
(g*n,  n -1)-1 

being lost either 
partially or totally in the addition operation, and its inverse, namely the 0 
matrix S* ,n ,  containing errors which become larger as E.  decreases. (See 

n 

Ex. 10.27.) 
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Clearly then extremely precise uncorrelated measurements could, under 
the above circumstances, give rise to trouble in operating the Bayes algorithm. 
This is frustrating, to say the least, since one would think that very precise 
uncorrelated measurements would be just the ones which are most to be 
desired. 

The difficulty of course arises, not because the elements of R oo  are small, 
but because T. is of inadequate rank. The algorithm attempts to discard 
past data and to form an estimate based almost entirely on the most recent 
very precise set, and unless T. has full rank, we know that this is impossible. 
One way to avoid the problem would be to ensure that T. is in fact of full 
rank by constructing our observation scheme accordingly.t 

In practice however this may not always be possibly, -and -what we are 
then forced to do is to multiply R an)  of (10.6.2) by some factor greater than 
unity, thereby artificially offsetting the smallness of a and so downgrading 
those measurements. The net result is to continue to rely, to a larger extent 
than theoretically necessary, on the previous estimate, and so the estimation 
process is intentionally degraded. However since this avoids the serious 
pitfalls which we might encounter by using the true R oo , it is a' small price 
to pay. A poor estimate is certainly preferable to no estimate at all. 

We can generalize the -above arguments slightly and consider precise 
observations which are not entirely uncorrelated. In this case R oo  is again 
made up of small elements but is no longer diagonal. We write it as 

R ()  = e Q (n) 

and then, clearly, its inverse, namely 

R 1  = 1.  
(n) 	c 	(n) 

(10.6.5) 

(10.6.6) 

will be considerably larger, term by term, than the inverse of a matrix such 
as Q uo , which was supposed to be typical of the covariance matrices which 
preceded R oo  . Again the 1/E term will cause numerical problems and the 
arguments given above will continue to apply then T. is of insufficient 
column rank. 

In addition to problems arising when the observations are extremely 
accurate, difficulties will also arise if the observational errors are highly 
correlated, for, when that is the case, then the matrix R oo  will be nearly 

t The reader is referred to Sections 8.8 and 8.9 where we examined some of the factors controlling 
the rank of Tn  . 
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singular. This as we know means that the matrix is badly conditioned, and 
so numerical difficulties will be encountered when we attempt to invert it. 

Thus the Bayes Filter algorithm could run into computational problems 
if a batch of either very accurate data or highly correlated data are presented 
as an input. 

If the accuracy of the estimate is steadily improving i.e. if the diagonal 
elements of S *.,n  are diminishing monotonically with n (see Section 10.5), 
then the attention given to successive batches of observations will diminish 
steadily, assuming more or less constant accuracy of the data. Thus, referring 
to (10.2.43) and (10.2.44) we see that as S*,n  shrinks, so the matrix Hn n 

shrinks, and the estimate begins more and more to follow one particular 
trajectory. This, after all, is precisely what we would want from our filter, 
and only if a vector of very accurate observations is obtained, would l' uo 

 again enter significantly into the choice of 

This shrinking of the weight matrix lin  of (10.2.43) can, in practice, 
cause serious troubles if the differential equation used as the model is not a 
close representation of the differential equation really governing the process. 
This could easily be the case a) if the true equations are not well understood, 
and we have been forced to assume a set of approximate differential 
equations in order to construct the filter, or b) if we have deliberately 
elected to use a simplified model in order to reduce the amount of compu-
tation in cycling the filter. 

In such a situation, the estimate will develop a bias which corre-
sponds precisely to the systematic errors discussed in Chapter 7. As time 
passes, and the weight matrix li n  shrinks further and further, the term 
Y (n) — T

n n  X* n - 1 in (10.2.44), which is actually the prediction error, and  
which should serve to tell the filter that it has settled onto an erroneous 
trajectory, becomes ignored to a greater and greater extent. The filter, so 
to speak, adopts the attitude: "Don't confuse me with the facts — my 
mind is already made up!," and while the output is becoming smoother and 
smoother as §* shrinks, it will also become more and more biased by syste-
matic errors. 

The problem of course lies in the decision to use an expanding memory. 
Only if the true process equations are very closely duplicated by the 
model can we continue to expand the observation interval. In such a 
case the true trajectory will be approximated better and better, free of 
bias errors, with an ever diminishing error covariance matrix. However, 
if those differential equations are not well known, or are too complex 
for accurate implementation, then the use of an expanding memory 
beyond a certain point is clearly undesirable. There are two alternatives. 
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First, we can resort to a Generalized Fixed-Memory Filter as discussed in 
Chapter 8, in which case the bias errors can be balanced against the random 
errors in the estimate by the choice of memory length. The price paid in 
going to a fixed-memory filter is high however, since the computations 
expended in obtaining one estimate are not used when the next estimate is 
derived. Moreover the memory space required for storing the data is 
generally large. 

The second alternative, which has all of the computational and memory-
saving advantages of expanding-memory filtering, is to use what we call a 
Fading-Memory Filter. This class of filters will be discussed in the final 
three chapterso 

n 
 of this book where we show that, in their case, the diagonal 

elements of s* asymptotically approach a plateau above zero which n 

keeps fin  non-null, and thereby permits the prediction error Y (n)  T n - 1 
of (10.2.44) always to influence the estimate. 

EXERCISES 

10.1 Generalize the weighted least-squares criterion (6.9.5) using the 
residual vector 

E (X*  ) 

(

i*n,  n - 1 — X*n,n 

Y — T X *  
(n) 	n rz,n 

(I) 

and covariance matrix 

) n, n  - 1 

	

r  (n) = 	
A- 

I
I R. 

where Sn, n  _ 1  and R 0)  are, respectively, the covariance matrices of 
X*  n 1 and Y (n) in (I). (Note that we have assumed the errors in 

-  

these vectors to be uncorrelated with each other.) Minimize the 
resultant scalar 

T 

	

e Oc*  ) 	[E (X *  11 r- lE(x* 

	

nn 	 nn 	(n) 	nn 

and show that we obtain the Bayes Filter. 
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10.2 a) Let Y()  of (10.2.3) be made up of two vectors, i.e. 

n 
Y(n) 	

Yn n - 1 

and let the errors in Y n and Yn -1 be uncorrelated, i.e. 

R (n) 	
n 

I 

I R 
n - 1 

Verify that (10.2.42) gives 

= 
	1-1 	T -1 

n,n 	n, n - 2) 	
m 

n  R  n Mn 

+ (I)(n — 1, n)TR-1 M n 	— 1, n)]n -1 	-1 n - 1 

b) We now cycle the vectors Y n  and Yn  _ 1  separately through the 
Bayes Filter on p. 389. Verify that (10.2.52) and (10.2.53), 
after being cycled twice, give exactly the same as (II) above. 

c) If R (n)  in (I) above is not block diagonal can we perform (b) 
above? 

10.3 Starting from the two "observation" relations 

i = X)C* 	NA A 	n 	A 

i* = X A- gl *  B 	 B 

with errors which are uncorrelated with each other, verify that the 
weighted least-squares error criterion (c/f (6.9.5)) becomes 

e (XL) = E (X%) r(„) E (X%) 

where 

(I) 

-1 
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E (4) 
(

3°C*A  — X: , n 

 3)C*  — r B 	n,n 

( *A  

F (n) 	796  ;. I 	B 

Minimize e over 4,n  and verify that (10.4.21) results. 
10.4 Show that if we multiply the covariance matrices of all inputs to a 

Bayes Filter by a scalar A2  and also multiply the a priori covariance 
matrix §* by A 2 , then the estimate X* is unchanged. Infer then 10 	 n,n 
that we need only know all error statistics to within a constant in 
order to obtain the minimum-variance estimate (c/f (6.10.7)). 

10.5 Suppose that we initialize the Bayes filter on p. 386 arbitrarily and 
that we accordingly set 

(t, o)-- 1  = 0 	 ( I) 

to signify zero confidence in the initializing vector. Suppose, how- 

ever, that T IT R(11)  T1  is singular and that (10.2.42) cannot be 

executed. What does this indicate? How shall we proceed if we 
insist on using (I) above? 

10.6 a) The minimum-variance estimate 

X.*  n,a 

•  
(7- 	_ TR-1 	

, 
T TR-1 y  

a 	(n) n 	a 	(a) (a) 

requires that TnT /2;1)  Tn  be nonsingular. Suppose that this 

matrix is singular but that R (n)  is block-diagonal. We are thus 
able to break Y (n) into subvectors (corresponding to the blocks 
in R(n))  which we process successively through a Bayes Filter. 
How is it possible that we now obtain an estimate? 

b) If the Bayes Filter in a) above is initialized with §*10  = 0 (i.e. 
completely ignoring the a priori estimate) can we ever obtain 
an estimate? 

10.7 A computer is cycling the Bayes algorithm on p. 389 with the 
observation instants equally spaced. Y n  _ 1  has been received and is 
incorporated, giving X* °,2- 1, a -1 and 	- 1, n -1. At time t o however 
Yn fails to arrive. There are two courses of action. 
a) Predict forward to to  +1  by a double operation of (10.2.51). 
b) Insert arbitrarily chosen numbers for Y n  (e.g. zeros) and cycle 

the filter at time tn. 
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Since the second method does not disrupt the operation of the filter 
we may prefer to use it. Can the filter be informed that we have zero 
confidence in Y n ? Verify that b) can in fact be made to give the 
identical answer to a) by appropriate action on the inputs to the 
algorithm. 

10.8 Let tn  of (10.2.52) be equal to eQ n . where E is a very small 
positive scalar. Prove that for 6 sufficiently small, (10.2.53) gives 

§)* n + n + = "n+ 1,n 

Interpret this in physical terms. 
10.9 a) Verify that the time-varying linear differential equation 

d x (0) 
= A (t) 

dt ±(t) 	i(t) 
(I) 

where 

) 1 + sin t + cos t 

cos t — sin t 

has as its solution 

(x (t)) 	((0)) 
= P( t) 

i ( t) 	i ( 0) 

in which 

1 + cos t 
P(t) _ - 

2 	— sint  

) 1 + 2 sin t — cos t 

2 cos t + sin t 
(IV) 

b) Infer that the transition matrix of the system is 

(Mt n + 	= P(t n  + Ftnd 
	

(V) 

10.10 a) Write a computer program which numerically integrates 



GENERALIZED EXPANDING-MEMORY FILTERS—THE BAYES FORMULATION 415 

+ c, td = A(tn  + c)o(tn  + c, t) 
ac 

n ,tn) = I 

where 4) and A are 2 x 2 and where A (t) is defined by (II) of 
Ex. 10.9. Integrate by the use of Heun's method . (see Ex. 4.20 
part b) on p. 122), or by any other convenient method. 

b) Compare the results of a) above to the exact value of 4) ( t. C, t.) 
obtained in part b) of Ex. 10.9. 

10.11 a) Generate a trajectory by integrating (I) of Ex. 10.9 using a 
computer. 

b) Generate zero-mean random numbers which are uncorrelated 
with one another and of known constant variance. Generate 
"observations" by adding these numbers to the state-vectors 
obtained in a) above. 

c) Program and operate the Bayes Filter given on'p. 386. For the 
observation vector Y (n) use "observations" obtained in b) above 
on three successive instants. For the first run, observe only x(t), 
i.e. M = (1, 0). For the second observe only i(t), i.e. M = (0, 1) 
and on a third run use M = (1, 1). Initialize the filter in the 
first run with a state-vector obtained by least-squares fixed-
memory polynomial estimation on x(t). Initialize the filter in 
the second and third runs with arbitrarily chosen numbers and 
indicate zero confidence in those numbers by . choosing the 
initial 
the three 

	

10.12 	Verify that 
and (10.4.9) 

	

10.13 	Verify that (10.4.25) 

14*A, B, C) 	= (  

and that (10.4.24) 

X 	= (A, B, C) 
• 

10.14 The "observation" 
state X. by relations 

covariance 
runs §* 

(10.4.12) 
through 

1  + 

is 

(A, B, C)F 

vectors 

matrix appropriately. 
0 as n n,n 

and (10.4.13) 
(10.4.11). 
is equal to 

CS*  r 	+ (S* )- 1 

equal to 

e.) -1 4 	S A 

rA , XB , 
of the form 

Determine 

follow directly from 

-1 

B  + CS c) 	 c] 

ez  are all related 

in which of 

(10.4.7) 

to the true 

X* = Xn  + N* 
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The error-vectors I■1*A , NB , . . . , ez  are all uncorrelated with one 
another, and have covariance matrices SI, 	... etc. 
a) Process the "observations" by feeding them individually into 

the Bayes Filter on p. 389 and verify that the composite 
estimate is 

(A, ..., 2) 	(A, 	2) 
[=A 

(selp-1  x)] 

where 

S(A, ..., Z) [
z 

1 
i=A 

b) Process the vectors eA , 	 ... in two batches and cycle the 
Bayes Filter on p. 386 twice. Verify that (I) and (II) above 
are obtained. 

10.15 Let xt and xt be two statistically independent unbiased estimates of 
the scalar process x,, with variances a 12  and a22  respectively. We 
form the convex linear combination 

a x* + a x* 2  x*(1,2) = 

where a 1 , a 2  > 0. 

a) Verify that xl 12)  so defined is an unbiased estimate of x n . 
b) Verify that the variance of x7 12)  is 

s (1,2) = 
+ a 2 )

2 
1 

c) Minimize S 46.2)  over a l  and a 2  and hence prove that the 
minimum-variance linear unbiased estimate occurs when we 

choose a l  = 1/a 12 , a 2  = 1/a22  . 

d) Reconcile the results of c) with (10.4.12) and (10.4.13). 

a l + a 2 

2 a i 
2  + a 22a2

2
_ 



1 
/72 

(A,B) 1/0"A2  + 1/0B2  

_ . 
a2 	 1  

(A,B,C) 1/0' + 1/a 2  + 1/7 
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10.16 a) Let x*, and 4 of (10.4.19) and (10.4.20) be scalars. Verify 
that the minimum-variance composite estimate is given by 

x* /0. 2 + x* / 2 
o A ' A B

, 
 ' B 

X *  
(A,B) 	ila. 2 + /0. 2 

' A 

(I) 

and that 

b) Now incorporate xt with variance 	into into Z*(4,B)  and verify that 

	

x* /0. 2 + x* /fr  2 	x* hi. 2 
o 	 A' A 	B 1  B 	C' C 
X*  

(A,B ,C) 	1 /0. 2 4_ /0. 2 4_ /0. 2 
A ' 	B ' 	C 

10.17 Prove that if a nonnegative definite matrix has only zeros on the 
diagonal, then it is a null matrix. 

10.18 Assume that a definite improvement takes place in a particular 
diagonal element of S.*, _ 1  when (10.5.1) is cycled. Prove that we 
can make that improvement as small as we please if we multiply 
R n by a sufficiently large scalar. Hence infer that if the observations 
are of sufficiently poor quality, the behavior of the diagonal elements 
of n S* can be made to be as close as we please to the behavior under  
pure prediction without data incorporation. 

10.19 a) Starting from the transition matrix 

(I) 

verify that the diagonal elements of 	+ 6 §* Y  , -0 0 as C St   
Thus we can construct examples in which the uncertainty 
eventually disappears completely under prediction. 
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b) Verify that the state-vectors for which (I) is the transition 
matrix all go to null-vectors as C 

10.20 a) Starting from the transition matrix 

(I)(C) 
	- C 	C 

and the covariance matrix 

s* 
n,n 

verify that 

(2(C —le - 1/2) 2  + 1/2 
s*tn  + - k,i n  

- k) 2  

2(C - k) 2  

2(C - k + 1/2) 2  + 1/2 
(I) 

b) Show that both diagonal elements of (I) above diminish 
monotonically as C increases in the interval -00 < C < k - 1/2. 

c) Verify that when C > k + 1/2 , both diagonal elements of (I) 
above increase monotonically without bound as C is increased. 
Since we can make k as large as we please, this means that we 
can construct examples in which the uncertainty first diminishes 
with prediction for as long as we please and thereafter expands 
without bound. 

10.21 Consider the system discussed in Example 8.2 whose transition 
matrix is 

(I)(C) 
(cos coC 	

1 sin wc  
co 

-co sin cod' 	cos coC 

Show that the diagonal elements of its covariance matrices SI n 	tri  

are periodic functions of C . Infer that for this system the 
uncertainty increases and decreases in a periodic fashion under 
prediction. 

10.22 a) Consider the system 

.d  (x 01) 	(0) 

dt x 	0 



2) 

0 
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Verify that 

c(C) = I 

Let M = (1, 0), i.e. we observe only x o , and assume that all ob-
servations are uncorrelated and of variance 0 2 . Starting from the 
a priori covariance matrix 

( 
:4  a*o,o 	02  

show that repeatedly cycling (10.2.52) and (10.2.53) gives us 

( 

1  

1/a 2  + n/a2  

Hence infer that as n 	the uncertainty in x o  disappears 
completely but that no improvement occurs in our a priori 
knowledge of x 1 . The chosen observation scheme is thus 
unsatisfactory. 

b) Repeat a) above but assume instead that M = (1, 1). Verify 
that 

:2) 

n 

0 

/ 1 	n 	n 
0. 2 a 2 

n 	1  
2 1.2 2 	0. 7,2/ 

V 

and hence infer that as n 

1 —1 

(-1 1 

1/a 2  + 1/13 2  

showing that the uncertainty in x o  and x 1  never disappears. 
Again we see that we have chosen an unsatisfactory M. 



M = 
)

1 0 

(0 1 
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c) Repeat a) above but now assume that M 

	

	
0 

(1 0)
. Verify that 

 1 
-, 0 as n 	Finally then we have selected a satisfactory 

M. 
d) Reconcile the results of this exercise with Theorem 8.2. 

10.23 a) For the system defined by the equation 

—
d 

(x, y, z, 	i) T  = 	, y,  i, 0, 0, 0) T  
dt 

assume that the observation matrix is M = (0, 0, 1, 0, 0, 0). Start-
ing with a diagonal covariance matrix 4 0  = I, cycle the Bayes 
Filter by hand and verify that the knowledge we have of z and 
i ultimately becomes perfect, whereas the knowledge of x and 
y deteriorates without bound. 

b) Repeat but now use 

/1 o o o o o\ 
M. 0 

	

and show that g* 	0 as n 
f1,12 

10:24 Consider the system discussed in Example 8.2, and assume that 
co = 7r/4, 	= 1 and .101,0  = I. 
a) Assume that we observe it using M = (1, 0). Write a. computer 

program to cycle (10.2.52) and (10.2.53) and hence verify that 
S* ,n 

0 as n 
n 

b) Repeat using M = (0, 1) and verify the same result. 
c) Let co = 77 and rerun a) and b) again. Now note that §n n  does 

not go to a null matrix as n 

d) Rerun c) but use 

1 	0 	0 	0 	0 

V0 
	1 	0 	0 	01 

and verify that 	0 as n 

Reconcile these results with Theorem 8.2. 
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10.25 a) Assume that 

(01 0 

1 

and let M n = (1, 0) with R = 1 (i.e. a scalar). Verify that 
(10.2.53) gives 

(0.5 0 

0 	1 

Thus only the state-variable we are observing is improved on 
this first pass. 

b) Repeat a) above but start with 

( 1 

0.99 

0.99) 

1 
(I) 

and verify that (1 0.2.53) now gives 

(0.500 0.495) 

We see then that even though we are observing only one of the 
state-variables, when strong correlation exists between its errors 
and those of another, then improvement takes place in both. 
Explain this in physical terms. 
Let the transition matrix for the above system be I'(h) = I. 
Cycle (1 0.2.52) and (1 0.2.53) on a computer starting from (I) 
in part b) above as the initial conditions, and using 'M and .  R 
as given in part a). Verify that only the 0,0 element of en,. 
goes to zero. Infer then that in spite of the initial improvement 
in the other element of SI: n owing to the high correlation, this 
choice of observation scheme is unsatisfactory for the system 
whose transition matrix is as given. 

d) Reconcile this with Theorem 8.2. 
1 0.26 Prove that the sum of a positive definite and a nonnegative definite 

matrix is positive definite. 

0.495 	0.510 



) (72  (4 4)1

-1  

	

R1.5 1 	1 4 
1 	2 

+ — (I) 
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10.27 Assume that 

	

( 1 	-0.5 
'1)*1,0 = 

	

u 	0.75 
R = u 2 1 (1 is 4 x 4) 

and 

( 1 
TT = 

1 

1 

1 

1 

1 

1 

1 

a) Verify that (10.6.1) gives 

b) Set a2  = 0.01 and verify that (I) gives us 

0 	( 0.66778 	-0.66611 
4,1  

	

-0.66611 	0.66694 

c) Now assume that we have only 3-digit capability in our arith-
metic. Show that for a2  = 0.01, and g1 0  as above, we obtain 

O 

(

1.003 -1.00 

-1.00 1.00 

This shows the drastic errors which can occur in the above 
circumstancest when the arithmetic is of insufficient precision. 

d) Repeat a), b) and c) above but assume instead that 

 

T 

 

f i.e. T of less than full rank and a set of extremely precise observations. See pp. 408 and 409. 
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Verify now that 

)

0.02275 -0.01624 
§7,i  

and that with 3-digit precision we get 

(

0.0230 

-0.0164 

-0.0164 

0.0131 

Thus when T is of full rank, even if o- 2  is very small, the pre-
cision of the arithmetic has only a small effect. 
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11 
BAYES 

ALGORITHM 

WITH ITERATIVE 

DIFFERENTIAL-CORRECTION 

11.1 INTRODUCTION 

In the preceding chapter we discussed the Bayes Filter as applied to the 
estimation of a process assumed to be governed by a linear differential 
equation and assuming a linear observation relation. We showed that re-
cursive algorithms could be derived which accept as inputs Y ()  and R ow 

 combine these with the previous outputs X: _1 , n  _ 1  and S* n - 1, n -1, and by 

appropriate computation then obtain the new outputs XL and t n  . Such 
algorithms were displayed on pages 386 and 389, and are depicted in block 
diagram form in Figure 11.1 on the following page. We examine that figure 
briefly. 

The outputs are computed by the algorithm as shoWn, and are then placed 
in storage and retrieved at a later time to be fed back into the input side. We 
thus discern a loop in the structure which we call Loop A. Such loops are 
characteristic of all recursive algorithms, i.e. ones in which the current output 

424 
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is computed from a combination of its predecessors and the newest observa-
tions. Loops are entirely absent in fixed-memory schemes since for them the 
current output is computed solely from the observations, and previous out-
puts are never again used in subsequent computation cycles. 

Inputs 

Y(n) 
and R 

(n) Outputs 

and .§D*  n,n 	n,n Recursive 

Bayes 

filter 

Loop A 

0 

n - 1, n - 1 

§* n - 1 , n - 1 

Fig. 11.1 Block diagram of Bayes 

Storage 

We now turn our attention to the expanding-memory estimation of 
processes which are governed by nonlinear differential equations, or are 
being observed by the use of nonlinear observation relations, or both. 
The Bayes Filter, as defined on either p. 386 or on p. 389, cannot thus be 
used directly, and some modification of those algorithms must accordingly 
be devised. 

Our course of action will be to use the previously derived estimate as a 
nominal trajectory about which we linearize the differential equations and 
the observation relation. This replaces the nonlinear process equations in 
X (t) by a set of linear equations in 8X (t) , which we call the differential 
vector, defined as the difference between the true state-vector X (t) and the 
nominal state-vector X (t) .. The Bayes Filter is then applied to the estimation 
of 5X (t) , using as inputs Y(n), R (n) and the previous estimatet which we call 

X% and its covariance matrix eckk  . Once that estimate of 8X (t) is derived, 
it is added to X(t) and a better approximation of X (t) is thus obtained. This 
new improved estimate will be called (en n) . 

tin our discussion here we have in mind the algorithm for batched observations (see p. 386). Where 
necessary we shall comment on the special case of concurrent observations (p. 389). 
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Since errors were committed during the linearization process by the 
deletion of second and higher order terms, we expect (XIA to be in error 
even though it is a better estimate than Tc was. But precisely because it is 
closer to X than Ye n was, if we were now to linearize about 

n (X* ) then the 
linearization errors would be smaller than formerly. We thus commence 
an iteration cycle as follows. 

(X*„.)1  is used as a new nominal trajectory in place of Xn and the equations 
are again linearized. Using the same inputs as before, namely Y o o , f 2 0: ), 
and ek,k , a new estimate of the differential vector is again obtained by the 
Bayes Filter. This is now added to - (X:,.), to give us (X*n )2  , a further 
improvement on (4) 1 • KA is now used as the nominal trajectory, and 
with the same inputs Y R XL and SL we obtain (X *n )3 , and so on. 

At each cycling of the iteration a convergence test is performed, and when 
this is satisfied the iteration terminates. The output is then the current 4„ 
and its associated covariance matrix n S* , and computation ceases until a 
new observation vector arrives. When that occurs a new iteration procedure 
commences. 

The attention of the reader is directed to the two distinct concepts 
involved — recursion and iteration. Their roles in the scheme under discus-
sion are best seen from Figure 11.2, which depicts the Bayes Filter with 
iterative differential-correction in block diagram form. We examine the 
structure of that figure and contrast it to Figure 11.1. 

The structure is still basically the same as that of the previous figure, 
with the outputs being computed, placed in storage, retrieved and used at a 
later time, together with the inputs Y ()  and R ow  to obtain the new estimate. 
This is the recursive part of the process, and is characterized by Loop A. 

However, in addition to loop A, we observe a second loop, namely Loop 
B, which is the iterative loop. Conceptually, this loop is cycled many times 
for each time we cycle loop A. When the differential-correction procedure 
commences, XL is retrieved from storage and, by the use of numerical 
integration, it forms the basis of the first nominal trajectory, X.. The 
model and observation equations are then linearized and a Bayes estimation 
of the differential-vector is carried out, thereby providing a first value of the 
iterate, X. The output is then used repeatedly as the nominal trajectory 
until the convergence test is satisfied, whereupon iteration ceases. Recursion 
recommences when the next vector of observations arrives. 

For the most part the techniques to be employed are very similar to those 
used in Sections 8.5 through 8.7. We assume familiarity with that material 
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as well as with the final section of Chapter 4 and the second section of 
Chapter 6. 

11.2 ITERATIVE DIFFERENTIAL-CORRECTION-
COMPUTATIONAL PROCEDURE 

Assume, for generality, that a process under observation is modelled by 
the nonlinear differential equation 

	

—X(t) = F[X(t)] 
	

(11.2.1) 
dt 

and that the observations at t are related to Xn by the nonlinear relation 

NnYn 	n 
	 (11.2.2) 

We propose to estimate X. by combining an observation vector Y(n),  com-
prised of one or more subvectors of the form of (11.2.2), together with an 
already existent estimate. The latter, designated rk,k , is assumed to have 
been obtained at some earlier time, based on observations whose errors are 
uncorrelated with those in Y o) . 

For simplicity in the discussion let Y (n)  be made up of, say, three sub-
vectors which were obtained at times t n , to  and ts  (not necessarily distinct). 
Thus 

tYn \ 	I G (X .)\ 
---- 

Y (a) a Y. 	= 	G (X.) 	+ N(n) 

\Y 	\G(Xs)l 

(11.2.3) 

where we have used the same function-vector G in each case, although this 
is not essential to the argument. Our first step is to linearize (11.2.3). 

Suppose that we have a nominal trajectory, close to the true trajectory 
X ( t), which we call )7(t). Then, given X(t) at some time, say t o  , we can use 
that vector 3?  as a set of initial conditions, and by integrating (11.2.1), we 
can generate )7(t) for any other t. In particular, we can form X. and Xs , and 

using the function-vector G of (11.2.2), we compute the simulated observa-
tion vector G (X-  ) , defined by 
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/Gan ) \ 

G (Xr) = 	G(Xa) 
	

(11.2.4) 

\G( Tc,di  

This is the vector of observations that would have been made on X(t) if there 
were no observation errors. Note that we have shown G (Y n) as being a 
vector function of TCn . 

The assumption that X(t) is close to X(t) means that the differential-
vector 8X (t), defined by 

8X (t) = X(t ) - X (t ) 
	

(11.2.5) 

has small elements relative to X(t). We subtract (11.2.4) from (11.2.3), 
obtaining 

G(X n) - G(X n)\ 

Y (a) - G X n) = 	GCX,r) - G(X.) 	+ N(n)  

G(Xls ) - G(YA )J 

and we recall from (6.2.16), that when 8Xn  is small, to first order 

G(X n) — G(X n) = M(X) 8X n  

where 

(11.2.6) 

(11.2.7) 

agi (x) 
[m(x-nd axi  

I = fin  

(11.2.8) 

  

We thus see that (11.2.6) can be written 

Y(n) - G (Xn) 

M(X) 8X n\ 

M (Xa) 8Xa  + N (n) (11.2.9) 

    

Ivi(zi,)axs/ 
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The next step is to linearize the model differential equations about 
TC(t). From (4.8.21), we know that (11.2.1) yields, to first order 

—d 8X (t) = A[Y 8X (t) 
dt 

where 

afi cx) 
[AD-Cqi = 	 

ax 
X =.77(t) 

(11.2.10) 

(11.2.11) 

It now follows that since (11.2.10) is linear, there exists a transition matrix 
IT, such that (see e.g. (4.8.24)) 

8X(t p ) = 0(tp , t q ; X)8X(t q) 	 (11.2.12) 

(The question of how to obtain in practice was discussed in detail in 
Chapter 4.) 

Applying (11.2.12) to (11.2.9) we now obtain 

 

/ m(X) 

  

     

Y(n) - G (TC) 

 

m (X)0 ( ta , tn ;R) + N(n) (11.2.13) 

     

  

m (X,3) o(t,8 , tn ;X) 

  

and then by defining 

SY(n) 	Y (n)  - G(X) 

and 

N(X)  

) T (X) -= 	m(X)st(t a ,t„ ; x) 

\m aid 4)(t i(3 , tn ;50 

we are able to write (11.2.13) as 

(11.2.14) 

(11.2.15) 

8Y (n) = T n  ) 8X n  + N 
(n) 

(11.2.16) 
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This constitutes a linearized observation relation on 8X., and will serve as the 
basis of a scheme for estimating that vector. 

It was assumed at the beginning of our discussion that an estimate of X(t) 
had been made at an earlier time. We called it X% and we designated its 
covariance matrix, also assumed available, as SI . By the integration of 
(11.2.1), using X*" as initial conditions, we now obtain an estimate of X. 
which we call X*n k  related to X by 

X *  = X. + Nn  ,k  n,k (11.2.17) 

The covariance matrix of the error vector Nn k  in (11.2.17) is enk , related 
to S*kk  by the propagation equationt 

S:k  = (I) (t n , t k; Dek,k I (t n , t k ; X) T 	 (11.2.18) 

We now define 

8X *,k 	n k X* - n 	 (11.2.19)  

Then by subtracting X n  from both sides of (11.2.17), we obtain 

8X = 8X n  N n  ,k  n,k (11.2.20) 

Next, we combine (11.2.20) and (11.2.16) into the single equation 

I I 	 N *  

\T (X) 	N(n)  

n,k 
Xn - -- 

(11.2.21) 

and recalling that N (n)  and Nn k  are by assumption uncorrelated, we see that 
the above equation is of the same form as (10.2.25). This means that we 
can immediately write, as the composite minimum -variance estimate of sx„ 
based on (11.2.21), the Bayes Filter equations (cif p. 386) 

ax* ,n 	ax: k  + H(TC.)[811 	T an) 6XL] 	 (11.2.22) 

- See e.g., (5.5.33). Equation (11.2.18) is accurate only to second order terms. 
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where 

H 07n) 	[7-  anT Icn)  

and where 

f s*  n,n 	(s:)-1 + [T ( n)]T  R T .)} 

(11.2.23) 

(11.2.24) 

The matrix 	n S* as given by (11.2.24) is, to second order accuracy, the 
covariance matrix of the random errors in 	 n 8X *  of (11.2.22). Finally we 

form the vector 	 n (X* 	defined by 

(X* 1) n + ax* n,n 
(11.2.25) 

and then since 5X:,  is an estimate of 8X n  it follows from (11.2.5) that 

(X1.) 1  will be an improvement on )7 n  as an estimate of X . 

The obvious path to follow is now to re-use the improved estimate 

(X* n n)1 as the nominal trajectory in place of 5 n in (11.2.22). Linearization n,  
about (X*  ,)1  should result in smaller errors than was the case for lineariza- 

tion about Fen , because the former is closer to the true trajectory than the 
latter was. Hence if we now re-estimate 8X n , we will obtain a vector 

(X:02  which should be a further improvement yet. This suggests the fol-
lowing iterative procedure. 

The algorithm (11.2.22) is first rearranged as follows. We add Te n  to both 
sides, obtaining 

X4nc ,n  = x*n,k  H (Xn) [ay (n)  — (Xn) 841,k1 
	

(11.2.26) 

Now, using (11.2.14) and (11.2.19) to replace 8Y (n)  and 84 k  respectively, 
this becomes 

X: n  = X: k  + H(X n) [Y (n)  — G(X n) — (X n)(4,k  — Xnd 	(11.2.27) 

which is the form in which the iterative computations are carried out. 
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To start the iteration, we use 	 k X* as the nominal trajectory, i.e. we set 

X 	X *  n 	n,k (11.2.28) 

Making this substitution, (11.2.27) becomes 

(X: n)1  = X: k  + 1-/(X*n) [Yo)  — G(4 k)1 	 (11.2.29) 

which is the first cycle of the iteration. 

The second cycle then uses (X* ,n) as the nominal trajectory, i.e. we now 
set 

Xn 	x*  n,n)1 (11.2.30) 

and so (11.2.27) becomes 

(X * 	= X *  n,n 2 	n,k 

(11.2.31) 

+ 	fro)  — G RX*,3,0j — T Ren,n) [X: , k  — (4,0j 

and then in general, for the r th  cycle, 

(X 4nc ,n) r 	= X:k  + H I 	(n)  — G (Xn ) — T (X,) (X: k  - 5C)] 
in = 	n) 

(11.2.32) 

 

Observe that throughout the iteration process, en,k , S: ,k , Y (n)  and R (n)  are 
left completely unchanged, and only the terms involving FC n  in (11.2.27) are 
modified from cycle to cycle. 

Upon the completion of each of those cycles, a comparison is performed 

to see whether the estimate 	n  (X* ) r + 1 has changed by a meaningful amount  
from its predecessor. For this purpose, we use the convergence test 

"Is RX: n1 +  — (4 ,0] )(4cri,n)r  + — (X:
•n

)d < E?" (11.2.33) 
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(or some other equivalent criterion). The quantity E is a small positive 
number which is chosen to reflect the precision of the arithmetic and the 
amount of refinement the user wishes to accomplish. Once convergence 
has occurred, the resultant vector (X* 

n 	
g!  ) 	is then taken as the new estimate 

ri 	r + 1 

of Xn and the matrix s* , which is evaluated during the final iteration n, 
cycle (see (11.2.24)), is taken as its covariance matrix. 

In practice it is often the case that convergence occurs after the first pass 
of the iteration. This is particularly true when n is large and the initializing 
estimate 

k X* is already a very good approximation to Xn 5 and so the lineari-
zation errors are extremely small. Under these conditions (11.2.29) con-
stitutes the main algorithm rather than (11.2.32). 

In Section 11.4 we investigate, more precisely, what vector the iteration 
algorithm converges to in the limit, assuming infinite precision arithmetic. 
We prove there that it is the correct estimate in the weighted least-squares 
sense. Owing to the inherent nonlinearities however, the matrix , even 
in the limit, is only an approximation to the true covariance matrix of rnn . 

Prior to that analysis we consider a small reorganization of the above 
scheme which materially reduces the possibility of round-off errors from 
corrupting the estimate during the recursion cycles. 

11.3 CONTROL OF ERROR-PROPAGATION 

In the iteration scheme outlined in the preceding section it was assumed 
that an estimate of X n , obtained from prior observations, exists. We called it 

k'' X* 	Clearly there must be a beginning to the process and at that time no  
such vector based on previous data would be available. 

In order to get started, some form of initial estimation would have to be 
performed, and the most suitable method would probably be to operate a 
fixed-memory estimator, based on the first vector of observations, Y ort This 
could either be done using the polynomial approach discussed in Section 8.3, 
or could be the result of a fixed-memory iterative differential-correction 
computation applied to Y (i) , as discussed in Sections 8.5, 8.6 and 8.7. 
Once this has been carried out, the vector X: k  discussed in the preceding 
section will then be available, and as new data vectors Y (2) Y (3) . . . 

Y

(n) 

arrive, these can be incorporated recursively by performing an iterative 
differential-correction on each. The memory length is thus steadily increased, 
and if the filter is operating properly then the quality of the estimate will 

t Assuming that no a priori estimate is available. Naturally if a dependable a priori estimate exists 
we would use it and commence directly with the recursive filter. 
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steadily improve. We now consider an approacht for controlling possible 
round-off-error accumulation. For simplicity we shall present our arguments 
in relation to the Bayes Filter on p. 389 which relates to the entirely linear 
situation with concurrent observations. The reader will easily be able to 
apply these ideas to the more general cases. 

Consider the two equations (10.2.52) and (10.2.53), namely 

Observe that the sequence of operations by which §*.. is obtained from 
§ - 1, n 1 contains two inversions of the covariance matrix, both appearing n  
in (11.3.2). If the algorithm is cycled repeatedly then a very strong danger 
exists that ag*.,. will degenerate because of the accumulation of round-off 
errors incurred in these repeated matrix inversions. Once this takes place 
the entire algorithm degenerates as well. However by a slight rearrangement 
we now show that this situation can be completely avoided. 

Instead of working with it, suppose we decide to work with its inverse. 
We accordingly write (11.3:1) and (11.3.2) as 

(§*n, n - = 111 (n, n - 1) T(§: _ _ n - 1) (11.3.3) 3   

V* = 	 M nTR; 1Mn 	 (11.3.4) 

in which 111 (n, n - 1) is the inverse of (I)(n, n 1). In this modified form we 
now see that the repeated inversions of S* are eliminated, and so of course 
the problem of round-off accumulation disappears. Note that 111  (n, n - 1) 
can be obtained directly from the model differential equations without 
actually inverting 4:1)(n, n - 1) (see (4.7.31)) and moreover, if the prediction 
operation in (10.2.51) is performed by integrating the model equations, then 
the matrix (I) is never required. Of course Sn itself is required for later use 
in (10.2.54), and so an inversion will have to be performed. However this 
inversion is now an ancillary operation and does not lie in the repetitive loop 

by which (S)*„ n)-i  is computed, namely (11.3.3) and (11.3.4). As such, any 
errors perpetrated in obtaining it from 	n - 	will not propagate into 
subsequent computations as they would if (11.3.1) and (11.3.2) were being 

tDue to A. J. Claus of Bell Telephone Laboratories. 

n,n 	 n, n - 1 
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cycled. We are thus able to avoidcompletely the difficulty of maintaining 
numerical accuracy in the s* computations by this very simple rearrange-
ment. The reader is also referred to Ex. 11.16 where we show how the 
execution of (11.3.3) can be simplified. 

11.4 CONVERGENCE OF ITERATIVE DIFFERENTIAL-CORRECTION 

We have utilized the method of iterative differential-correction, both in 
Chapter 8 as well as in the present one, in order to obtain an estimate from 
a vector of observations when the observation scheme or the process differ-
ential equations are nonlinear. We now analyze more precisely the vectors 
to which those iterative schemes converge. 

Consider first the Generalized Fixed-Memory case. We recall from (8.7.1) 
that the crucial equation in that scheme was 

(X*22,n) 	= (X*  r + 1 	n, r  
(11.4.1) 

{TRX: ,n)d R TRx: ,.)1} - 1 

 T RX d R {Y — G Ren,n)1 

where for simplicity in the present discussion we are now estimating to the 
end of the observation interval rather than to some interior point t c  as we 
did in (8.7.1). This was then iterated until convergence takes place as defined 
essentially by the condition 

QC*  n,n + 1 14 ,0 r  (11.4.2) 

If we designate the vector prevailing at the time of convergence of (11.4.1) 
as n, then we see, by combining the above two equations, that it satisfies 

i.e. that 

X: = X: + 

T 
[T (X: 	T (n) 

[T (X:1 T  

(X * )
1-  

co  

R 	T (X: 

T (X:)
T 

 R (n)  

(n) 	
( X:) Tc1)  T 

(n) — G x:d 

fr (n)  — G (X:d 

. 0 

(11.4.3) 

(11.4.4) 
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However, since [T(X*.) TR-(.1)  T (ro)] is positive definite, (11.4.4) can only be 

true if 

T(X*03)Tc.1) [Y() - G(X*60)] = 0 	 (11.4.5) 

We have thus proved that if the iteration converges, then it converges to the 
vector r which satisfies (11.4.5). We now demonstrate that this is precisely co 
what we desire. 

In Chapter 6, we defined the residuals as the difference between the actual 
observations and the simulated observations based on the selected estimate. 
In the iterative scheme considered above, it was assumed (see (8.6.24)) that 
the observations were related to the true state-vector by relations of the 
form: 

Y. = G(X.) + N. 

Y., 1  = G(X._ 1 ) + 	
(11.4.6) 

Y n - k = G(X - k)  N n - k 

These can be written as 

Y(n) = G (Xn) +  N (r0 
	 (11.4.7) 

and so if we let 	n X* be an estimate of X n , then from this last equation we 
see that the residual vector will be 

E(X*..) 	Y (.)  - 	 (11.4.8) 

It is now decided that 	 n X* shall be chosen so as to minimize the weighted  
least-squares functional (c/f (6.9.5)) 

e ( 
	

[E (enj 	E (4) 
	

(11.4.9) 

As we already know from Section 6.9, this criterion leads to the minimum-
variance filter if E(X *  1 is a linear function of r n 	X . 



[aG(enir  (11.4.12) cn1) [Y (n)  — G(X:)] = 0 
a (xnn,  
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In order to minimize e n (X 1 of (11.4.9), we differentiate it with respect n, 
to each of the components of 4 n , setting each of those derivatives to zero. 
This, as we have pointed out previously, is only a necessary condition for a 
minimum. However, since e (X *  n  is a quadratic form on a positive definite 
matrix, it can easily be shown (see Ex. 6.7) that it is also a sufficient one. 
Thus we solve for the X* n  which minimizes e, by setting 

a 	[Y(n) 	n — G (X* , n TR
(

'
) 

[Y (n) 	n — G(X *  n ,n a (xs.,) 
n,n 

for each component (x*,) of X *  
1/n,n 	n,n 

= 0 	(11.4.10) 

Carrying out the above operation, we first obtain 

[Y(n) T  — G X:A R -1 [Y — G(X *  d (n) 	(n) 	n,n 

(11.4.11) 

[Y (n) — G (,:n
)] 

	 a
\ 	(n) — G (X: 	= 0 

and since R -1  is symmetric this reduces simply to (n) 

Define the matrix B(e n)  whose i , j th  term is n, 

a g (X *  ) [B oc: 	= 	n,n 

j a (x,i0)n,  
(11.4.13) 

where g i  (XL) is the i th  function of the vector G (X:). Then, combining 
each of the scalar equations obtained from (11.4.12), as j goes from 0 to m, 
we get the vector equation 

B (en,n) T  Icril) D1  (n)  — G (4)] = 0 	 (11.4.14) 

We now investigate the function-matrix B, and show, quite simply, that it is 
of exactly the same form as the function-matrix T appearing in (11.4.5). 



T(7n) = 

imo-c-n) 

M (31n - tn - 11 t n" TC) 

m 	_ doctn 	tn;  )7V 
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Thus, consider the difference G (X n) — G (X). We have shown that this can 
be linearized to the form 

G (X n) - G(X n) = T(X) 8X n  + higher order terms 	(11.4.15) 

where 

and where the matrix M is defined by • 

(11.4.16) 

agi ( X) 
[M 	- 	 

ax f x = Xn  

(11.4.17) 

  

(c/f (11.2.8)). 
We now expand G(X n) about 5C n , using a vector Taylor series. This gives 

/go  (Xn) 

g l  (X) 

• 

g. (Xn)/ \ g s (X )1 
x=in 

ago (xl 	ago 
axo 	axi  

agi  (x) 	agi  
axo 	axi  

ags (x) 	ags (x) 
axo 	ax i  

ago  (X) 

dx. 

agl oo 

  

  

 

8x 1  

  

axm 

   

+ higher order terms 

      

(3g. (X) 

     

 

ax  X = Xn\ 

  

axm 

  

(11.4.18) 
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But this is the same equation as (11.4.15) and so the matrix of partial 
derivatives on the right of (11.4.18) is precisely T(X). Thus, finally, com-
paring (11.4.13) with the above matrix of partial derivatives, we see that 

B (CK.,) = r (en) 
	

(11.4.19) 

We now return to (11.4.14). By (11.4.19) it becomes 

(ent R -4 [Y (n)  — G (X *  n  )] = 0 	 (11.4.20) 

and so the vector e n  which satisfies this equation will minimize the n 
weighted least-squares functional en  of (11.4.9). But (11.4.20) is identical, 
in form, to (11.4.5). We have thus in fact proved that the vector to which 
the differential-correction iteration scheme of Chapter 8 converges, is also 
the vector which satisfies the nonlinear weighted least-squares criterion, and 
so if convergence takes place, then in this sense it is to the correct vector. 

It is now a relatively simple matter to verify, by an approach similar to the 
above, that if (11.2.32) converges, then it also converges to the correct 
value. We merely outline the procedure, leaving the details for the reader. 

In this case when convergence takes place, (11.2.32) becomes 

= 	H (4) [Y (n)  — G(4) — T OCD (X: k  — rip)] 	(11.4.21) 

which can be regrouped as 

— H (X*.) T (X:)] (X% — 	+ H (X:)[Y — G (Xt)] = 0 	(11.4.22) 

We now examine the definition of H in (11.2.23) and obtain the result (see 
Ex. 11.18) that 

I - H (x*,)T (4)) = S (X*.) (S: k)-1 	 (11.4.23) 

in which we have defined (c/f (11.2.24)) 

S (X:0) Ben at + T (X*00 ) T  R -1  T (X:d (n) 
-1 

(11.4.24) 

By the use of (11.4.23) and (11.2.23), equation (11.4.22) now reduces to 



X *  n,k ....__ 

Y (n) 
( 

= 
n 

X_: 

G (X n)1 

± 
(11.4.29) 

N *  n,k  

N (n) 

X* ,, 

Y (n)  — (en)/ 

■ 
E(X * ,n  ) n (11.4.30) 
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(see Ex. 11.19) 

S(43 ) {(en )-1 (X*To, — X*03) + T (X*.) T  R7n1)  [Y(n)  — G ()OA} = 	(11.4.25) 

and since S(X *cn ) is positive definite, this can only be true if 

CS *n 	(en k  — X 8:0 ) 	T (X*0)7' R c [Y (n)  — G (X *m)] = 0 	(11.4.26) 

The vector e to which the Bayes version of the differential-correction co 
scheme converges, will thus satisfy (11.4.26). We now show that this is 
precisely as required. 

Consider the two relations 

X*  = Xn N *  n, k 	n, k 

Y (n) = G (X n ) N (n) 

(11.4.27) 

(11.4.28) 

The former occurs as (11.2.17) and the latter as (11.2.3). We combine them, 
obtaining 

and letting X% be an estimate of X n , the residual vector is seen to be 
(c/f (11.4.8)) 

We choose e n  so as to minimize the weighted least-squares functional n, 

e (X *n ,n) [E (4MT  R -1  E (X, 	 (11.4.31) 

where R is the covariance matrix of the error vector of (11.4.29), i.e. 
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I 	a  

	

k 	- 

R = 	— — 

	

0 	R(n)1 

(11.4.32) 

It is now easily verified (see Ex. 11.20) that if we use (11.4.30) and 
(11.4.32) in (11.4.31), we obtain 

,n 	n — e (XL) = (X* — X* ) 7.  (S* , 	n
* 
n,k X*,n ) n  

(n)  G (XL)] R ;,1)  [Y(n)  - G (XL)] 

We minimize this by setting 

(11.4.33) 

=0 	0 < j < m 	 (11.4.34) 
a (3 c 

and this then gives us (see Ex. 11.21) 

T  (S*n,k)-1  (X*n,k  - en) + ET (en,n)1 R [Y n  ) - G (XL)1 = 0 	(11.4.35) 

This last result is identical in form to (11.4.26) and so we have proved that 
the vector X* which satisfies (11.4.26) also satisfies (11.4.35). The iteration 
scheme of (11.2.32) thus converges to the same vector which minimizes 
(11.4.31) and is thus the required result, in the sense of weighted least-
squares. 

NOTES 

Gauss essentially concerned himself only with situations where relatively 
small numbers of observations were to be used in forming an estimate. Thus 
his approach was basically that of Chapter 8. We may speculate, however, 
that he almost certainly encountered cases where an estimate had previously 
been derived, and then at a later time it was desired that further data be 
incorporated. His refinement procedure would then probably have 
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consisted of using the previous estimate as a basis for a nominal trajectory for 
the incorporation, by differential-correction, of the new data. 

He does not appear, from [11.1] , to have developed a clear-cut recursive 
procedure whereby a steadily expanding data-base could be accepted. This 
is simply because he was not concerned with this problem, which did not 
really arise until the present times with the advent of artificial satellites, 
radar equipment and high-speed computers. There is very little doubt, 
however, that he would have developed the necessary algorithms had he 
needed them, since he was only one small step away from them as we see 
from the pair of equations in [11.1, p. 251] . 

Nevertheless, in all fairness, Gauss did not explicitly. derive a recursive 
differential-correction algorithm, and it remained until 1958 when P. Swerling 
appears to have been the first to clearly propose one [11.2, 11.3] . Swerling's 
method is essentially the iterative differential-correction scheme we develop 
in this chapter, with the exception that no iteration is used; he terminates 
at our equation (11.2.29), thereafter waiting for new data. 

In the early stages of an estimation operation, when each new batch of 
data is a significant contribution to the total data-base thus far received, 
iteration is definitely advantageous, i.e. the use of (11.2.32) and (11.2.33) is 
recommended for n small., However when n becomes large, the newest 
data-addition is a small contribution to the already existent data-base, and 
at this time iteration is of little help, most of the modification to the 
estimate by the newest data taking place on the first cycle of the iteration 
(see (11.2.29)). Thus once the estimation is well under way, Swerling's 
algorithm will probably result, even though repeated iteration is called for. 
Equation (11.2.33) will under normal circumstances terminate the iteration 
when r = 0 for large n. 

In [11.4] Blackman presents a comparative study of the various schemes 
we have considered up to now, and it is on his opinion (i.e. that Swerling 
was the originator of the recursive schemes) that we base ours. Blackman's 
paper is an excellent supplement to our discussion. 

We also recommend [11.5, 11.6, 11.7] in which the estimation scheme 
that was used in the highly successful Telstar project is discussed in detail. 

For an excellent survey of Bayes filtering and the material to come, the 
reader is referred to [11.8] . The reader may also wish to consult [11.9] , in 
which an extensive list of further references is presented. 

EXERCISES 

11.1 A stationary body is located at a point distant x from the origin, 
positively along the e-axis. (See Figure 11.3.) 
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77- axi s 

Body 
axis 

x 

Fig. 11.3 Location of body on e-axis. 

Measurements are made of the range p from a point P on the a-axis, 
distant d from the origin, where d is a known quantity. The measure-
ments are all uncorrelated with each other and all have variance a p  2  . 

The intention is to determine the value of x. 

a) We take as our state-vector the scalar x, and so the differential 
equation for the process is ac = 0. Verify that the transition 
matrix is given by the scalar 

(NO = 1 

Also verify that the observation relation is 

p n 	(d2  + x2 ) 112  + vn 
	 (I) 

Linearize this about a nominal value of x, namely 3E, and obtain 
the relation 

8p n  = m (i) 8x + n 

where 
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m( -i) = 
	x 

(d2 	5E2)1/2 

b) Assume that we have an a priori estimate of x which we call xt o  
with variance s * o a 2 . Verify that (11.2.24) gives i t  

a 2 a  2 

2 - 
2 
	a 2 

X  + 
d?, + 5E2  

and show that this is a definite improvement over the variance 
of the a priori value, st ,  0 . 

c) Verify that (11.2.23) becomes 

h(5E) - 

2 a X 

 

( d2 + i2 ) 1  / 2  a  2 + 	 

	

( 	
a2i2 

P 	d2 + 372 

d) Show that (11.2.27) gives 

x* 
1,1 = xto 	h(x) P 1 	(d2  + 5E2 )1/2  

0 — 	(IV) 
(d2 + 372)1/2 

e) We decide to iterate (IV) using the a priori estimate xt 0  as the 
first value of x. Verify that on the first cycle of the iteration 
(IV) becomes 

1,1 1  (x*  ) = 
	 0 0 	1 x* + h(x* )[p — (d 2  + x*2 11/1 

1 	0' (V)  

Now use the output of (IV) repeatedly in place of )7 in that 
equation and verify that we obtain the iteration algorithm 

lx 
■ + 

= X*  1, 0 

+ h (50p — ( d2 + 12 1/ 2  [ 	
i 	  

(X*  1   

	

(d2 ± 3-c2)1/2 	1,0 

(VI)  



446 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

11.2 Suppose that d = 0 in Ex. 11.1. 
a) Verify that the observation relation is now linear and that (II) 

of Ex.. 11.1 reduces to 

a2 0. 2 

a2  + cr 

b) Show that (III) of Ex. 11.1 becomes 

h - 
a 2  

 

2 a + a2 

and that (IV) of that example reduces to 

x* /a + p /a 1,0 	 p 

1 /a 2  + 1 /a 2  
(I) 

Reconcile the above three results with (10.4.12) and (10.4.13). 
11.3 a) Write a computer program which generates "observations" 

according to (I) of Ex. 11.1. 
b) Obtain an a priori estimate of x from the equation 

	

0  = (p02 	d2y/2  

where p 0  is the first observation. 
c) Program and operate the iteration algorithm (VI) of Ex. 11.1 

and incorporate p 1  into the estimate. When the iteration con-
verges obtain a new measurement and cycle the iteration once 
more to convergence, using the previous estimate of x to get 
started. In this way incorporate observations successively and 
obtain an estimate of x based on an expanding data base. 

d) Estimate x by the following alternate method. Apply a zeroth-
degree Expanding-Memory Polynomial Filter (see Table 9.1, 
p. 360) tt. the sequence of observations p o , p1,  p 2 , • .• p n  
thereby obtaining pt,n . Now estimate x using 

2 x* = p* ) - d 2] 
nr1 	 17,n 

1/2 
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e) Compare the amount of effort in d) against that in c). Could 
we use the method in d) if the point was moving along the 
e-axis? 

11.4 Referring to (VI) of Ex. 11.1 assume that convergence has taken 
place, as indicated by the fact that the output remains substantially 
unchanged from its previous value. Call this xt. 
a) Verify that under these conditions 

x*  
[1 — h (x* ) 	co 

co (d2 	x*211/2 	 x4:0) 	h(X*co ) [p 	( d2 	x2)1/2] 
	0 

a) 

(I) 

b) Show also that (III) of Ex. 11.1 becomes 

1-1 (xt ) 
a 2 X* 

co 

 

a 2 X* 2 ) 
( d2 + x* 2)1/2 a  + 	co 

co 	P 	d2 .4_ x*2 
a) 

and that (II) of Ex. 11.1 becomes 

a 2 a 2 

s* x = 

2 a 
r-' 	d2 + x*2 

co 

Now verify that (II) and (III) of this exercise give 

	

x* 	s*(4) 
1 — 11(X*co) 	

a) 

(d2  + X*2)1/2 	a 2  

and reconcile this with (11.4.23). 
Using (II) and (IV) in (I) above, obtain the result 

X*  co 

	

(X*  — x* ) + 	 1 /2  [19  1 — (d2  + X*2) 2 	1,0 	 CO 

a 	 a  2 (d2 + x* 2 	 
P 	co 

a 2 X4: 2  

(IV) 

0 	
(V) 
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e) Show that when d = 0, (V) above gives us 

Xt o/a 2 + p i  /9.p2 

CO 	

1/a 2 . + 1/a 2  

and reconcile this with (I) of Ex. 11.2. 
11.5 Considering the situation of Ex. 11.1, show that (11.4.33) gives 

1,0 	
x* 

1 
)2 + ..1 2 {p 	(d2 	x.*2 ) 1 /1

2 

1, 	 1,1 (I) 

Minimize this with respect to xt 1  and verify that the resultant xt 1 
 satisfies 

1 
	 p1 	(d 2 	x*211/2 

1' 
— (x — X*  ) X* 	  = 0 	 (II) 2 	1,0 	1,1 	1,1 
a 	 a  2 (d2 	x*21 1/ 2  

+ 

Compare this to (V) of Ex. 11.4 and hence infer that the value of xt 1 
 which minimizes (I) above is also the value to which the iteration in 

(VI) of Ex. 11.1 converges. 
11.6 Consider the situation of Ex. 11.1, but assume now that the distance 

d is unknown. We hope to estimate both d and x . 
a) Taking as our process state-vector 

X 

verify that the transition matrix is a 2 x 2 unit matrix. Verify 
also that the linearized observation relation is 

opn  = m(Y)8X + v n  

where IVI is the 1 x 2 matrix 

M (X) = 1 
(32 +i-2)1/2 

(x, 3) 
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b) Assume that we were to use a Generalized Fixed-Memory Filter 
to estimate X. Show that in this case the matrix T of (8.2.4) 
does not have full column rank and hence infer that we cannot 
execute (8.7.1). The observation scheme is thus unsatisfactory. 

c) Reconcile the findings of b) above with Theorem 8.2 of Section 
8.9 and show that they are predicted by that theorem. 

11.7 Assume that in the previous example we also measure the azimuth 
angle IA (see Figure 11.3). 
a) Verify that in this case 

1 	\ 
Y 	Y 

MOO = a \ 	Y2 

where 

Y 	(a2 	v) 1/2 

b) Now show that T has full column rank. Reconcile this with 
Theorem 8.2. 

11.8 Consider the situation of Ex. 11.1 but assume that the body is now 
moving along the e-axis with constant but unknown speed x. The 
same observations are made as in Ex. 11.1. 
a) We choose as our process state-vector 

x  X 	) 

where x is the position at t = 0. Verify that the differential 
equation for X is 

—d X(t) = 0 
dt 

and hence infer that 

(I)(C) = I 
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Also verify that the observation relation is now 

p = [d2  + (x + 
211/2 

±) 	+ V n (I) 

Y 

and that linearization about a nominal value of X, namely X, 
leads to 

8pn  = Mn  (X)8X + v n  

where M is the 1 x 2 matrix 

+ t 
M n  (X) = 	  11/2 (1, tn ) 

[d2 	( 5C t n 302  j 

b) Assume that we have an a priori estimate of X, namely X*1,0 
 with covariance matrix 

S * 1,0 (II) 

Verify that (11.2.24) gives 

S* - 1  1,1 - 

132 (0. 2 + t i2 p2y2) 

-t a2 p2y2 
1 

_46  _ 2 (32y 22 
1 a  

N2 (
ap2 a 2 y2)/  ■ 

Up 2 + ia 2 	• 2 f-12 ■ where 	 t 12  p iy 2  and where 

+ t 1  5-c 

21 1/2  [d2  + 	+ t 1  

c) Verify that as t i  0, 

(a 2 	0 

0  132 

S*1,1 -> 

a 2 

2 cr + 
d2 	5c-2 

p 
2 a x2 
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Observe that the 0,0 element of this matrix is identical to (II) of 
Ex. 11.1, and that the 1,1 element is the same as that of (II) 
above. Explain both facts in physical terms. 

d) Verify that as t i  

(a2  0 
'5 1,1 

0 	0 

Infer then that, as t 1  increases, the variance of the errors in our 
estimate oft goes to zero, whereas the variance of the errors in 
our estimate of x tends to its a priori value. This seems to be a 
contradiction in which the measurement p 1  improves our know-
ledge of x but not our knowledge of x. Explain. 

11.9 a) For the situation of Ex. 11.8, assume that the first six observa-
tions p o , p5  where smoothed, using an Expanding-Memory 
Polynomial Filter to give the estimates 4,5  and 4 5 , valid at 
time to . Show that we can estimate x and i from 

)1/2 
X* 	((p 0 s)

2  d 

(I) 
_ 	pts p0,5 

)1/2 ((p:) 2 d2 

Now verify that to first order 

( ax*) 	(Sp') 
= r (p*, P* ) 

85c* 	 Sp* 

where F is the 2 x 2 matrix 

r (p*, ri*) 

/ p* 

((p*)2  — d 2 ) 1/2  (III) 

d2  P* p." 

\((p*)2  — (1 2 )3/2  ((p*)2  — d 2 ) 1/ 2/ 



0 

0 

32 S1,0 

(a 2  
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The covariance matrix of the vector (4 5 , g,5) is obtained 
from the polynomial filter. Let it be called 4 5 . Infer from 
(II) and (III) above that the covariance matrix of (x*, i*)T  in 
(I) is given by 

S*  = r  (P404,5 ' 4,5 ) Z*0,5 (r(Pts' 4,5 )) 
	

(IV) 

• 
b) Simulate the situation of Ex. 11.8 on a computer by generating 

observations according to (I) of that example. Apply the Bayes 
Filter with iterative differential-correction on an expanding 
data-base. Initialize the filter using the estimate and covariance 
matrix obtained in part a) of this exercise. (See (I) and (IV) 
above.) 

11.10 Repeat Ex. 11.8 but assume instead that we observe the azimuth 
angle Jr, shown in Figure 11.3. The observations are all uncorrelated 
and of variance a 2  

1P • 
a) Verify that 

x + t ± 
n 	

) 
= arctan 	 + v 

and hence that 

8111 = M n  (TC)8X Vn  

where M is the 1 x 2 matrix 

M n  (5C) = 	 (1, t n) 
d2  + 	+ to  )702  

b) Assuming an a priori estimate 4,0  with covariance matrix 

(I) 
n 

apply (11.2.24) to obtain S*, 1  and verify that 

1 

_t ia2p2 y2 
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where 

0.42 	(a2 	t 1 2 /3 2 ) y 2 

and 

y a-7 d/[d2  + ( 3C-  + t i  2 1 

c) Investigate what happens to S*1,1  if .d 0 and also what 
happens as time passes and d shrinks relative to the distance of 
the body from the origin. Hence infer that the scheme works 
best when d is large relative to that distance. 

d) Show that as a ,2 	ST 1  4,0 . Interpret this. 
e) Show that as t i  0, 

2 2 a 0-0  (1\ 
a2 a  a (A 

(d2 	i2) 2  

0_ . 	 p2/ 

f) Show that as t i  

0 00) 

and explain this apparent contradiction. 
11.11 a) For the situation of Ex. 11.10, filter the first six measurements 

of TA in an Expanding-Memory Polynomial Filter. Following 
the approach of Ex. 11.9 a), use the resultant state-vector 
(45 , 14,5)7.  to obtain an estimate of (x, i)T. Also obtain a 

covariance matrix for the latter from the covariance matrix 
derived by the polynomial filter. 

b) Simulate the situation of Ex. 11.10 by generating "measure-
ments" of IA on a computer, according to (I) of Ex. 11.10. 
Now apply a Bayes Filter with iterative differential-correction, 
using the state-vector and covariance matrix obtained in part 
a) above for initialization. 

11.12 Assume that both p and are observed simultaneously (see Examples 
11.8 and 11.10). 

   

1,1 

 

2 Utp 
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a) Infer that the observation relation now becomes 

/[d2  + (x + to  301 112\  

(I) 

  

x + tni) 

d 
arctan 

and hence that, to first order 

= M 
18p 	 8x 	v n  

.77)( 	r) 
Jr. 	n (Sx 	v4i 

where M is the 2 x 2 matrix 

I + tn 3f 

A 

5C- 	tn 
to 	 

ma  (X) 
t n d 

A 2  

with 

A E [d2  + (x + 01 ) 1/2  

b) Generate observations according to (I) above on a computer. 
The errors in the p and tit observations are all uncorrelated, the 
former having variance and and the latter ao2  . Operate a Bayes 
Filter with iterative differential-correction and compare the 
time-histories of n S* in the three cases of Examples 11.9, 11.11 
and the present one. Verify that with only p being observed 
the improvement is worst when the body is close to the origin 
and best when far removed, whereas when IA is observed the 
situation is reversed. Thus the p and observations complement 
each other very well in the face of "poor geometry" (see 
Section 8.8). 

d 
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11.13 Considering the situation of Example 11.8, suppose we observe only 
range-rate, i.e. dp/dt. 

a) Show that 

(x + t n i)X 

n = 	  + v n 1/2 
[d2 	(x 	 n  i)2] 

Linearize this relation about a nominal trajectory to obtain 

81 n 	M  n (rC) 8X  v 

where M is the 1 x 2 matrix 

Mn (X) _1  [d2 ±,  
k3  

&(+2ç ) +(+ tn 3c.  3 

  

with 

k  [d2 	t nic11/ 2 

b) Now show that if we set up the matrix T n  of (8.2.4), that it 
has full column-rank and hence infer that we can apply a 
Generalized Fixed-Memory Filter to estimate x and i using 
only range-rate measurements. 

c) Consider the first-degree polynomial state-vector (x, i) T  with 

transition matrix 

Co 1 

and assume we observe only velocity, i.e. 

M = (0, 1) 

Verify, either directly or else by the use of Theorem 8.2, that 
T in this case does not have full column-rank. Explain the 
apparent contradiction between this situation and that of part 
b) above. 
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d) Investigate the rank of T. in b) above as d 0. Show that in 
the limit we can determine the entire state-vector if and only if 
we are observing the body as it passes through the origin. If 
not, the chosen observation scheme is unsatisfactory. 

11.14 Referring to Figure 11.3, assume that the body is moving along the 
6-axis retarded by a drag force which is proportional to its speed. 
Its equation of motion is 

d2 	
2 

 [ 

x (t) = -k - d  -x(t) 	k > 0 	 (I) 
dt2 	dt 

where k is a known constant. 
a) Verify that the solutions to this differential equation are 

. x(t) 	-1 ln [kt + 	 1 x(0) + - lnx(0) 
k 	i(0) 

b) Set (I) above in the form 

-k(i)2) t  

and linearize these equations about a nominal trajectory TC(t) to 
obtain 

d 8x 	 Cx 
= A(TC(t)) 

dt 8i 	 8jr 

where 

	

(0 	1 
A(X(t)) = 

	

0 	—2k37c(t) 
(IV) 

Verify that the transition matrix for the linearized system is 
governed by the differential equation 
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0(tn  + 	ta;  X-) = A[X(t. + Cdo(t. + t n ; x)) ac   

(Mt n , t n ; 	= I 

where A is given in (IV) above. 
c) As an alternate method for obtaining the transition matrix, 

verify that (I) above gives us, neglecting terms in and higher, 

X(t n 	4. ) = X(t n) 	Ci(t n) — 	[i(tn)] 2rt 
 

C) = i(tn) — Ck[i(t a)] 2 	C2 k 2  [Sat ) 

Show that on this basis 

1 	C — C2 k31(t ) 
0(t n  + 	tn ; 	= 

0 	1 — 24.1? - (t n) + 	k 2 [57(tn )] 21  

Now show that if C is sufficiently small so that terms involving 
C2  and higher can be neglected, that 

1 
o( tn  + tn ; X) = 

0 	1 — 2Ckic(t n) 
(VII) 

d) Cycle (V) of part b) above once by hand, using (4.7.18), and 
reconcile the result with (VII). 

11.15 Assume that the body in Ex. 11.14 is being observed from P (see 
Figure 11.3), and that both p and lb are being observed. The distance 
d is known. The p and IA observations are all uncorrelated, the 
former all having variance o- p2  and the latter 014,2 . 

a) Verify that the observation relation is 

Rd2 	x  ) 1/ 2  \ 
n 

(V)  

3 

(VI)  

(I) xn  
arctan — 1 	d 



0\ 

0

/ 
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Linearize this about a nominal trajectory X n  and obtain 

= iti(x)( 8  xx. 	\( vv: 
a) +. 

where M is the 2 x 2 matrix 

X  i(d2 + x2) 1/2  

M (X) 
d 

1 d2 + x2  

b) Assume that we were to smooth the first k measurements of p 
in an Expanding-Memory Polynomial Filter, thereby obtaining 
the smoothed values pt k  and At k  together with their joint 
covariance matrix SL (p, 13). Assume that we do the same with 
the 0 measurements, obtaining glik" and x.fr *0 k  together with , 
their covariance matrix S*0k (0, 0). Verify that we can estimate 
x0  and i from 

(P*  sime) o,k 

i ,k 	(p* sine + p*O* cos tfr*)  o,k 0 

c) Now verify that the above can be linearized about 

(p*, A*, tfr*, lif*)07  k  to give 

X *  0,k 

= r0,k (P* ' 164  fir* 0*)  
(IV) 

where r is the 2 x 4 matrix 

sin 1,G* 	0  p* cos Vi* 	0 

ro, k 	 (v)  
11 \t'fr* cosy,* 	sin ift* 	 p* cos */ 0,k 

in which 	0 	* cos lif* 
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d) Verify that the covariance matrix of the vector 

(Sp*, 8 	8fr*  8?.fr*) 07: k  is given by 

S*(p,P) I 	0 	) 
S*  ( p, , , t'fr) 	— — — jr- ---- 

0 	S*( 
(VI)  

where the blocks on the right of this equation are obtained 
from the p and V/ polynomial filters respectively. 
Finally infer from (IV) that the covariance matrix of 

(

x ,10 0,ky in (III) can be approximated by 0  

s* (x,i) 	r s* cp fi  Orr 0,k 	 0,k 0,k 	 0,k (VII)  

where I-10 k  is defined in (V) and Sloc k (1), p, 1r,) in (VI). Thus 
(III) and (VII) constitute an estimate state-vector and a covari-
ance matrix for x and z . 

11.16 a) Verify that the differential equation for ,§* (t n  _ 1  + C, to  _ 1) is 

--a  §*(tn - 1 + c,tn _ i ) 
c9 

= A (tn  _ 1  + C) 5 ( _ 1  + C, tn  _ 1 ) + 	tn  _ + 6 tn  _ 

(I) 

tn - 1 + C)T 

with given initial conditions §*(t. _ 1 , t. _ 1 ). 
b) Given that k(tn  _ „ tn  _ 1 ) = I (2 x 2), and that A (t) is as given 

in Ex. 10.9, integrate the above differential equation (on a 
computer). Now compute k(t n  _ 1  + C, to  _ 1 ) directly from 
(10.5.9) using (1)(t n  + 6 tn) obtained in Ex. 10.10. Verify that 
the results are identical but that the integration of (I) above 
requires less effort than the direct method, if we include in the 
latter the derivation of (I) from its differential equation. 

c) Repeat part a) above to obtain the differential equation satisfied 
/0 \ 

byl,S
*-1
) and show how this can be used to replace (11.3.3). 

11.17 Program and operate on a computer, a Bayes Filter with iterative 
differential-correction for the situation of Ex. 11.14 with the obser-
vation scheme of Ex. 11.15. Update the estimate state-vector by the 
integration of (III) in Ex. 11.14. Update the inverse of the covariance 
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matrix by integrating the differential equation obtained in part c) 
of Ex. 11.16 and operate the filter by the method outlined in Section 
11.3. To initialize the entire scheme use the polynomial pre-filter 
discussed in Ex. 11.15. 

11.18 Verify that (11.2.23) in the left side of (11.4.23) leads to the right 
side of (11.4.23). 

11.19 Verify that (11.4.23) and (11.2.23) in (11.4.22) results in (11.4.25). 
11.20 Verify that (11.4.30) and (11.4.32) in (11.4.31) gives (11.4.33). 
11.21 Show that (11.4.34) applied to (11.4.33) leads to (11.4.35). 
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FILTERS imm-ms 

THE- KALMAN 

FORMULATION 

12.1 INTRODUCTION 

The Bayes Filter as derived in Chapter 10 provides us with a recursive 
algorithm for obtaining the linear minimum-variance unbiased estimate of a 
process, based on a steadily expanding data base. If so desired, available 
a priori knowledge can also be incorporated, according to its merit relative 
to the subsequent observations. 

The only assumption on which the Bayes Filter derivation was based, was 
that the errors in each batch of observations should be uncorrelated with 
those in every other batch. Note that almost no restrictions were placed 
concerning probability density functions. The errors could possess any 
density function whatever, provided only that their second order statistics 
exist and that their means be zero. 

461 
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The requirement that individual batches of observations be uncorrelated 
with each other is frequently the case in practice, and is almost certain to 
prevail in a situation such as where many observation instruments are 
observing a process. A typical example of this might be a global tracking 
network observing a satellite in orbit. Radars located around the globe each 
observe the body while it is in view, and then feed their respective batches 
of data to a central processor where the orbit refinement computations are 
undertaken. 

We have also shown how the Bayes algorithm, derived on the assumption 
of complete linearity, can be used as the corner-stone of an iterative differ-
ential-correction scheme. This permits of estimation when nonlinear relation-
ships exist, and in practice these are certainly the most likely ones to be 
encountered. 

Regardless of the order of the observation vector, at least two matrices 
must always be inverted when cycling the Bayes Filter.t The first of these is 

R () and when this is diagonal, as is often the case in practice, its inversion is 
trivial. The other matrix to be inverted is cen „)- 1 which is of the same order 
as the state-vector, and is seldom if ever diagonal. 

We now show how the Bayes equations can be reformulated so that only 
one matrix must be inverted, of the order of the observation vector. For the 
situation where the state-vector of the estimate has, say, eight elements, and 
only three observations are to be incorporated, this means that only one 
3 x 3 inversion is called for, a decided advantage over the corresponding 
Bayes case in which an 8 x 8 would have to be inverted. 

The filter equations we are about to derive are well suited to the following 
type of situations. Suppose first that the observation instrument requires 
assistance in order to keep an object under observation in a narrow field of 
view, e.g. a radar operating in a tracking mode. Clearly as soon as one 
measurement vector is made (such as for example range and two angles) we 
would want to incorporate it into the estimate in order to be better able to 
predict where next to look for the object. As a second example we consider 
the case where observations are being made infrequently because they are 
time-consuming and very costly, e.g. astronauts in a space-ship making a 
position fix. We would certainly want to incorporate those numbers into the 
estimate as soon as we obtain them, primarily in order to be able to make 
immediate corrective action. 

•See Section 11.3 where we discussed a modification to the Bayes Filter in which only R 0)  and 

(5";,,,,Y 1  had to be inverted. 
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The filter algorithms which we now derive are intended to be used under 
circumstances similar to the above. As with the Bayes Filter, we first obtain 
the equations assuming complete linearity. This provides us with the basic 
algorithm on which we construct a more widely applicable iterative differ-
ential-correction scheme for use in nonlinear cases. We also examine some of 
the computational and practical aspects of the resulting algorithms. 

The present chapter is a direct extension of the previous two, and complete 
familiarity will be assumed with that material. 

12.2 THE KALMAN FILTER — LINEAR CASE WITH 
NO DRIVING-NOISEt  

The Bayes Filter shown on p. 386 was derived as the algorithm which 
provides the composite minimum-variance estimate of X n  , based on the two 
relations (see (10.2.21) and (10.2.22)) 

f *  C 	= X + gl*  n,n - 1 	 n, n - 1 

Y (n) = Tn X n + N (n) 

(12.2.1) 

(12.2.2) 

If all of the observations in Y (n)  were to be made simultaneously, then we 
can write 

Tn = M n 

and so (12.2.2) becomes simply 

Y -M X +N am a a 

(12.2.3) 

(12.2.4) 

Let the covariance matrix of N n  be li n  and assume, as we have done up to 
now, that N is uncorrelated with the error vectors of all other observation 
vectors to be presented to the filter. Under these assumptions' the Bayes 
Filter based on (12.2.1) and (12.2.4) takes on the form shown on p. 389, 
which we repeat on the next page for convenience. 

A brief examination of those equations shows that, aside from R n , two 
matrices of the order of the state-vector must be inverted, namely §: n  _ and 
( n 1 1. If we are prepared to replace (12.2.5) by a numerical integration of n  

the process differential equations, then we know from Section 11.3, that the 

tRefer to Chapter 15 where we discuss precisely what we mean by the term "driving-noise." 
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§* = \ §4 
n,n 	n, n - 

1.4 = §)* Mn 	-1 
n 	a,. n n 

y 1 m T R -1 M n  n a a] 
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Bayes Filter — Concurrent Observations 

2°C4:: , n - 1 = I (" ,  n - 1)  kicn - 1, n - 

n, n -1 = (1)(n ' 	1) 	- 1, n - (1)(n, n 	D
T 

(12.2.5) 

(12.2.6) 

(12.2.7) 

(12.2.8) 

(12.2.9) 

need to invert §:, _ 1  in (12.2.7) can be entirely avoided. However even 

then, '§*n,„ must still be computed, and since the order of (t)-1is  the same 

as that of the process state-vector, its inversion could be computationally 
costly. Adding to this the cost of inverting R n  in case it were not diagonal 
we begin to wonder whether a more economical algorithm might not be 
found. As a first step in that direction we now show that (12.2.7) and 
(12.2.8) can be replaced by two equivalent expressions. 

The reader will recall that in Section 10.5 we proved a result known as 
the inversion lemma. Thus, referring to (10.5.4), we see that if we replace 
T by M and R by R, then we can write 

(

k-1 m  T R 1 m 
n,n - 1 + n a n 

y l 

(12.2.10) 

= §* 	-
1 	o 

n, n - 1 	n, n - 1M MnT R a MaI4*n, n - 1MnT  MaS*n,n - 1 

We now post-multiply both sides by M: R: 1  and obtain (after deleting 
subscripts and stars) 

(S-1 
 

+ MT 1? -1  Mr i  MT R -1  = [S — SM T (R + MSMT) -i  MS] MT R -1  

(12.2.11) 

By direct expansion and a small manipulation on the right-hand side (see Ex. 
12.2) this reduces to 

(S-1  + MTR -1 M)-1 MTR -1  = SMNR + MSMT 1 	 (12.2.12). 
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and if we now make use of (12.2.7) in (12.2.12), then we obtain 

§* 	T R  -1 
n,n n 	n §:, n - 1 M  nr  n +Mntn -  1 M  nr)-  1 	 (12.2.13) 

The right-hand side of this expression thus gives us an alternate expression 
for fin in (12.2.8). Using the symbol fin for the term on the right of (12.2.13) 
now means that {12.2.10) can be written as 

-1 (§*-1 	m  T R  -i m ) = (1 _ m )§* 
n, n - 1 	n 	n 	n 	 n • n n, n - 1 (12.2.14) 

which gives us an alternate expression for Sn in (12.2.7). The Bayes Filter 
of p. 464 thus gives us the following algebraically equivalent algorithm: 

Kalman Filter (No Driving-Noise) 

= 4)(n, n — DX* 	 (12.2.15) n, "' 1 	 n - 1, n - 1 

n -1 = 4)(n, n 	1)g: ._ 1, n  _ 1 4) (n, n — 1)T 	 (12.2.16) 

Fin = 	M  7 	+ M 591 n - 1 M.71-1 	 (12.2.17) n, n - 1 n 	n 

§44n,n  = (1 — c  a Mn)kn, n 	 (12.2.18) 

' 
n - 1 	n (Yn Mn n n,n = 	 + fi 	 - 1) 	

(12.2.19)  

This set of equations can be shown to be equivalent to those obtained by 
Kalman in [12.1] t when driving-noise in the process is omitted. It is for this 
reason that they constitute what is generally termed the Kalman Filter 
without driving-noise. In Chapter 15 we show that when driving-noise is 
present then only (12.2.16) is affected. Our approach to the derivation of 
the Kalman Filter differs markedly from that used in [12.1] and is possible 
only when driving-noise is. absent. 

The algorithm developed above, will, in the case of a polynomial model 
and equally spaced observations on the zeroth derivative of the process, be 
equivalent to the Expanding-Memory Polynomial Filter developed in Chapter 
9. This is discussed further in Ex. 12.3, where we show how the Bayes 
Filter on p. 464 can be used to derive the general form of the weight-vector 
Hn  given in (9.4.30) for the filters of Chapter 9. 

tSee also [12.2], [12.3] and [12.4]. 
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As a conclusion to this section, we note from (12.2.7) and (12.2.10) that, 
in the Kalman Filter, the matrix kn, is effectively being obtained from the 
relation 

- §* 	- § 	
-  

n,n 	n, n - 1 	n, n - 1 M  ar  (F4  a + M a ka, n - 1 M  a- 

1 
 ) M a S*n, a - 1 

(12.2.20) 

While this form is algebraically equivalent to (12.2.7) by the inversion lemma, 
we shall see presently that there are strong computational differences between 
them which serve to differentiate the Bayes and Kalman Filters very clearly 
from each other. 

We now examine the properties of the Kalman Filter and, as a start, we 
re-examine some of the important criteria which both it and the Bayes 
Filter satisfy. 

12.3 CRITERIA SATISFIED BY THE BAYES AND KALMAN FILTERS 

The Kalman Filter, as defined on p. 465, was derived from the Bayes 
Filter by the application of the inversion lemma. That being the case, they 
must thus be algebraically equivalent. 

We recall, first, that in Chapter 10 the Bayes Filter was shown to be simply 
a recursive reformulation of the minimum-variance rule derived in Chapter 6, 
assuming that the observation errors are stage-wise uncorrelated. It thus 
follows that the Kalman Filter also gives the minimum-variance esti-
mate. 

Consider next the predictor-corrector pair 

X * 	= 1(n, n — X*  a, a - 1 	 a - 1, a - 1 

X * 	X* 	+ Hn (Y — Mn 	_ 1 ) n,n 	n, n - 1 	n, n 

(12.3.1) 

(12.3.2) 

where Ha is any matrix of the same dimensions as fin of (12.2.8) or (12.2.17). 
It is readily verified that the above pair yields an unbiased estimate XL 
for any such H n  (see Ex. 12.4). However only when H n  is the same as fin , 

is the covariance matrix of the errors in a X minimum-variance. a  
Consider the form of the covariance matrix of the errors in X:. of 

(12.3.2). Recalling that 

Xn N*  n, a 	 a  a (12.3.3) 



i 
i =0 

[s*on)] 	 Es* (HA (12.3.9) 
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e 	x n N*  n, n - 1 	 n, n - 1 (12.3.4) 

and 

Y =X +N n 	Mn n 	n (12.3.5) 

we are able to rewrite (12.3.2) as (see Ex. 12.5) 

N*  = (I — H M n) N 	+ Hn Nn1 n,n 	n n n, n - 
	 (12.3.6) 

We now form the covariance matrix of n N* and since N n was assumed to be 
uncorrelated with its predecessors we obtain (see Ex. 12.5) 

S* 	= (I — Hn 	_ (I — Hn Mn) 7'  Hn R n H:1 
	 (12.3.7) 

Observe that s* is shown as a matrix function of Hn . 

Now we know that the Bayes and Kalman algorithms yield an estimate 
whose error covariance matrix, as given by (12.3.7), is minimum-variance. 

Thus the diagonal elements of the covariance matrices s* (i n) and s* (H) 

satisfy 

[S*(H.)] 	[5*  (Hado 	 (12.3.8) 

where fi n is given by (12.2.17) and H is any other matrix of the same order. 

Since the diagonal elements of Sti n) are individually least, then clearly 

their sum is also minimal, i.e. 

But the diagonal elements of the covariance matrix are precisely the variances 
of the estimation errors, and so the above is equivalent to the inequality 

Eigl*  n,n n,n N*  n,n n,n (12.3.10) 



E  IN* T  
n,n = 	y E{(v* • ) 

n,n n,n 
1=0 

(12.3.12) 

468 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

where 1■74; n  and N:„ are the error vectors obtained respectively when H n  of 
(12.2.17) and any other H. are used. Thus the fact that the Bayes and 
Kalman Filters are minimum-variance, means that they also minimize the 
expected value of N:rn N: n  i.e. the sum of squares of the error in each ele- 

ment of the estimate. t 
The path that we followed in obtaining the Kalman Filter started from an 

application of Lagrange's method of undetermined multipliers using the 
exactness constraint in Chapter 6. This led to the minimum-variance rule 
which was later reformulated into the recursive Bayes Filter. Finally, by the 
use of the inversion lemma we obtained the Kalman Filter. A much more 
direct method would be to start from (12.3.7) and then to choose H. so that 
each of the diagonal elements of is* (H n) is least. Not surprisingly the H. 
which accomplishes this is precisely fin  of (12.2.17). The reader is referred 
to Ex. 12.64 

A further generalization of the foregoing is also possible. Let IP be 
positive definite and define the quadratic form 

e N' nn 	n,n (12.3.11) 

Then the Bayes and Kalman Filters minimize . E fel for any such I'. This is 
also a direct consequence of the fact that their estimates are minimum-
variance (see Ex. 12.7). 

The above result shows us that a linear estimator whose weight-matrix H n  

causes E 	T  N*  to be minimal, would also minimize E 31\1:Tn  riv:a . Hence, n,n n,n 

for example, if r were diagonal then 

II 1 

which is seen to be a weighted sum of the error-variances. (The weights are 
of course all positive since r is positive definite.) Thus if the filter minimizes 
the sum of the error-variances then it also minimizes any positively weighted 
sum of those error-variances. (See also Ex. 12.8.) 

f The scalar E (Nn* ,Tn Nn* ,n } is frequently termed the expected quadratic loss. It is the minimization 
of such a loss-function which is the starting-point of the derivation in [12.11. This will be discussed 
further in Chapter 15. 

t The method used in Ex. 12.6 is purely algebraic and does not make any use of the differential 
calculus. It is accordingly a useful extension of our existing techniques developed earlier in this book. 
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We recall next, from Chapter 6 (see Section 6.9), that the minimum-
variance estimate also satisfies the weighted least-squares criterion, i.e. it 
minimizes 

e 	[E OC,A T  R (-.1)  E (X*, ) 	 (12.3.13) 

where E(4) is the residual vector based on 	Suppose that we now set 
up the residual vector 

E (4) = 
i* - X*  n, n ,  1 	n, n) 

in  - M n   X*  n: -- 

( 

(12.3.14) 

in which 	n - 1 X* 	is 	 Mna prediction of X., Y is an observation of  X n  and ° n  
e n  is an estimate of X n . As our covariance matrix we use n, 

R (n) 

-0*  
 Sn, 	
) 

I 0 _ 1  
I 	-- 0 	I R • n 

(12.3.15) 

Then it is readily shown (see Ex. 12.9) that (12.3.13) leads to 

	

* )2' 	1  ( 	X *  = 	n - 1 — 
X T 

 n, n 1 ‘3en, n 1 	n ,n  (12.3.16) 

+ ( Y. - MX *  )7.  R (Y — M X 1 n n,n 	n 	n 

and if we now apply the differential calculus to the minimization of the 
above e(X* n) ) over e n , then the Bayes and Kalman filters are the direct 
outcomes (see Ex. 12.9). They are, in fact, simply a recursive formulation 
of the minimum-variance rule for combining an a priori estimate with an 
observation vector. 

The error function of (12.3.16) is seen to be a sum of quadratic forms on 
the inverses of the covariance matrices of the observation and a priori state-
vectors. These inverse matrices serve two purposes. 

First we know from Section 6.8 that whereas the least-squares estimate 
depends on the units in which the observed quantities are expressed, the 
minimum-variance estimate is unique. The observation vectors can be of 
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mixed dimensions, and regardless of the units used, by virtue of the presence 

of 694:.1 _ 1  and R: 1  in (12.3.16), the resultant estimate Xn n  is unchanged. 

Those matrices thus serve as normalizers and permit us to mix any types of 
observations which we may obtain, and to express them in any convenient 
units. 

In addition to serving the above function, the matrices Sn ,  _ 1  and R:' 
also serve as weight matrices. We desire, quite naturally, that the more 
error-free an observation is, the more heavily it should influence the estimate. 
This is precisely what will occur in the minimization of (12.3.16). 

Finally we consider the following. If the errors in the vectors it, _ 1  and 
Y of (12.3.14) are Gaussian, then the joint probability density function of 
the elements of those vectors is (c/f (5.6.3)) 

P X n, n 1 Y n) 

= K exp 
2 (-1* 1  n, n, - 1 - 

 X ) 
a  T 	

-1 
r„ n - 1 I g 	 n - 1 	X  

Yn - M n Xn 0 	I R 

) 

	

n 	Y 	 c 
(12.3.17) 

where K is a normalizing constant. The Maximum-Likelihood Principle (see 
Ex. 6.19) states that X. shall be estimated by the vector Xn n which maxi-
mizes the scalar p of (12.3.17). To do this we must minimize the exponent 
and this is the same as minimizing (12.3.16). Thus the Bayes and Kalman 
Filters are also the maximum-likelihood estimators based on an a priori 
estimate and an observation vector, when the errors are stage-wise uncorre-
lated and Gaussian. 

We now turn our attention to some of the computational aspects of the 
Kalman Filter without driving-noise. 

12.4 PROPERTIES OF THE KALMAN FILTER WITHOUT 
DRIVING-NOISE 

In the normal course of .events the Kalman Filter provides us with a 
very powerful way of obtaining the linear unbiased minimum-variance esti-
mate on a steadily expanding data-base. Computationally it has certain 
advantages over the Bayes formulation, but these do not come without a 
price. We now turn our attention to a comparison of the two approaches 
and show that each has certain advantages over the other. 
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In the Kalman formulation only one matrix inversion is called for, namely 
the one which appears in the computation of (12.2.17). Clearly that matrix 
is of the same order as the observation vector. The Bayes Filter, on the 
other hand, requires the inversion of R. as well as at least one matrix of the 
order of the state-vector (i.e. the inversion of (S.

0. 
 n)

-1 
 ). Thus it is clear that 

the Kalman Filter has a distinct computational advantage in this regard, 
particularly when the observation vector is of smaller order than the state-
vector, as is very often the case. However there are other very important 
factors that enter into the choice, and as we now show, in some respects the 
Bayes formulation possesses certain definite advantages over the Kalman. It 
will have to be left to the user to weigh these aspects against each other in 
making a selection for each given application. 

Consider first the problem of initialization. In the Bayes case we can, if 
we so choose, t select the initial vector X% completely arbitrarily, and then 
by setting 

Ror = 0 	 (12.4.1) 

in (12.2.7) we make the subsequent estimates totally independent of Xi, 

Thus the Bayes filter can be started with no a priori information whatever. t 
The same thing cannot be done in the Kalman case. 

Thus suppose we wish to apply the counterpart of (12.4.1) to the Kalman 
Filter. Examination of (12.2.17) shows that only Si, o  and not its inverse 
occurs. We might try using 

Si 0 	 (12.4.2) 

where by we mean a very large scalar, perhaps the largest that can be 
carried by the machine in which the computations are being carried out. 
Alternatively we could artificially set 13 1  = 0 and S1 = I, say. In either case, 
the matrix R disappears from (12.2.17), either by round-off or else by 
choice, and we obtain 

Fll = miT 04, m TY 1 
	

(12.4.3) 

In order for il l  to exist, the matrix M 1  M T  must be nonsingular. 

-I.  See Section 10.3. 
t Assuming, of course, sufficient rank in the observation matrix. 
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Suppose first that M 1  has more rows than columns. Then M 1  M I T is 
singular and so (12.4.3) is undefined. The filter cannot be initialized in this 
way. 

Suppose next that M 1  has fewer rows than columns, and has full row-rank. 
Then M 1  M i T  is nonsingular. However we are now trying to estimate a state-
vector of given order solely from an observation vector of smaller order. 
Although the filter will now be operable, it will be found that the initializing 
vector has entered into the first estimate. Again we have been unable to 
start up without dependence on the a priori vector. (See Ex. 12.11 and 
12.12.) 

Finally, consider the situation where M is square and nonsingular. Only in 
this case can the filter be started successfully so that the a priori vector exerts 
no influence. However as we now see, a further complication arises regard-
less of the properties of M, and so even this third case is invalidated. In all 
cases then, the Kalman Filter cannot be started without the initializing vector 
appearing in the subsequent estimates. This is in marked contrast to the 
Bayes case. 

The complication mentioned above is as follows. By virtue of the fact 
that R 1  does not appear in (12.4.3) we have, as we now show, inadvertently 
made the covariance matrix singular. This is a serious difficulty and will 
thereafter make the filter virtually unworkable. 

To see what effect the loss of R 1  has had, we examine the properties of 
the matrix (cif (12.2.20)) 

C = S - SM T  (R MSM T ) -1  MS 

when R is set to a null matrix. Thus we consider 

C = S — SMT (MSMT) -1  MS 

If we post-multiply by MT we obtain immediately 

CMT . 0 

(12.4.4) 

(12.4.5) 

(12.4.6) 

This is true without either C or M being null, and so when R is null C is 
singular. That being the case. S: of (12.2.20) will be singular. On the next 
cycle of the filter we use (12.2.16) to compute 

§*2 
1 

= (1)(2, 1) g'7 /  4)(2, 1) T 	 (12.4.7) 

and so t 1  will be singular. Then by (12.2.20) we obtain 
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§*2, 2 	2,1 	°2, 1 2 (R 2  c
ci);* uf 7, 

M2 21 M ZT)_1 

	sic 

M 2 S2 1 (12.4.8) 

But gt, being singular implies the existence of one or more independent 
nonzero vectors, e1, 2 ...,ek , such that 

	

= 0 	1 <i<k 	 (12.4.9) 

Hence by (12.4.8) §' 2  will be singular and by induction, so will 

3,3 ... 	n,n • • • • 
In fact if once the covariance matrix of the Kalman filter 

becomes singular it will thereafter remain permanently singular. t 
The fact that becomes singular and remains singular thereafter would, 

in itself, be no serious drawback. We do not require its inverse in the Kalman 
case. However in practice, owing to the fact that we are working with finite 
precision arithmetic, we must recognize that the matrix can now become 
indefinite (i.e. some eigenvaiues positive and some negative). This could, in 
turn, lead to negative diagonal elements, (i.e. estimates with "negative 
variances") and to "correlation coefficients" in absolute excess of unity. 
Either of these is sufficient to make the filter algorithm untenable, and we 
are thus forced to conclude that it is not possible to make the subsequent 
behavior of the filter independent of the a priori estimate as we could in the 
Bayes case. Thus the Bayes Filter can be started with no a priori data but 
the Kalman Filter cannot. Much greater care must then be taken, in the 
Kalman case, in choosing the a priori estimate, and the elements of its 
covariance matrix should never be so large that R 1  is lost by roundoff in the 
formation of (12.2.17) when the filter is first cycled. (In the absence of 
reliable a priori information, the initializing estimate should be obtained by a 
fixed-memory estimator operating on the first few observations. If tracking 
assistance is essential, an Expanding-Memory Polynomial Filter of the type 
discussed in Chapter 9 can be used, and if the data-rate is kept at a sufficiently 
high level, the systematic errors can be kept manageably small until an 
initializing estimate for the Kalman Filter has been formed.) 

The troubles encountered above arose because we supposed that R 1  had 
disappeared entirely in (12.2.17). This made the covariance matrix S */3 

 singular. We should also recognize, both here and in the discussion to 
follow, that even if the covariance matrix is made almost singular due to a 
partial rather than a total effect taking place, that the filter is still placed in 

t This situation is true only when there is no driving-noise present and, as we shall show in the 
final chapter, the assumption of driving-noise can constantly renew the positive definiteness of the 

covariance matrix Sn ,n  . 
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jeopardy. An almost singular covariance matrix could, sooner or later, 
degenerate into an indefinite one and begin showing negative diagonal ele-
ments or off-diagonal terms which imply correlation coefficients in excess 
of unity. 

We consider next the effects of incorporating a vector of highly precise 
data. Thus assume that for some n, 

R n  = EQ. 	 (12.4.10) 

where c is a small scalar and Q n  a positive definite matrix. Again by 
(12.2.17) we compute 

= 	mT(Q n  +M 	M T) 1  
• It 	n, n - 1 n 	 n n, n- 1 n 

(12.4.11) 

but then for E sufficiently small we see that the matrix c Qn  could be lost by 
round-off, giving us 

m  T (A4 	 m T 
n, n - 1 n 	n n, n - 1 n 

y  1 
(12.4.12) 

It is possible that the matrix to be inverted on the right of this equation is 
nonsingular and that 11 n  does exist. However we now see that, just as in the 
case of the initialization problems discussed above, we again run into trouble 
with the properties of SL. For, by (12.2.20), the latter will be computed as 

- 1 
§). 	§* 	— 	n T  (EQ n  + M 	M T) M n,n 	n, n - 1 	n, n - 1 n 	 n n, n - 1 n 	n n, n - 1 

(12.4.13) 

and then if the matrix E Q n  is lost by round-off, this again means that S°4'nn  is 
singular, remaining singular thereafter for all subsequent recursion cycles. If 
E Qn  is not wiped out entirely by roundoff, the matrix Sn will be positive 
definite but only marginally so. Small subsequent roundoff errors could 
then serve to make it indefinite, and this could again give rise to "negative 
variances" and to "correlation coefficients" in absolute excess of unity. 
Thus the Kalman Filter runs into trouble in trying to accept observations 
which are too precise. 

In the Bayes case on the other hand, we recall from Section 10.6 that 
troubles can be encountered when extremely precise data are incorporated, 
but only if the observation matrix (M or T) is of insufficient rank. When the 
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highly precise observation vector is related to the true state-vector by an 
observation matrix with full column-rank, then no problems arise and the 
Bayes Filter simply forms a new estimate based almost exclusively on the 
new data. 

One possible cure to the above problem would be to prevent R. from 
being lost in the round-off process by multiplying it by a sufficiently large 
positive scalar. This artificial increase will, of course, result in a nonminimum-
variance estimate, but that is a small price to pay for the ability to keep t n 

 from becoming singular. 
Next we consider the case of perfectly correlated observation errors, i.e. 

R. positive semi-definite.t Specifically let R. be 3 x 3 and assume that it has 
a rank-defect of 2, i.e. rank unity. Let S be 6 x 6. Then show that 

C a S — SMT (R + MSMT) -1  MS 	 (12.4.14) 

has the same rank-defect as R. 
Post-multiplying by M T , which by assumption has full column-rank, we get 

CMT = SM T  — SMT (R + MSMT) -1 MSM T  

(12.4.15) 
SM T  — SM T  (R + MSM T) - 1  (MSM T  + R — R) 

which reduces to 

CMT = SMT (R + MSM T)
-1  R 	 (12.4.16) 

Now R has a rank-defect of 2 and so there are two linearly independent 
nonzero 3-vectors, e, and for for which 

Ref = 0 
	

Re, = 0 	 (12.4.17) 

That being the case (12.4.16) gives us 

CM T  = 0 and CMT e2  = 0 	 (12.4.18) 

But MT e, and AiT C2 cannot be null vectors since by assumption M T  has rank 
3, and so its rows span the 3-space in which e, and C2 are defined. Thus C 
must have a rank-defect of 2. The proof is easily extended to show that C 
has the same rank-defect as R in all cases. This completes the proof. 

tSee p. 137. 
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The above argument thus generalizes our previous conclusion that when 
R. is null (i.e. defect equal to its entire order), then of (12.2.20) is 
singular, and that when R. is positive definite (defect zero), then Sn is also 
positive definite. We see now that if a vector of observations is obtained 
with perfectly correlated errors, i.e. R. singular with a certain rank-defect, 
then that perfect correlation will immediately appear in the random output 
errors of the filter in the form of a singular covariance matrix Sn ,n , with 
corresponding rank-defect. Likewise if one of the observations in Y. is 
assumed to be perfect, i.e. R. has one zero row and column, then will 
be singular and will have a rank-defect of one. t Moreover, once this rank-
defect has been introduced into S* ,n  it will remain there permanently, a 
fact which we have already proved earlier in this section. (See Ex. 12.13 
and 12.14.) It is thus clear that if R n  is precisely singular, then t. will be 
likewise. This means that the algorithm is thereafter of marginal value and 
potentially in serious trouble, even though no overt computational problems 
arise. 

The Bayes Filter again has the advantage here, since if R n  is precisely 
singular we simply cannot execute the Bayes algorithm because R: 1  is 
required in (12.2.7). We are thus immediately confronted with this fact 
and steps can be taken then and there to correct the situation. This is 
almost certainly preferable to the Kalman case in which the cycling of the 
filter would proceed, but with the user being unaware of the existence of 
trouble until it is too late to correct matters. 

In the event that R n were almost singular, i.e. badly conditioned for 
inversion, a similar argument to the above demonstrates that the Bayes 
Filter would again be preferable to the Kalman Filter. 

In all cases considered thus far, we saw that an abrupt degeneration could 
occur in en, which thereafter makes the value of the Kalman Filter question-
able. We now point out a further serious problem which can and very 
frequently does arise with the Kalman Filter, and this consists of a loss of 
precision in the elements of S*.. in many cases of practical interest. The 
mechanism is as follows. 

In Section 10.5 we pointed out that with a well-configured filtering 
scheme, the elements of will, in general, be shrinking monotonically as 
time progresses. In the Bayes case that shrinkage comes about as a result of 
executing (12.2.7) which amounts, essentially, to a shrinkage by addition 
followed by inversion. The shrinkage mechanism of (12.2.7) is analogous to 
the following: If a n  and bn  are positive and if 

f See. p. 137. 
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- 

1 	1 
a 	+ n + 1 an b n 

(12.4.19) 

then an + 1 is less than a . Repeated cycling of this algorithm, using floating-
point finite-precision arithmetic, will not lead to a loss of precision in the 
answer. The Bayes Filter thus encounters no problems in this respect 

However in the Kalman case, tn  is shrunk by repeated subtractions as 
we see from (12.2.18), and as is well known, this invariably does lead to a 
loss of precision. Thus, consider the following trivial example: Let 

an + 1 = an — bn 
	 (42.4.20) 

where 

an = 1.2165 x 104 	bn = 1.2163 x 104 
	

(12.4.21) 

Then an + 1 = 2 x 100 . The data an and b were of five-digit accuracy 
whereas the answer of course has only single-digit accuracy, a loss of four 
orders of precision. (See Ex. 12.16.) 

One way of circumventing this problem in the Kalman Filter would 
naturally be to use extended-precision arithmetic. Computationally how-
ever this increases the burden of cycling the equations. A compromise 
alternative could be to reconcile ourselves to a loss of precision in 4, but 
to insist that it at least remain a covariance matrix, i.e. positive definite. 
This can be accomplished if we write it as the product 

= K n K nr 	 (12.4.22) 

and thereafter reorganize the Kalman Filter so that K n  rather than it n  is 
computed. If the latter is ever required, we obtain it from (12.4.22), and 
then, provided that K n  is nonsingular, kn, will be positive definite. Such a 
procedure is discussed in [ 12.4] . 

An even better method is to insist that K n  be the square-root of tn , i.e. 

= K nn 	K n n (12.4.23) 

and thereafter again to work with K n  rather than §*n .. Then, as is shown in 
[12.5] , both the objective of keeping it a  positive definite as well as that of 
avoiding a loss of precision can be accomplished. (In fact, as it appears from 
experimental data in [12.5] , the same precision in t n  as that which would 



478 	INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

be accomplished on a 16-digit machine can, by this approach, be effectively 
maintained on an 8-digit one.) However additional computation is now 
required which may, in fact, make a straightforward execution of the Kal- 
man algorithm on p. 465, using double precision arithmetic, to be preferred. 

The trouble of course arises because we are eventually reducing the ele- 
ments of the covariance matrix §* to values which are too small in relation n,n 
to their initial values and to the precision of the arithmetic used. Perhaps 
the best way to overcome the problem is to avoid its occurrence. 

Specifically, suppose that we were using 10-digit arithmetic and that we 
desire, ultimately, 3-digit precision in the elements of t n . Then this could 
be accomplished by ensuring that the a priori covariance matrix ,§*00  has 
elements which are no greater than 10 7  times as large as those values which 
we hope ultimately to achieve. By appropriate prefiltering, using any of the 
non-Kalman schemes which we have discussed earlier, such an a priori 
covariance matrix can perhaps be obtained, and the problem of excessive 
loss of precision thereby entirely circumvented. 

The reader may well be wondering why we bother with the Kalman Filter 
at all, if it is fraught with so many difficulties which the Bayes Filter does not 
seem to possess. The answer is that the Kalman Filter offers the definite 
computational advantage of requiring only a single matrix inversion of the 
order of the observation vector. Under a tightly constrained real-time 
situation this is an extremely significant factor, one which is important 
enough to make us consider very seriously using the Kalman Filter in 
preference to the Bayes, despite its possible drawbacks. Moreover, as we 
show in Chapter 15, if we assume driving-noise to be present, and there are 
many situations when we should, then most of the drawbacks enumerated 
above tend to be strongly mitigated. 

Finally, consider the problem of systematic errors. We have seen in the 
chapter on the Bayes Filter, that if the scheme is appropriately organized, 
then our knowledge of the process should be steadily improving. This will 
manifest itself as a steadily shrinking covariance matrix and, as time passes, 
the new estimate formed from (12.2.19) will depend more and more heavily 
on Xn n n - 1 	 n as fi n  shrinks with §* * If the model on which the filter is based  
is, in fact, very close to the true equations governing the process, then this is 
as it should be. n n X *  should appear more and more like X* n - 1. However if  
the assumed model and the true dynamics differ, either due to ignorance on 
the user's part or because of an admitted compromise, then bias errors will 
begin to manifest themselves in o  

In the final three chapters of this book, we consider the concept of a 
fading memory and as we shall see, the techniques discussed there provide us 
with methods for offsetting the possibility of systematic errors when the 
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assumed model does not properly match the equations of motion. In [12.61 
the question of divergence between the true trajectory and the estimated one 
is discussed, and a variety of possible modifications to the filter equations are 
considered. The problem of biases in the observations and their effects on 
the estimate is examined in [11.6] of Chapter 11. 

The stability properties of the Kalman Filter without driving-noise will be 
investigated in Section 7 of Chapter 14. 

12.5 ITERATIVE DIFFERENTIAL-CORRECTION 

The Kalman Filter can be used as the basis of an iterative differential-
correction scheme for the case where either the process differential equations 
or the observation relation is nonlinear. The method is in very close analogy 
to the Bayes Filter iterative differential-correction scheme developed in 
Sections 11.1 through 11.3. 

Computationally the only difference lies in the way in which fi n  and 
are computed. Thus assuming that X. is the state-vector of a trajectory close 
to the true one, the nonlinear differential equations 

X(t) = F[X(t)] 
—dt 

(12.5.1) 

which are assumed to be governing the process can be replaced, to first 
order accuracy, by the linear set 

—d 8X(t) = A[X(t)] SX(t) 
dt 

where 

at; 
[A [X col 

ax 
X = 5i(t) 

(12.5.2) 

(12.5.3) 

This gives rise to the transition relation 

8X(t. + C) = Ct. + C, tn ;X)sx(t) 

The nonlinear observation relation 

Y. = G (X.) + Nn  

(12.5.4) 

(12.5.5) 
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is likewise replaced by the linear system 

6Y. = M(X.)8X. + N. 	 (12.5.6) 

which neglects second and higher order terms, and where 

dgi  
N (KJ 

axi  
x - xn  

(12.5.7) 

  

The differentials 8X. and SY n  are, of course, defined by 

axn 	xn  — 27n 	 (12.5.8) 

6Y n  = Y n  - G(X n) 
	

(12.5.9) 

This being the case we can write, as the Kalman estimator of 8X., the 
equations 

X *, 	obtained from xn* _ 1, n - 1 by integration of (12.5.1) 	(12.5.10)1  

n - 1 = (1)(t n ,t n  _ I ;DS*n  _ n  _ i Ct n , tn 	 (12.5.11) 

Hn 	SPn,  n  _ [Ai a ngT  {R n  + M (7n)S: , n  _ 1  [M AT 	(12.5.12) 

s* 	— H ig n,n 	 n M n n, n - 1 	 (12.5.13) 

(12.5.14) 

X n,n 	n = ax* n 	 (12.5.15) 

Using (12.5.8) and (12.5.9), the final two equations give us 

X*  n,n 	*- X n, n - 1 + n [Y n  - G(X n) -- M (X) ( 	— X.)1 	(12.5.16) 

8X: ,n 	8X:,n -1  + H  n[3Y  n M  n) 8en, n - 

and, as with the Bayes scheme, we use 4, n  _ 1  as the first vector-value of X. 
Thereafter we iterate (12.5.16) using the algorithm 
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(1,.2.5.17) 

rc 442, Or  
When this iteration convergest a new data-vector Y n 	and covariance 
matrix R n + 1 are read in, and a new iteration cycle initiated. If convergence 
does take place, then it is to the correct vector in the same sense as discussed 
in Section 11.4. Proof of this fact follows directly from the proof given in 
that section for the Bayes Filter. 

We note that if 	 n -1 X* 	is used as the first value of TCn  in (12.5.17), then  
that equation becomes 

(

X*  = n - 1 n,n (en, n - n G (X% - (12.5.18) 

It is quite common in practice to iterate this equation only a single time, 
since it is found that subsequent iterations make very little difference when 
n increases. The Kalman Filter under these conditions then assumes the 
following form: 

Kalman Filter with Differential-Correction 

X*, n - 1 	 n obtained from X* - 1, n - 1 by integration of (12.5.1) 	(12.5.19) n  

sn, n 1 	qtn' tn - 1 x* n, n - Sn - 1, n - 1 (t • 	- 1 Xn, n - 1 •  (12.5.20) 

H n 	n, n - 1 	n,* S* 	[m(x _ 	R + M (X *  n  n, n - e 	M n, n - 1 E (e 	

T 

n, n - 

S* 	= [I - n,n 

X * 	= n,n 	n, n - 1 

M (en, _ 

Hn [Y n - 

en, _ 

G (X *  n, n - 1)] 

(12.5.21) 

(12.5.22) 

(12.5.23)  

While the above algorithm is conceptually well-behaved, in practice many 
unexpected problems can arise. It is, after all, based on a linearized approach 
to the true problem, and the nonlinearities can (and will) cause difficulties if 
the discrepancy between the nominal and true trajectories is not sufficiently 

t As the criterion of convergence we use (11.2.33) or an equivalent test on a norm of the difference 

(x:,n), 

+1  - (•n)
,

. 

(X:,n)r  + 1 

= X* 	+ H 	[Y n - G (X M ) X * 	- X n, a - 1 	 n ( n, n - 1 	rk)] 
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small. The best approach is to initialize the algorithm with a very carefully 
obtained a priori estimate and covariance matrix (derived e.g. by the use of 
polynomial least-squares), and to avoid excessive prediction times over which 
the abovementioned discrepancy might become excessive. Furthermore, in 
order to verify that the algorithm is working correctly, recourse should always 
be made (during the program debugging phase) to the use of the Chi-
squared tests outlined at the end of Chapter 5 and discussed again in the 
closing paragraphs of Section 10.2. 

NOTES 

The techniques discussed in this chapter, in the preceding two chapters and 
in Chapter 15, are finding a rapidly expanding application in many important 
fields. . For a discussion of the applications to optimal control theory, see 
e.g. Lee [12.2] and Sorenson [12.4] . Both of the above references are 
tutorial and cover the optimal filtering problem very effectively. 

For a discussion on applications to atmospheric reentry, see e.g. Mowery 
[12.7] . The problem of satellite orbit determination is tutorially reviewed 
by Blackman [12.8] . Claus who worked on the Telstar tracking and pre-
diction system has some excellent papers (see under References for Chapter 
11). 

The techniques have also been applied to the space-navigation problem by 
Schmidt et al. (see [12.3] and further references cited therein), and also 
independently of [12.1] by Battin in [12.9] . Almost all of the above are 
concerned with nonlinear processes. 

Of course the list of references which we cite comprises only a very few 
of the already large and rapidly growing number in these areas. They were 
selected because of their tutorial value. Each of them includes further lists 
of valuable references. (See also [10.4] for a very extensive list of references.) 

EXERCISES 

12.1 a) Verify by direct expansion that 

+ MT R.. 1  M)[S — SMT (R + MSMT) -1  MS = I 

Hint: 

M T  R -1  MSM T 	MSM TI 1 MS 

= MT  R -1 (R + MSM T  — R)(1? + MSMTriMS 
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b) Let 	n-1 §* 	1 	
n 2 

1 , (1, 0) and R n  = 1. Show that  
(12.2.7) and (12.2.20) both give 

kn,n 

12.2 Verify that (12.2.12) follows from (12.2.11). 
12.3t a) For the state-vector 

r2 
.. 

rx, 	2C, 	 — Drn x 
2! 	m! 

(I) 

the transition matrix is (I)(t n  + tii) whose i, jth element is 

(c/f (4.2.15)) (i)Cl 	Starting from (12.2.9), and assuming 
i 

that Z* estimates the vector Z in (I), verify that 

n t  n+1) Z n+1,n 	Z n,n-1 	n(Y — M n 	n Z n,n-1) * 	 * 	 (II) 

Letting M be the matrix (1, 0, 0, 	, 0) (i.e. we are observ- 
ing only x(t)) verify that (II) is of the same form as (9.4.8). 
Given that all observations are uncorrelated, have equal variance, 
and are equally spaced in time, infer that the weight matrix Hn  

in (9.4.8) is the same as Hn in (12.2.8) under the above conditions. 
b) Verify that (12.2.8) becomes 

1 
s* MT

. 
Hn = 

2 a 	M zi  
V 

Starting from (4_ 1) 1  = 0 in (12.2.7), cycle it together with 

(12.2.6) and obtain 

-1 

n  
[MO (k, n)] 74:11(k, n) 

k=0 

tThis example makes use of the Bayes Filter to prove the general form given in (9.4.30). 

S*  nn 
(IV) 
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(The reader should compare this result and its method of 
derivation to its counterpart in Ex. 6.18, part b).) 

c) Let P (n) be the matrix defined in (9.4.28). Verify that 

P(k)P(n) 1  = I(k,n) 
	

(V) 

and hence infer that (IV) above can be written 

-1 

S*,n = Qv P (n) {1 [MP (1?)] r  MP (k)} P (n) T  
k=0 

Combine this with (III) to give 

-1 

Hn  = P (n) 	[MP (k)] T  MP (k) 	[MP (n)] T  

} 

k=0 

(VII) 

d) Applying the definition of P (kr, first reduce the inverse term in 
(VII) above to 

1  [c (0, n)] 2  

1 
 [c (1, n)]2  

1 
[c (m, n)] 2  

where [c(j, n)12  is defined in (9.2.8), and then post-multiply this 
by [MP (n)] T  to obtain the vector K (n) of (9.4.29). 

e) Finally infer that (VII) above reduces to (c/f (9.4.30)) 

Hn = P(n)K(n) 

12.4 By (12.3.1), X':: n  _ 1  is an unbiased estimate of X . Verify that 
(12.3.5) then implies that 

E Y n ( 
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and so, infer that (12.3.2) gives 

= Xn  

regardless of the choice for H. 
12.5 Derive (12.3.6) and (12.3.7). 
12.6 a) Verify, by direct expansion, that (c/f (12.3.7)) 

(I - HM) S(I - HM)T  + HRH' = S - HMS - SM TH T  + H (MSM + R)HT 

Now verify that the right-hand side of the above can be 
written as A + B where 

A E- [S - SMT (R + MSMT)-1 	
(I) 

and 

B [H - SM T  (R + MSM T)-  l(MSM T  R)[H - SM (R MSM T )

(II) 

Note that only B contains terms involving H. 
b) Prove that if S and R are positive definite then so is A of (I) 

above. Verify also that B in (II) above is nonnegative definite 
for any H. Hence infer that the diagonal elements of A + B are 
individually least when B is a null matrix and verify that this 
takes place when 

H = SM T  (R + 

We have thus proved that every diagonal element of s* (H) of 
(12.3.7) is least when H is given by (12.2.17). Note that this 
also means that the sum of the diagonal elements of S*, namely 

E1N*..N*. 	is least when H = fin . Verify that under these 

conditions (12.3.7) is now equal to (12.2.20). Thus this 
approach constitutes a completely independent method of de-
riving the Kalman Filter and hence, by the inversion lemma, 
the Bayes Filter as well. 

12.7 We wish to prove that E 1N:T. INIA is least when H in (12.3.2) is 

given by (12.2.17) and r is any positive definite matrix. 
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a) Verify that (c/f Ex. 6.21) 

= TrE{fNNT} 

Hence prove that 

Tr (E frNNTO = Tr(1" 1 /2 EINNTIN 2) 

and so infer that 

E 

 )

1■1*  rN* Tr 0-4/2 S* r1/2) 
n,n n,n n,n 

b) Let the covariance matrix which results when any H is used in 
(12.3.2) be 	n s* and let it be en,n  when lin  is used. Show that n, 

Tr r i.12 S* r1,2) 
n,n 	> Tr (-1/2.§* r1/2) 

n,. 

Hint: See Corollary 6.6.1 on p. 194. 
Hence infer finally that EIN: Tn ilen,n  is least when H is given 

by (12.2.17). 
12.8 Let An  be a linear transformation of X n , i.e. 

An = CX n 

A vector of observations Y (A) is made on An , with the corresponding 
set on X n  namely Y (X) also being recorded. Let Z aǹ n  be an unbiased 
linear estimate of A based on Y (A); Prove that the scalar 

E {(en,n  - AnAZ: ,n  

is minimized by ez az  = C n  where Xn, n  is the linear unbiased 
minimum-variance estimate of X n , based on the observations Y (X). 
(Hint: See Ex. 12.7.) Thus if en n  is the minimum-variance estimate 
of Xn based on Y (X), then Cr n  is the minimum-variance estimate of n 
CX n based on Y (CX ), an assertion which is subject to proof. 

12.9 a) Show that (12.n3.16) follows from (12.3.14) and (12.3.15). 

n)} 
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b) Minimize e (X: ,n ) of (12.3.16) over X:, by the differential 

calculus and show that we obtain 

x* 	- 1 	y i (M 	§* 
n,n 

= 	n, n - 1 	M nT R 1M n 	n 	n
TR 1Y

n 	 n.  - 	*n, n - 1 

Now derive (12.2.8) and (12.2.9) of the Bayes Filter and infer, 
by the use of the inversion lemma, that we could also obtain 
the Kalman Filter. 

12.10 a) Assume that Yn is a two-vector and that 

S n, n - 1 

(1 

2 

2\ 

5) 
R 

n  

1 

(0 

0 

2 
M = 

(1 

0 

0\ 

1 

Verify that (12. 2.17) gives 

(3 2 
10 \4 6 - 

and that (12.2.18) gives 

= /3 	4 
170k4 12 

(I) 

b) Now process the elements of Yn  one at a time. Verify that 
(12.2.17) gives first 

and that (12.2.18) gives 

` .n)

111 2  

1 2  k2 6 

O 

H n 
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Now the second element of Y. is processed. Verify that 

(fin\ 
/2 	5 3) 

and finally that 

(§14  
n,n)2 

1 (3 	4 
10 \LI 12 

c) We infer then that the two methods of processing Y. give the 
same result. Can we process the elements of Y. separately if 
R is not diagonal? Are there any advantages to processing Y n 
element by element rather than in a single pass? 

d) Note from (I) in a) above that the variances of both elements of 
the state-vector are reduced by incorporating both of the 
observations. In (II) of part b) we see that they are both re-
duced, even though we only incorporated one of the observa-
tions. Explain. 

12.11 a) Assume that M 1  is nonsingular, i.e. M 1  is square and M 1' exists. 
Show that the Bayes Filter can be made to ignore the a priori 
estimate by setting S ` of = 0 and that the Kalman Filter ignores 
its a priori estimate if we make R 1 = 0 .t Verify that in either 
case 

0. 	 1 
1, 1 = M 1  Y1  

b) Assume that M 1  is now rectangular. Show that the Bayes Filter 
will ignore its a priori estimate if we set ki3O  = 0 , but that this 
approach only works if M 1  has full column-rank. 

c) Show that when M 1  is rectangular, the Kalman Filter cannot be 
made to ignore its a priori estimate. Verify that if M 1  has full 
column-rank and we set Si 0  = oo1, we cannot cycle (12.2.17). 
Verify, on the other hand, that if M 1  has full row-rank and we 
set k 0 = .4, that the Kalman Filter can be cycled but that Si   
parts of the a priori estimate still appear in Xi , 1 . 

tNote that setting R1 = 0 accomplishes the same result as setting Prol  = of in (12.2.17), by 

virtue of (12.4.3). 



yn 

n  - + Lyn (CO n  

)oc*  

n,n 

 

(I) 

0 

0 
n,n 
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12.12 Assume that 

and that we make a perfect observation on the first element of the 
state-vector, i.e. Mn  = (1, 0) and R n  = 0. 
a) Show that 

H = —1(2 
n  a ) 

and hence that 

Note that the perfect observation has completely replaced the 

estimate (51!
n -1  in (I) above. Is this what we would desire? 

b) From (I) above, obtain the result 

0 

y p 2/a 

c) Obtain (II) above by means of (12.2.18). 
12.13 a) Let 

n, n - 1 = 

and assume that we make two perfect observations at t n , one on 
(xOn  and the other on (xO

n 
where 

s(x0' x1' x2 



12.14 	Let 

§* 	= n, n - 1 

(1 
M n = 

0 

2 

1 

1 

0 

1 

1 

2. 

1 

0 

0 

1 

1 

3 

R n 11 ) 
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Show that after the incorporation of the first, we get §: n  = 0 , 
i.e. we now have perfect knowledge of X n . Explain how a 
single observation can give us perfect knowledge of three state-
variables. 

b) Verify next that we cannot now incorporate the second perfect 
observation even if we try to. 

c) Assume instead that 

§* n, n - 1 = 

/1 

1 

\1 

1 

2 

2 

1 ' 

2 

2/ 

Show that incorporating the first perfect observation gives us 
perfect knowledge of only (2cOn  , and that the second perfect 
observation can now be incorporated, giving t n  = 0 . 

d) Explain why it is that in case c) two perfect observations can be 
incorporated as against only one in case a). 

e) If 

■§* n, n - 1 = 

/3 

1 

1 1 

1 

3 

1 

1 

1 

4 

how many perfect observations could we possibly incorporate? 

a) Verify that kn n  _ 1  is positive definite, i.e. has rank 3, and that 
R n has a rank-defect of 1. 

b) Compute §:, using (12.2.20) and verify that it has a rank-
defect of 1. 
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c) Assuming that 

/1 —1 	1 ' 

(I)(n + 1,n) = 1 —2 

  

compute §: +1,72  using 	obtained in b) above. Show that 
n + 1,n 

also has a rank-defect of 1. 
Now let 

1 2 

with Mn +1  the same as Mn  given earlier. Obtain the resulting 
matrix ,§): +1,  n l and verify that it has a rank-defect of 1. 

e) The above is a demonstration of how a rank-defect, once 
generated, persists indefinitely. Suppose that R n +l in d) above 
were 

Verify that S*  ° n + 1, n + 1 now acquires a rank-defect of 2. 
0 If we were now to incorporate a further R matrix of the form 

given in e) above, infer that the result would be $§): + 2,  n  2  = 0. 
Verify that this is so. 

12.15 In Chapters 10 and 11, problems were suggested for the application 
of the Bayes recursive algorithm. Rework those examples using the 
Kalman algorithm rather than the Bayes and contrast the two 
approaches. 

12.16 a) Assume that a Kalman Filter is being cycled on a machine which 
has 4-digit precision. We are executing (12.2.20). 1.  Let 

n, n - 1 	(.1111 	.1112 

	

.1111 	.1111 
S* 	= 104 	 M = (1, 0) 	 (I) 

ti.e. (12.2.18) in which lei is given by (12.2.17). 
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and R n (a scalar) be equal to unity. Verify that 

(R n  + Mkn, n  _ i MT) 	.1112 x 10 4  

and that 

§* 	M T  O n + MS*niTym§*tz, n  _ 1  = 104  n, n - 1 	 n, n 1 

	

.1109 	.1109 

	

.1109 	.1109 

Hence show that (12.2.10) gives us 

o 	.2 	.2 
Sn n = 10 

	

(.2 	.3 

b) We now compute §:, using (12.2.7) of the Bayes Filter. 
Verify that (using 4-digit precision) 

	

( .1112 	—.1111\ 
,§* - 1 n, n - 1 

	

—.1111 	Mil) 

and hence that 

/ .2112 	—.1111 

Sn,n )

- + M T Rn  Mn = 

Now show finally that (12.2.7) gives 

	

(.9991 	.9991 

	

k.9991 	1.899 

The Bayes algorithm is thus seen to retain four digits of 
precision, whereas the Kalman algorithm loses three digits and 
retains only a single digit of precision. 

c) Using 8-digit precision, show that the "correct" answer is 

—.1111 	.1111 
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.99910080 	.99910080 

	

.99910080 	1.9991008 

and so we see that the Bayes result is both more precise as well 
as far more accurate than the Kalman. 

REFERENCES 

1. Kalman, R. E., "A New Approach to Linear Filtering and Prediction 
Problems," Transadtions of the ASME, Journal of Basic Engineering, 
Vol. 82, pp. 35-45, March 1060. 

2. Lee, R. C. K., "Optimal Estimation, Identification and Control," 
Research Mono. No. 28, MIT Press, Cambridge, Mass., 1964, p. 35 
et seq. 

3. Schmidt, S. F., "Application of State-Space Methods to Navigation 
Problems," in "Advances in Control Systems," C. T. Leondes (editor), 
Academic Press, New York, Vol. 3, 1966, pp. 293-340. 

4. Sorenson, H. W., "Kalman Filtering Techniques," in "Advances in 
Control Systems," C. T. Leondes (editor), Academic Press, New York, 
Vol. 3, 1966, pp. 219-292. 

5. Bellantoni, J. F., and Dodge, K. W., "A Square Root Formulation of 
the Kalman-Schmidt Filter," American Inst. of Aeronautics and 
Astronautics (AIAA) Journal, Vol. 5, No. 7, pp. 1309-1314, July 1967. 

6. Schlee, F. H., Standish, C. J., and Toda, N. F., "Divergence in the 
Kalman Filter," American Inst. of Aeronautics and Astronautics (AIAA) 
Journal, Vol. 5, No. 6, pp. 1114-1120, June 1967. 

7. Mowery, V. 0., "Least-Squares Recursive Differential-Correction Esti-
mation in Nonlinear Problems," IEEE Trans. on Automatic Control, 
Vol. AC-10, No. 4, October 1965, pp. 399-407. 

8. Blackman, R. B., "Methods of Orbit Refinement," Bell Systems Tech. 
Journ., Vol. 43, May 1964, pp. 885-909. 
Battin, R. H., "A Statistical Optimizing Navigation Procedure for Space 
Flight," Journal of the Amer. Rocket Soc. (ARS), Vol. 32, November 
1962, pp. 1681-1969. See also "Astronautical Guidance," R. H. 
Battin, McGraw-Hill Book Company, New York, 1964. 





PART 4 
FADING MEMORY 

FILTERING 

We have considered two approaches to the filtering problem up to now, 
namely the fixed-memory and expanding-memory techniques. In the former 
case we saw that, by an appropriate choice of the memory length, possible 
systematic errors can be balanced-off against the random output errors. In 
the latter case this was not possible since the memory length was growing 
steadily. In the event that a mismatch occurs, either by intention or by 
ignorance, between the model on which the filter is based and the true 
process, then the expanding-memory techniques will give rise .to systematic 
errors which could become very large. However the expanding-memory 
schemes are definitely to be preferred to the fixed-memory ones because 
they are all recursive and require only that the most recent data be temporarily 
retained. They are also very compact in terms of the amount of computation 
required. 

We now examine an approach which attempts to take the best out of each 
of the above two techniques. The algorithms we derive will be recursive and 
hence very compact. Moreover the memory-shape will be seen to be 
equivalent, in a sense, to a fixed-memory, so that systematic errors can be 
controlled at the expense of random errors. As will be seen, this is ac-
complished by the use of what we call a fading memory. 

A AG 





13 
THE 

FADING-MEMORY 

POLYNOMIAL 

FILTER 

13.1 INTRODUCTION 

In this chapter we examine the filters which result when a polynomial is 
fitted to a sequence of equally-spaced observations by the use of weighted 
least-squares. The weight-factor which we propose to use is one which decays 
exponentially as time recedes into the past, and so this means that the 
emphasis being exerted by any given datum in the choice of the polynomial 
will taper off or fade out as the staleness of the datum increases. The filters 
which result are accordingly endowed with what we call a fading-memory. 

The least-squares error-functional on which this chapter is based t has been 
studied independently by a number of other investigators, a partial list of 
references being [13.1, 13.2, 133, 13.4, 13.5] . Despite the fact that they all 
started from essentially the same point, their results are, at first sight, differ-
ent from each other's and from ours. In most cases however, they can be 
reconciled without too much difficulty. 

f See (13.2.1) on p. 498. 

11137 
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In [13.1], Bruckner and Ford based their approach on a set of orthogonal 
polynomials, but did not appear to recognize that these were related to the 
discrete Laguerre polynomials.t On the other hand, in [13.2] and [13.3] 
Duffin and Schmidt performed all of their analysis without reference to any 
orthogonal polynomials, but they do show, in the final section of [13.2], 
that their results are directly related to the discrete Laguerre polynomials. 

The present discussion approaches the problem entirely on the basis of the 
discrete Laguerre polynomials. Our results can be readily reconciled with 
those of Duffin and Schmidt, and in fact the present chapter was strongly 
motivated by their work. 

13.2 DISCOUNTED LEAST-SQUARES 

Assume that the semi-infinite sequence of scalar observations 

• • ' ' Yn - 5 1  • • ' 	Yrk - 2 1  Yn - 1 yn 

has been obtained by taking measurements on a process at equally-spaced 
instants, r seconds apart. In Figure 13.1 we depict the observations located 
on the t-axis. We also show the r-axis, r being a continuous variable with its 
origin located at t = nr,  , the integer n being assumed frozen for the present 
at some fixed value. Note that an increase in r corresponds to a decrease in 
n or t. 

It is decided that the process shall be modelled by a polynomial in r of 
degree m, based on the above sequence of observations. We call this poly- 

nomial Ep* (i)] , the subscript n being included to show that this polynomial 

is founded on data up to y n . When yn  + 1  becomes available a new poly-

nomial El)* 01 + I  will be considered, based on data up to yn +4 , and at that 

time the r-origin will be located at t = + r. 

Returning to [p* (it, the difference between it and the observation made 

at t = (n — r is yn  _ Ep* (7)] . This is then the residual at that time, and 

so the scalar 

e = 	fy n  _ r  — [p* (71}2  et  
r= 0 

(13.2.1) 
(See Note.) 

t These were discussed in Section 3.3 where their general form was established. 
Note: The criterion in (13.2.1) is based on discrete values of r. A complete dual, using a continuous 

variable, and integration in place of summation, has been developed in [13.7] . The filters which result 
are readily realized using resistors and capacitors. 
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is seen to be the sum of the squared residuals, weighted by the exponential 
function O. The latter dies out as r increases if 1 61 < 1, which we assume to 

be the case. Hence if we take, as our criterion for the choice of [p* (ra i , that 

the above en be minimized, it is clear that the older or staler a datum is, the 
less it will influence the choice. From (13.2.1) we see that the multiplier Or 
acts as a discount factor, hence the title for this section "discounted least-
squares," a term coined by Duffm and Schmidt in [13.2] . 

The error-function (13.2.1) is very readily minimized over all polynomials 

of given degree if we first express Ep*(r)] n  as a linear combination of the 

discrete Laguerre polynomials of Chapter 3. We recall from that discussion 
(see Section 3.3), that if we define a polynomial in r, of degree j, with 
parameter 0, by 

p(r;j,0) 	0' 	(-Dv  j\C 	(r\ 
1/1 0 I \v) v=o 

(13.2.2) 

then the resulting set of polynomials satisfies the discrete orthogonality 
condition 

p(0,0)p(r;j,0) = 
r=0 

where 

[c (j, 0)] 2  -a-- 	64j  
1- 6 

0 
	

jai 

[c (j,(9)] 2 	j = 
(13.2.3) 

(13.2.4) 

For the remainder of this chapter we abbreviate as follows: 

p j (r) = p(r;j,0) 	 (13.2.5) 

and 

C. = c(j,0) 
	

(13.2.6) 

the parameter 6 being implicit in both cases. Moreover we now let 



-   In - k 	0 1) Vi(k) ek 

k=0 1=0 	ta 

03 	 2 

e 

12 
(13.2.11) 
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	)/f.:-=' K1 -- =(1-61/2  

and then it is clear that the polynomial set defined by 

::pi  (r) = Ki  pi  (r) 

will satisfy the orthonormal condition 

co 

Sp 	4p 1 (r) Or = 6 
r=0 

(13.2.7) 

(13.2.8) 

(13.2.9) 

where is the Kronecker delta. 
For the moment let Ep* (r)]  be any polynomial of degree min r. Then it 

is evident that there exist constants n , k) n , (Im). , such that we 
can write 

[p* (rg n  = 	olio1 (r) 
	

(13.2.10) 
1=0 

i.e. [1,* (71 can be synthesized as a linear combination of the co i  (r)'s. Note 
that the p 's have been subscripted with an n to show their association with 
Ep* n  . We now set (13.2.10) into (13.2.1), thereby obtaining 

Observe that r has been replaced by k for convenience in what follows. 
The above error-function en is seen to depend only on the g's, and so we 

can minimize it by setting 

aen 0 < i < (13.2.12) 
a i)n 



tp* A. = 
m r  

y n  _ k  yoi (k) O k] 41(0 
1=0 k=0 

(13.2.16) 

502 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

Performing this operation yields the m + 1 equations 

	

co In 	 co 

(p1)
n 

wi (k) vi a?) Ok 	y n  _ k ioi (k) O k  

	

k=0 j=0 	 k=0 

< < m  (13.2.13) 

and then, by an interchange of the order of summation on the left, 

III 	 CO 

	

(PJ),2 I 	ii (k) O k  = 	y n  _ k  991 (k) O k 	 (13.2.14) 
J=0 	k=0 	 k=0 

We now invoke the orthonormal property of the set of of  (k) (see (13.2.9)) 
and obtain 

co 

09. 	y _ k j (k) O k 
	

0 j < m 	 (13.2.15) 
k=0 

and so this is the expression for the jt h  constant to be used in (13.2.10) so 
that e of (13.2.1) be least.t We accordingly obtain, as the polynomial which 

. . minimizes en  , 

It has been decided that [p*  (r) n  shall, for better or for worse, serve as an 

estimate of the process, based on observations up to y n . Thus we write 

x 	[p* n — r,n 	 n  (13.2.17) 

Setting r = 0, for example (see Figure 13.1), gives us the updated estimate 

n x* or setting r = —1 gives us the 1-step prediction 

x. + 1,n 	 CP* (- 1 
	

(13.2.18) 

tThese constants are termed the expansion coefficients or sometimes they are said to constitute the 
Laguerre spectrum, in. analogy to the coefficients of a Fourier expansion which constitute the Fourier 
spectrum. 
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and so forth. The ability to move the validity instant of the estimate is thus 
clearly contained in the choice of the value assigned to the variable r in 
(13.2.16). 

Reference to Figure 13.1 shows next that, to within a constant, 

t = -rr 

and so 

d 	1 d = _ 
dt 	r dr 

and in general 

(11 d' 

dt' 	r dr' 

(13.2.19) 

(13.2.20) 

(13.2.21) 

Then, just as the process will be estimated by. [p* (11, so we decide that its 
time-derivatives will be estimated by the time-derivatives of [p* (r)]. Thus by 
virtue of (13.2.17) and (13.2.21), we have 

(D' x*). - r,n 
1) 

 —di 
[p* (rg 

dri n (13.2.22) 

and so, from (13.2.10) it follows that 

(D' ek)n r,n 
di 	, , 

j=o 
— (1,  lrl n (p 

r/ 	n  dri j  
(13.2.23) 

where of course D = d/dt. Finally if we define what we call the unscaled-
derivative estimate state-vector by 

(13.2.24) 

\Dm X*/ n  

then we see that its i th  element is given by (13.2.23). 

X*  n r,n 
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Once values are assigned to r and r it is clear that (13.2.23) is just a linear 
sum of the p 's. These in turn are seen from (13.2.15) to be a linear com-
bination of the observations, and so it follows that each of the elements of 
X*  n r,n above can be obtained by taking an appropriate linear combination 
of the data. At the same time, by varying r, prediction or retrodiction can be 
performed and, as we shall show presently, smoothing of the observation 
errors will also be accomplished by an amount which depends on the choice 
of the parameter 0. 

13.3 RECURSIVE FORMULATION 

The expression obtained in (13.2.15) for the j th  expansion coefficient, 

(On , is obviously unsatisfactory from a computational standpoint. How- 

ever it can be recast into a very convenient recursive form as we now show. 

Equation (13.2.15) gives us (3 3) . Suppose that we had previously used it 

to compute (p _ 1 . Then clearly we would have obtained the latter from 

co 

( 3 )n - 1 
	 _ _ k  (k) ek 

	
(13.3.1) 

k=0 

which is readily seen to be equivalent to 

00 

0 (
,3i)n -1 = 	Y E, _ k  (k — 1) O k 

	
(13.3.2) 

k=1 

We now extend this argument, and it becomes clear (see Ex. 13.1) that for 

the case of (pi) _ i , (13.3.2) generalizes to 

co 
eiNn 	= 
	y. _ k  (pj (k — 17 ek 

	
(13.3.3) 

k=1 

Now consider the case j = 0. By (13.2.8) and (13.2.2) we know that 
920  (r) = K 0  (which is a constant independent of r) and so it follows quite 
easily from (13.2.15) and (13.3.2) (see Ex. 13.2), that 

030; = 030 _ + Ko  yn 	 (13.3.4) 
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This is seen to be a recursion for (00 in terms (1 o)n  _ 1  and y. , and is 

obviously a far more practical way of computing (/3 )n  than (13.2.15) was. 

(It remains to be shown, however, that (13.3.4) can, in fact, be used; being a 
recursion it possesses potential stability problems. This question will be 
satisfactorily resolved in the next section.) Using the backward-shifting 
operator q, we observe further that (13.3.4) can be written in the operational 
form 

(1 — q0)0 0% = K o y. 	 (13.3.5) 

By repeating the above approach (see Ex. 13.3) tire redder can readily -

verify that the recursion for (p 1) assumes the form 

(Pon 	 (92 (13 1). - 2 + Kl°(Yn 	
y_ 1 ) 	(13.3.6) 

with the associated operational form 

(1 — q0) 2 (3 1)n 	O = K 1 0(1 — y. 	 (13.3.7) 

and we thus begin to suspect that, in general, the recursion for (i3) has 

the operational form 

(1 — q0) J 	K 1 91(1 - olyn 	 (13.3.8) 

This is in fact the case. The proof, while straightforward, is somewhat 
lengthy and so it would tend to distract us from our train of thought. 
We have accordingly located it separately in Appendix Mt Equation (13.3.8) 
is a very fundamental result, and the entire remainder of this chapter will be 
based on it. (See Ex. 13.5.) We now apply it to the results of preceding 
section. 

By virtue of the discussion given in Section 2.2 (see (2.2.27) and (2.2.28)), 
we know that the operator (1 — q0) I  t  1  on the left of (13.3.8) can be moved 

tin addition to the proof given in that appendix, a proof of the validity of (13.3.8) is also given in 
[13.6]. The two proofs differ in their approach in that the one in Appendix II is very direct, making 
use of the Z-transform (the discrete counterpart of the Laplace transform). The one in [13.6] on the 
other hand follows a somewhat lengthier but purely algebraic approach. (See also Ex. 13.4.) 
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into the denominator on the right of that 

= K 0J 	(1  — q)i  y  

equation, i.e. 

write 

(r) 

K 	(1 — q)i + 1  

AND PREDICTION 

Y n 

(13.3.9) 

(13.3.10) 

(13.3.11) 

((i j). 

Then by (13.2.10) it 

gyp*= 
i=o 

and's° finally, by (13.2.23), 

(Di  X* 	- rai 

(1 — 	+ 1 	n  

follows that we can 

(1  — K j Oi 	 Yn]io 
(1 _ 0 .1 + 

we obtain 

pi . 
j=o 	dr ' (1 — q60' 

This is the general operational form of a recursion for estimates of any of 
the derivatives of the process under observation, based on a polynomial of 
degree m and a prediction span determined by the choice of r, using dis-
counted least-squares. 

We pause for an example. Let i = 0 and m = 1 (i.e. we are estimating 
the zeroth derivative of the process using a first-degree polynomial approxi-
mation). Then (see Ex. 13.6), (13.3.11) reduces to 

(1 — q0) 2  X* n - r,n = (1 - 0) .1(1 - qe) + [0 - r(1 - 0)1(1 - q) y n  
(13.3.12) 

which gives us the recursion algorithm 

x* 	= 20x* 	
— 

02 x* 
n - r,n 	n - 1 - r, n - 1 	n - 2 - rz - 2 

+ (1 — 0) .y. — Oy n  _ + [0 — r(1 	0)1(y n  — y 
(13.3.13) 

Suppose moreover, that we desire a 1-step prediction. Then this is accomp-
lished by setting r = -1 in the above equation which accordingly becomes 



(1 — q0) rn 4. 1  n  

f (q. r 0  r) 
 (Di  x*)n r,n - 	" (13.4.1) 
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x* + 1,n 	n = 20x*, - 1 	n — 0 2  x*
- 1, n - 2 + 2 (1 — y n  — (1 — 0 2 ) y - n - 1 n  

(13.3.14) 

This algorithm can now be readily implemented in a computer. 	•• 
In this way, given i, m and r, (13.3.11) can be reduced from its very general 

operational form to a directly programmable linear recursive form, and is 
thus seen to be a very basic formula for providing any of the algorithms 
which we might desire, in recursive form. 

13.4 STABILITY 

We now turn our attention to the question of the stability of the recursion 
algorithms which are generated by (13.3.11). As a first step, we reduce the 
right-hand side of that equation to its common denominator, obtaining 

where f(q;r, 0, r) is a polynomial in q with parameters r, 0 and r. We now 
write this as 

(1 — 	+ 1  (D i  x*)n - r,n = f (q; r, 	y 
	 (13.4.2) 

and so it is clear that the homogeneous part of any recursion obtained from 
(13.3.11) will be, in operational form, 

(1 — 	 + 1  (D i  x*)n  _ 	= 0 	 (13.4.3) 

From the results of Section 2.8 (see e.g. (2.8.12) and (2.8.13)) we know 
that (13.4.3) has solutions 

(Di  x*). _ 	= p .(n) On 	 (13.4.4) 

where pm  (n) is a polynomial in n of degree m , whose coefficients depend on 
initial conditions. Thus the natural modest of every algorithm obtained from 
(13.3.11) will be of the form of (13.4.4). 

Now, in Section 9.5 we introduced the concept of stability as related to a 
recursion formula, and we stated there that an algorithm is said to be stable 

tSee p. 45. 
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if its natural modes go .to zero as n c.o. From (13.4.4) we see that this is in 

fact the case for the algorithms under consideration if I 01 < 1, since then 

lim p .  (n) On  = 0 
	

(13.4.5) 
n-,00 

Hence we will restrict ourselves to this condition on 0 throughout our discus-
sion.t In order to avoid the occurrence of complex numbers in the outputs 
of the algorithms we further restrict 0 to being real, t and finally, to avoid 
natural modes which alternate in sign on successive values of n, we restrict 0 

to being positive. We accordingly take 0 to be a real number in the range 

0 < 0 < 1 	 (13.4.6) 

When n is large, (114.4) shows that the natural modes of all of our 
algorithms will behave like nrriOn.§ This means that they will persist longer 

for higher values of the degree of the estimating polynomial [p* 4.. It is 

almost inevitable that the natural modes will be excited sooner or later in 
practice, giving rise to what are termed transient errors, and so we see that 
it will be desirable to keep the degree of the estimator as small as possible. 
On the other hand it is intuitively clear that the outputs of the algorithms 
will contain systematic errors when the degree of the estimating polynomial 
is inadequate, and so for this reason we would want to raise the degree of 
the estimator. These two conflicting conditions mean that a compromise 
will have to be reached in which possible systematic errors are traded off 
against the persistence-time of the transient errors. (See Ex. 13.7.) 

A second compromise is called for as the following shows. By making 0 
small (i.e. close to zero) we see from (13.4.4) that the natural modes die out 
more rapidly — a desirable situation. However when 0 is small we see from 
(13.2.1) that the weight-function or also dies out more rapidly. This in 

turn means that the estimate [p*q a  will be based, effectively, on very 

recent data only, and that the older data will play very little part in the 

tit was already assumed to hold when the discrete Laguerre polynomials were derived. See (3.3.1). 
t It has been pointed out to the author by A. J. Claus of Bell Laboratories that some very 

interesting possibilities for reducing bias errors are opened up by using complex values of 0, at a 
slight increase in the amount of computation. However, space does not permit us to dwell further on 
this point. 

§ The function rim en increases until n = 1/1n (1/0) 11m , thereafter tending to zero. 
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formation of the estimate. The filter can now be likened to a Fixed-Memory 
Polynomial Filter with a short observation time (i.e. L small). On the other 
hand when 0 is close to unity then 0' dies out slowly, and from (13.2.1) the 
filter is seen to be similar to a Fixed-Memory Filter with a long observation 
time (L large). It thus begins to appear as though a direct analogy might 
exist between 0 and L, i.e. 0 close to zero corresponding to L small, and 0 
close to unity corresponding to L large. 

We recall from Chapter 7 that when L is large then smoothing is good but 
systematic errors are large, and that decreasing L reduces the smoothing but 
improves the systematic errors. Thus, on the assumption that the above-
mentioned analogy does exist, making 0 close to unity should result in 
good smoothing but in large systematic errors, and making 0 close to zero, 
the reverse. This is in fact the case and we shall prove rigoroility that as 
6 1: 

a) The variance reduction factors of the Fading-Memory Polynomial 
Filter go to zero, 

b) The systematic errors become unbounded. 
Thus the effects of letting 0 -+ 1 will be seen to compare precisely with the 
effects of letting L 	in the filters of Chapter 7. 

We are thus not free to choose 0 solely on the basis of transient error 
considerations. Clearly from (13.4.4) we see that 0 0 is most desirable if 
we are only concerned with rapidly expiring transients. This choice for 0 
is also most desirable from a systematic error standpoint. But 0 = 1 will be 
seen to be the most desirable from a smoothing standpoint, and so a com-
promise will have to be reached in which the above considerations are traded-
off against each other. 

One final fact should be pointed out. We will see that the analogy between 
the parameter 6, for these filters, and L, for those of Chapter 7, is a very 
strong one, and we will actually be able to compare the two filters quantita-
tively by setting up relationships between 0 and L for equal variance reduc-
tion. However the filters of Chapter 7 are nonrecursive and so their transient 
errors, caused for example by an abrupt change in the signal, will persist for 
a finite time, expiring completely thereafter. On the other hand, the present 
filters are recursive and have transient errors which die out exponentially (see 
(13.4.4)). Thus, in theory, these transients do not ever expire completely 

—they merely decay until they drop below a perceptible value. The presence 
of these exponentially decaying transients is a distinct disadvantage which 
these filters possess relative to those of Chapter 7. However, as we show 
in the next section, they have the very strong counter-advantage of giving 
rise to algorithms which are extremely compact, and are thus easier to 
compute and require much less memory space than those of Chapter 7. 
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13.5 COUPLING PROCEDURE 

We now show that an extremely compact set of algorithms can be obtained 
which recursively compute the state-vectors of the 1-step predictions. These 
are of particular interest in tracking systems where such predictions must 
constantly be provided in order to ensure that further observations will 
continue to be made. The 1-step predictions can of course be obtained 
from (13.3.11) by setting r = —1, but as will be seen, the following ap-
proach results , in a far more economical procedure. Once the 1-step pre- . 

 diction state-vector has been obtained, we know that, by the use of the 
appropriate polynomial transition matrix, the state-vector can be obtained 
for any other validity instant. Thus the fact that the algorithms which we 
are about to derive are all 1-step predictors, does not constitute a limitation, 
and because of their computational convenience they will be readily seen to 
be the best way in which the Fading-Memory Filters should actually be 
implemented. 

As a start it can easily be verified (see Ex. 13.8) that the polynomials 
p i (r) of (13.2.2) satisfy 

p (-1) = 1 

for all j. That being the case, (13.2.8) gives us 

coi  (-1) = K 

and so, setting r = —1 and i = 0 in (13.3.11), it follows that 

1 
n4 	4. 	Y +1,n LO (1 — 0' • 

_ q) 

 

(13.5.1) 

(13.5.2) 

(13.5.3) 

Inserting (13.2.7 .) for K 1  and carrying out the indicated summation (see 
Ex. 13.8), this reduces to 

x* 	1 	(1 — qyi  
n + 1,n q 	1 — q0 	n 

(13.5.4) 

which is a recursion for en  +1,n  in terms of its predecessors and the observa- 
tions. Thus, assuming a first-degree estimating polynomial (m = 1), we 
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obtain, after clearing fractions, 

(1 - q0)2 x*n + 1,n = [2(1 — 0) — q(1 — 02 )] y 
	 (13.5.5) 

which is easily seen to be in precise agreement with (13.3.14). 
We now introduce the scaled-derivative estimate state-vector 

7'n + 1,n . (13.5.6) 

(c/f (13.2.24) where we defined the unscaled-derivative estimate state- 
vector r) Then, (13.5.4) becomes (after multiplying both sides by q), n - r,n 

(21;1 , n - 1 [1 — 	q rn+ ] qt9) 	n 
(13.5.7) 

Define the prediction error (c/f (9.3.21)) 

En ' Yn 	n- 1 	
(13.5.8) 

i.e. the difference between the observation, y n , and the prediction based on 
data up to the preceding instant, namely (z*„) 	. We combine (13.5.7) 

n, n - 1 

and (13.5.8) and obtain the result (see Ex. 13.9) 

zn + 1 

En 	
1 - q 

E  

	

— q0 	
Yfl (13.5.9) 

which shows that the prediction error, for these algorithms, can be readily 
computed by a recursion on the data. As an example, for m = 1, (13.5.9) 
gives us 

En = 20En - 1 - 02En - 2 ± y n  -  2- n - 1 + Y n - 2 (13.5.10) 
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We now eliminate y. between (13.5.9) and (13.5.7), thereby obtaining 
(see Ex. 13.9) 

(e1c0)n + 1,n 

1R1 — q0 
 + 1 

q 1 — q 
— 11En (13.5.11) 

which gives the prediction as a recursion on the prediction errors. Note 
that the q in the denominator on the right of (13.5.11) can always be 
divided into the numerator since the latter also possesses q as a factor (see 
Ex. 13.9). 

We now make the same heuristic assumption as we did on p. 356, namely 
that the updated estimate Z*.. is equal to the sum of the previous pre-
diction Z* , n - 1 and a multiple of the prediction error, i.e. that 

n  

Z*  = 	+ Hn En n,n 	n, n 1 
(13.5.12) 

where Hn is a vector of weights, possibly dependent on n. The above is 
equivalent to (c/f (9.4.8)) 

(1:0(-1)Z * 	= Z* 	+ H n+1,n 	n,n-1 	n  E n 
(13.5.13) 

where (1)(-1) is defined by (4.2.15). The vector H. will be chosen so that 
(13.5.13) gives an algorithm which is consistent with (13.5.11). 

For simplicity consider the first-degree case (m = 1). Then (13.5.13) is 

(I, —1) z* 	(z 	(h 0 
En 

1 0 	 Z *  
i
)n , n - 1 	

1 
n + 1,n 

(13.5.14) 

which we write, using the backward-shifting operator q, as 

(1 — q 	—1 \(,zt 	(h0)

1

E n 
0 	1 — q) 

n + 1,n 	 I n 

(13.5.15) 

Solving for the vector on the left now gives us 



1 	 1 )(h 

(1 - q) 2  ( 0 	1 - q h 1  

n 

E n 
(13.5.16) 
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1 

from which 

(1 - q)  (h0)+ (lzi)nen 

(z t)a + 1,n 	 (1 - q) 2  
(13.5.17) 	' 

i.e. 

(h0 h )n  En  — (h0) 
/n-l En -1  

(1)t, + 1,n 	(1 - q) 2  
(13.5.18) 

We now return to (13.5.11) and setting m = 1 we obtain 

i.e. 

(tho)n + 1,n 

1 

q [(11-_ -12 (13.5.19) 

(en 
'n + 1,n 

[2(1 - 0)  - q(1  - 02 ) 

(1 	q)-
2 	en 

 

so that 

( 	+ 1,n 

(13.5.20) 

2(1 - 0)En  - (1 - 02 )E. 
(13.5.21) 

(1 - q) 2  

Equating coefficients of En  and En  _ 1  in (13.5.18) .and (13.5.21) then yields 

+ hO = 2(1 - 0) n  

(71 0% 	= 1 - 02  

(13.5.22) 

(13.5:23) 
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and so finally 

ho  = 1 - 02 
	

(13.5.24) 

hi  = (1 - 0) 2 
	

(13.5.25) 

We now insert these expressions (note that they in fact do not depend on 
n) in (13.5.14) and, by a slight rearrangement, we obtain the form best 
suited to actual computation, i.e. 

(1 — 60
2 

E n (ZiO 	= Z 
n + 1,n 	

(* 1) ' n, n - 1 +  

(1) 	= (2410 	(ZI)n + 142 
+ (1 - 02 )En n+ 1,n 	n, n - 1 

(13.5.26) 

(13.5.27) 

This is the algorithm which gives the 1-step predictions of position and 

scaled-velocity, based on the first-degree polynomial [p* (r) n  which mini- 

mizes en of (13.2.1). We note that if we were to set up the algorithms to 
estimate the same two quantities starting from (13.3.11), we would obtain 
two uncoupled expressions of the same form as (13.3.14). However their 
execution would then be about twice as costly as the coupled pair (13.5.26) 
and (13.5.27). (See Ex. 13.10.) 

Observe that only three memory locations are required above - two 
permanent and one temporary. In the temporary location we store En , 

computed from (13.5.8) upon the receipt of y Then (zit) is computed 
n + 1,n 

from (13.5.26) and is immediately reinserted into the permanent storage 

location containing (z i) 	. (The latter is of course now no longer needed.) 
n - 1 

Finally(4), +1,n is computed from (13.5.27), the result being stored in 

place of (zn 	. The weights (1 - 0)
2 and (1 - 02 ) can be precomputed, 

\ in, n - 1 
once and for all, when 0 is selected. It is thus clear that the above pair in 
fact constitutes a very compact algorithm for estimating the 1-step predic-
tions, based on first-degree fading-memory polynomial approximation. The 
question of initialization will be discussed later. 

In Table 13.1 (see p. 516) we display the algorithms up to degree 4, 
obtained in a manner analogous to the above. We are also able to give the 
general form of the weight-vector H, appearing in (13.5.13). Thus, define the 
(m + 1) x (m x 1) matrix P (r) whose i, jul element is 

[P(r)].. = (-1)1 	(p.(r) 	0 < j 	m 
" 	i! 	dri  

(13.5.28) 



THE FADING-MEMORY POLYNOMIAL FILTER 	515 - 

where coi (r) is given by (13.2.8). Also define the (m + 1)-vector L by 

[L]i  = K i Oi 
	

0 < j < m 	 (13.5.29) 

where K is given by (13.2.7). Then the weight-vector H of (13.5.13) is 
given by 

H = P(0)L 	 (13.5.30) 

As an example, let m = 1. Then by (13.5.28), 

(K0 	K 1 [0 - r(1 - 0)] 
P(r) = 

0 	K 1 (1 - 	) 
(13.5.31) 

and by (13.5.29), 

L = 1(0  
K 1) 

(13.5.32) 

Hence, by (13.5.30), 

P (0) L = 
(K 0 	K 10)( K 0 	( 1 - 

0 	K 1 (1 - 	\K 1 0) 	(1 - 0) 21 
(13.5.33) 

This is in precise agreement with (13.5.24) and (13.5.25). 
The proof that (13.5.30) is true, is given as an exercise at the end of 

Chapter 14. (See Ex. 14.11.) 
The algorithms of Table 13.1 and the expression (13.5.30) are in very 

close analogy to the coupled-form algorithms given in Table 9.1 on p. 360 
and to (9.4.30) respectively. In fact the two sets of algorithms are seen 
to be structurally identical and differ only in the multipliers applied to the 
iprediction-error, e n  . 

It is clear then, from an inspection of Table 13.1, that the Fading-Memory 
Polynomial Filters can be formualted as a set of extremely compact recursive 
algorithms. By comparison with the filters of Chapter 7, the present ones 
are indeed to be preferred from a computational and memory standpoint. 
In the present case, both the number of machine operations and the 
number of storage locations depend solely on the degree m, whereas in the 
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Table 13.1 The Fading-Memory Polynomial Filter 

Define: 

x* 

rDx* 

r  2 
— D2  X*  
2!  

,3 
D 3  X* 

3!  

— D4  x* 
.4! 

  

  

  

  

n + 1,n 

Ea  = ya  — (zt) 
n, n - 1 

Degree 0 

(

• 

z .t) 	+ (1 — En  (z) 
n + 1,n 	n, n - 1 

Degree 1 

(z*1 )n + 1,n 

:)n + 1,n 

+ (1 - 0)
2 
 En 

a -1 

• (ZIO 	 (1 
n, n - 1 

▪  

" n + 1,n 

Degree 2 

• 

(z1) 	z1) 	+( 1 — 0)3 en  

(z4;) 
n + 1,n 	n, n - 1 	n + 1,n 

(zt;) 	• (Zt) 	• (z 1) 	- (Z1) 	+ (1 — 03 ) en 
n + 1,re 	n, n - 1 	n + 1,n 	n + 1,n 

n + 1,n 	n, n - 1 

(z*i ) 	+ 2 (Z*) 2 	 2 (1 - 0) 2  (1 + 0)En 
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Table 13.1 The Fading-Memory Polynomial Filter (Continued) 

Degree 3 

(4)= (24 434) 	+ 1 (1 - 0) 4  E 6 	n n + 1,n 	n, n - 1 

040 	= (z*2) 	+ 3 (z43), 	+ (1 — 0) 3  (1 + En  
n + 1,n 	n, n - 1 	n + 1,n 

01) 	= (z*) 	-1- 1 	2 (z40 	— 3(z40 
n + 1,n 	n, n - 1 	n + 1,n 	n + 1,n 

+ (1 — 0) 2 (11 + 140 + 110 2 )E. 6 

(z)_ (z)+ (e) 	— (z2) 	+ (z3) 	+ ( 1 — 04 ) En 
n + 1,n 	n, n - 1 	n + 1,n 	n + 1,n 	n + 1,n 

Degree 4 

(Z*4)n  + 
1 , n 

= 	
n , n - 1 

± 	- 0) 5  En 24 

(4) 	= 	
4(z:) 	+ 1(1 - 0) 4  (1 + 0) Ea  

n + 1,n 	n, n 1 	• n + 1,n 

(Z1) 	= (2-10 	± 3 (et) 	— 6 (z:) 
n + 1,n 	n, n - 1 	n + 1,n 	n + 1,n 

+ 24  5  (1 — 0) 3  (7 +- 100 + 70 2 ) en  

(zi) 	(e) + 2 (z2) 2 	- 3(z1) 	+ 4 (z4c) 4 n + 1,n 	n, n - 1 	n + 1,n 	n + 1,n 	n + 1,n 

+ 2(1 — 0) 2  (5 + 70 + 702  + 503 )E n 

(1) =  (1) 	
(Z*1) 	- (Z2) 
	

+ 03) 
n + 1,n 	n, n - 1 	n + 1,n 	n+1,n + 1,n 	n + 1,rz 

- (e14) 	+ (1 - 0 5 ) En n + 1,n 
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case of the Fixed-Memory Polynomial Filters dependence was on the prod-
uct mL. Thus the drawback that the present filters have of possessing ex-
ponentially decaying transient errors (vs. transients which disappear 
completely in finite time for the filters of Chapter 7), is strongly counter-
balanced by a decided computational advantage. 

In conclusion we make the following very useful observation. By 
(13.5.13) we have that 

Z *  n+ 1,n = (DMZ* 	 /IFn  — 14„) n,n-1 + 0(1) fr
v. ',in n-1] 

Define the row-vector with m + 1 elements 

M = (1, 0, 0, ... 0) 

Then (13.5.34) can be written 

Z * 	= (I)(1)Z* 	+ 43.(DH(yn  — MZ *  n+ 1,n 	n,n-1 	 n,n-1 

i.e. 

Zn +1,n 	 n* 	= (1) — HM) Z* , - 1 + (1) Hy 

(13.5.34) 

(13.5.35) 

(13.5.36) 

(13.5.37) 

This is a set of coupled linear difference equations with forcing-vector 
(I)(1)Hy n , and so removing the latter gives us as the homogeneous part, 

Z = (1) (1) — HAD Z *  n 1,n 	 n,n-1 (13.5.38) 

Now every one of the elements of 	1,n  is known, by (13.4.3) to satisfy 
a homogeneous equation of the form 

(1 — 	+1 (e) 	= 0 	 (13.5.39) 
1 	+ 1,n 

This gives us the eigenvalues of the matrix 0(1)(1 — HM), as we now show. 
Using the q-operator, (13.5.38) can be written 

[I)(1) (I 	HM) — 	_ 1  = 0 	 (13.5.40) 

which is a set of coupled difference equations in operational form. In 
(2.8.31) we pointed out that by setting q 1  = A, an operator can be 
converted into its associated characteristic equation. In the above case, we 
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obtain 

[o(i) - HAD - a] en,  _ = 0 	 (13.5.41) 

and so, excluding the trivial result en, = 0, we must then have that the 
matrix (I) (1) (I — HM) — Al is singular, i.e. that 

det[0(1)(I — HM) — 	= 0 	 (13.5.42) 

This last result is a polynomial in A of degree m + 1 and is the characteristic 
equation for each of the elements of Z*, in (13.5.4U But then by 
(13.5.39) 

det[0(1)(I — HM) — All = (A — 	+1 	 (13.5.43) 

We thus see that (13.5.42) has the single root A = 0 with multiplicity m + 1. 
Now (13.5.41) is also seen to be a statement of the eigenvalue problem 

for the matrix (I) (1) (I — HM). We have thus proved that this matrix has the 
value 0 for each of its m + 1 eigenvalues, i.e. that it possesses a single 
eigenvalue with multiplicity m + 1. This result will be applied to the 
development of a computational procedure in the next section. The reader 
is also referred to Ex. 13.11. 

13.6 VARIANCE REDUCTION 

We now turn our attention to the question of variance reduction and to 
the general problem of obtaining an expression for the covariance matrix of 
the output errors given the statistics of the input errors. 

It was shown in Section 13.2 that each element of the estimate state-
vector is obtained by an appropriate linear transformation of the semi-
infinite data-vector 

Y 	(Yn  Y 	 , • • • ) n —1' n - 2 
	7

‘ 

	

(13.6.1) 

Thus there exists a matrix W(r) so that the vector Z *  of (13.5.6) is given by 

Z n - r,n 
= W (r) Y (n) 
	 (13.6.2) 

The matrix W(r) has m + 1 rows and an infinite number of columns. 
Given that the covariance matrix of the errors in,Y (ro  is the (infinite order) 

square matrix R oo , it follows immediately that the covariance matrix of the 



vA(r) vx(j)60  y n  _ . [ 	1 
1 

i= 0 A=0 i! 	drl (Z1)n - r,n 

(-D i  di  (13.6.8) 
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errors in Z* 	will be n - r,n 

S*
- r,n = W (r) R (n)  W (r) T  n  

(13.6.3) 

In practice this matrix may be very difficult to evaluate since it involves 
infinite sums. However it can be evaluated in closed form in one case of 
particular interest, namely the situation where the observation errors are 
uncorrelated, stationary and of equal variance. Thus we shall assume that 

R (n) = Qy 1 
	

(13.6.4) 

where a does not depend on n, and where I is the infinite-order identity 
matrix. Under these circumstances (13.6.3) becomes 

S*  = 	W (OW (r) n - r,n 
(13.6.5) 

and, as we now show, closed form expressions can be obtained for the 
elements of 	- r n . 

. (The reader will thus note that we are restricting , 
ourselves to the same situations as were considered in (7.5.5) and (9.7.2) of 
Chapters 7 and 9 respectively.) 

Our first task is to obtain the form of the i, j th  element of the matrix 
W (r) of (13.6.2). Returning to (13.2.22) and (13.2.16) we have that 

m [  co 

(Die) n - r,n 	r f 	CI'  !PA(T)  )0) 	n  _ 
A =0 j=0 
,i-+ dri  

(13.6.6) 

and by (13.5.6) we have 

(z4;) 
n - r,n 

(ri —Dix) 
i! 

11 - 

(13.6.7) 

We thus see that by combining the above two equations 

and so it follows that the i, i th  element of W (r) is 
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[W (r)].. = 	(-1)' 	cog Oi 
= o i! 	dri  

(13.6.9) 

for 0 < i < m and 0 j 	This is now applied to (13.6.5). 
By the definition of matrix multiplication, if 

S = WWT 	 (13.6.10) 

then 

[81 = 	[W] ik [W]„ 
k 

Thus, by (13.6.5) and (13.6.9), 

ES: - r,n].. 
z 

co 	ni 	, 

tpx  a 
k=0 A=0 	i! 	dr i  

(13.6.11) 

	

A=0 3. 	dri 	1-4 

	

. 	(io (r) tio (k)01 
m 
V (-1)' di 

in 	m ao (_1),  
= a112 	L (P (k) (Pil (k)(92k (-1)i 	wx(r) 

	 dj 
i! dr 	j! 	dr' ih(r)  A=0 µ=o k=0 

(13.6.12) 

which we write, with the aid of (13.2.8) as 

ES: - r,n] 11 

(-1) .1  di = av2 	[D‹ 	(k) K (00 211
(-1)i — — p x  — — p %r, A A 	1.1. /.1 

i! 	dr 	j! 	dr' x=o µ=o k=0 

(13.6.13) 

Now the term in parentheses is studied in [13.6] , and it is shown in 
Appendix II of that reference that it can be evaluated once and for all for 



= a 	[F 	Ea [F (r/ , A 	x,/h 
P.= 0 A = 0 

(13.6.19) 
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the given polynomials. In fact, defining the matrix A whose A,p th  element is 

OD 

aA = KK I tp(k) yoli. (k) 6 2 
k=0 

(13.6.14) 

 is shown there that 

altA 
A + 	1 –  0  

+ M A-" +1  
(13.6.15) 

We accordingly rewrite (13.6.13) as 

m m 
(-1) 1 	, (-1) i 	, , 

X=0 µ=00 

[S: - r 	= .av2 	a — — p xtr; — — p tr./ 
i! 	dri 	j! 	dr' 14  

(13.6.16) 

Next we define the matrix F (r) whose i, j th  element is (c/f (13.5.28)) 

[F(r)]i.j  =  	p (r) 
i! 	dr' I  

Then recalling that F (r)T  and F (r) satisfy 

[F (r)T] = [F j,  

we see that (13.6.16) can be written 

(13.6.17) 

(13.6.18) 

which is equivalent to the matrix triple-product 

Sn _ rn 	F (r) AF (Or 	 (13.6.20) 



1 

0 1 - 0 

Moreover, by (13.6.15) 

(13.6.24) 

) (1 - 0)(3 + 0) 

2(1 - 6) 2  
(13.6.26) . 

2  1 -• 0 	5 + 40 + 0 2  

(
(1 + 0) 3  ( 1 — 0) (3 + 0) 
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This then is the required closed-form expression for the covariance matrix of 
the errors in the scaled-derivative vector Z* rn  for the case where (13.6.4) 

n  

applies. 
Since the unsealed-derivative vector X* 	is related to Z* r  by 

n r,n 	 n  

(c/f (4.2.18)) 

X* 	= D (r) Z*  
n r,n 	 n r,n 

(13.6.21) 

it follows immediately that the covariance matrix of the errors in en,n  is 
given by 

S* - rn = 	D (r) F (r) AF (r)T  D (r) 	 - 	(13.6.22) 
n  

where D (r) was defined in (4.2.19). 
Consider an example. Let r = -1 and m = 1, i.e. we are considering a 

1-step prediction based on a first-degree estimator. Then (c/f (13.5.31)) 

)

8 - r(1 - 0) 
(13.6.23) 

and so 

A = 
1  — 0  

\(1 + 0) 2  

1  —  e 
(1 + 0) 2  

2  1  — 0 

(1 + 0)31 

(13.6.25) 

and so (13.6.20) gives us 



s* 	U 2 
1- 0  

(1 + 0) 3  

5 + 40 + 02  

1 —r (1 — 0)(3 + —2 (1 — 0) 2 
 r2  

1 (1 — 0)(3 + 0) 
r 

n + 1,n (13.6.29) 
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This is the covariance matrix of the errors in the vector 

Z 	, * 	= (x* rDx*) T  n + 1,n — 	 n + 1,n 

Then by (13.6.22) the covariance matrix of the errors in 

X* 	= (x*  De)
T 

n + 1,n — 	 n + 1,n 

(13.6.27) 

(13.6.28) 

must be 

By (4.2.16) we have that 

	

Z* 	= (1) (h)Z*  

	

n + h - r,n 	 n - r,n 

where I(h) is defined in (4.2.15), and so by (5.5.22) 

	

(De 	= (h) e 	(I) (h)
T 

	

n + h - r,n 	 n r,n 

(13.6.30) 

(13.6.31) 

This result can be used to shift the validity-instant in the covariance matrix 
as computed from (13.6.20). 

As an example, we have obtained en +1, ,, in (13.6 .26) for m = 1. Then 
can be obtained by setting both h and r equal to —1 in (13.6.31). 'Now 

by (4.2.15) 

1 —1 
(- 1) =  

\O 1/ 
(13.6.32) 

and so, forming 

tic_1>s* 	c_17 n,n 	 n + 1,n 
(13.6.33) 
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we obtain 

= 
2  1 — 0 1 + 40 + 502  

n,n 	V 
(1 + 0) 3  (1 — 0) (1 + 30) 

(1 - 6)(1 + 30) 

2(1 - 0) 2  
(13.6.34) 

Of course this last result could also have been obtained directly from 
(13.6.20) by setting r = 0. (See Ex. 13.13.) 

We now make the following fundamental observation. The covariance 
matrices for the filters of this chapter and for the class of errors considered 
in (13.6.4) are seen from (13.6.20) to be a congruence transformation on 
the matrix A. But by (13.6.15) we see that every element of A goes to 

. • 
zero as 0 -4 1, i.e., 

lim A = 0 
e -) 

(13.6.35) 

It follows then that we can make the matrix ,S n - r.n * 	as close to a null 
matrix as we please by taking 0 sufficient close to unity. This in turn 
means that the diagonal elements of S *... rn  go to zero as 0 -4 1, and so the 
variances of the estimates can be made as small as we please by choosing 0 
close enough to unity. 

The parameter 0 thus clearly provides us with control over the smoothing 
properties of the algorithms derived in this chapter, and by selection of its 
value we can make the estimates as smooth as we wish. Of course making 0 
too close to unity will be undesirable from a transient-error standpoint, as 
we demonstrated in Section 13.4. Indeed, by (13.4.4) we see that for 0 = 1 
the natural modes (and hence the transient errors) will be extremely persistent 
and very troublesome. From a transient-error standpoint we desire 0 = 0, 
but this conflicts with the choice we would make for 0 based solely on 
smoothing considerations. The user must thus make a compromise, selecting 
0 as close to unity as he dare, taking into account the penalty he would have 
to pay for overly persistent transients. As we shall demonstrate, the syste-
matic errors are also affected by the choice of 0 and so they, too, must enter 
into the considerations when 0 is being selected. 

Of course, regardless of the value we choose for 0 (other than 0 = 1), we 
would expect that S: , of (13.6.20) be positive definite. This is heuristi-
cally obvious, but can also be proved analytically. The reader is referred to 
Ex. 13.14. 

In Table 13.2 we give the exact form of the diagonal elements of S: +  
(the 1-step predictors) as a function of 0 for m = 0, 1, 2, 3. We see of 
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course that each entry has a zero at 
zero in the term pertaining to D'xt 

proved it, it is easy to show that, in 
the form 

0 = 1. In fact, the multiplicity of the 

- r n 
is 2i + 1. Although we have not 

, 

general, the i, j th  element of 5* 	has ._  

ES: - r,n] . 
41 

(1 — 0)1+'+1A  (0,r;m) 
2 	

. 
Qv  

(13.6.36) 

where i 1  (0, r; m) is a function of 0 and r, (for each value of m) that is 
nonzero at 0 = 1. (This result can be derived from (13.6.20) and should be 
compared to (7.6.12) with which a strong similarity will be observed.) 

When 0 is close to unity, then (13.6.36) is close to 

2 (1 — (9)
1 + + 1 

av 
ri +  

(13.6.37) 

and the constants A. j 3  (1 r m) can be readily evaluated (see Ex. 13.15). In 
Table" 13.3 we display those constants for the diagonal elements of 5: +1, 
(i.e., r = —1) up to i and m equal to 10. This table is extremely useful, and 
permits us to approximate the variance reduction factorst for these filters 
when 0 is close to unity.t 

Moving across one of the rows of Table 13.3, say the top one, shows 
that as the degree increases so the VRF of the corresponding estimate also 
increases, i.e. 

Degree 0 1 
VRF of 
Position Estimate 0.5(1 — 0) 1.25(1 — 6) 2.06(1 — 6) 2.9(1 — 0) 

The above fact is true for every row of that table and can be proved analyti-
cally without too much difficulty. We thus conclude that, from a variance 
reduction standpoint, it is desirable that we keep the degree of the estimator 
as small as possible. From the standpoint of systematic errors however, the 

-See p. 257 for a defmition of variance reduction factor. 
The Table is asymptotically precise at 0 = 1 and becomes progressively-worse as 0 leaves unity. 

These approximations can be used with reasonable accuracy down to 0 0.7, 
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degree should be as high as possible — a fact which is intuitively obvious and 
to which we shall return at a later stage. Thus, as with the selection of 0, 
so the degree must be chosen to balance the variance reduction proper-
ties against the systematic errors. The transient errors were shown to be 
least troublesome for the lowest degree, and so in this case transient errors 
and variance reduction are in concert, both calling for the smallest possible 
value of m . 

In conclusion we observe the following. We have shown in Section 13.5 
that the 1-step predictors can be arranged into the compact form 

(I)(-1)Z * 	= Z* 	+ HE n + 1,n 	n, n 1 	n 

and as was seen in (13.5.37), this can be reorganized into 

Z*n + 1,n = 	(/ — HM) en, n - 1  + (1) Hy. 

Then the error equation will be 

N* 	= (I)(1)(1 HM)N * 	+ (1)(1)Hv n n + 1,n 	 n, n - 1 

(13.6.38) 

(13.6.39) 

(13.6.40) 

Assuming that the observation errors satisfy (13.6.4), we now form the 
covariance matrix of Nn + 1.n obtaining (see Ex. 12.5) 

S* 	= BS 	B T  + a 2 GG T 
n + 1,n 	n, n - 1 (13.6.41) 

where 

B -=- 11(1)(I — HM) 	 (13.6.42) 

and 

G = 0(1)H 	 (13.6.43) 

This has the following very useful practical application. 
Consider the recursion 

jk+1= BJ k B T  + a 2  GG T 
	

(13.6.44) 

where J is a matrix, and B and G are as defined above. Its homogeneous 
part is 

k +1 	BJk  B T 
	

(13.6.45) 
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which means that 

k  = Bk JO  (Bn k 	 (13.6.46) 

But from p. 519 we know that B of (13.6.42) has all of its eigenvalues equal 
to 0. Then, since I 0 < 1, this means that (see e.g. [13.8] ) 

lim Bk = 0 
k-,00 

(13.6.47) 

and so, regardless of the choice of the initial matrix J o , (13.6.46) shows that 

11111 e k  
k --)oo 

(13.6.48) 

Thus the natural modes of (13.6.44) will, in the limit, go to a null matrix as 
k oo, and so that equation will give us a unique value for J regardless of 
starting value J 0 . i.e. after repeated cycling of (13.6.44), we will have 
obtained the unique matrix J satisfying 

J = BJBT  + Qv GGT 	 (13.6.49) 

Now, reference to (13.6.41) shows us that S: +1 , also satisfies (13.6.49). 
Indeed, as we know from (13.6.20) for example, S: +1, is independent of 
n, and so 

+ 1 ,n := St,11 1 

Thus (13.6.41) can be written (c/f (13.6.49)) 

S5:: +1,n = BS* 	BT + a 2  GG T  n + 1,n 

(13.6.50) 

(13.6.51) 

and so the matrix J obtained in (13.6.49) must be precisely S: + 1,n • 
Specifically then, once 0 has been selected, we can, with the aid of a 

computer, cycle (13.6.44) repeatedly, starting from J o  = 0 say. If 0 < 9 < 1, 
we are guaranteed that this iteration will converge to a unique limiting 
matrix. Moreover, we also know that that limit is precisely S: +1 , as given 
by (13.6.20) for r = —1. This is a very convenient way in which to obtain 
an exact numerical evaluation of (13.6.20) for r = —1, once m and 0 are 
chosen. (See Ex. 13.17, 13.18 and 13.19.) 
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13.7 COMPARISON WITH THE FIXED-MEMORY POLYNOMIAL 
FILTERS 

It has become clear that the filters of this chapter and those of Chapter 7 
possess some very strong similarities. Chief among them is the fact that, 
for these two classes of filters, the VRF's do not depend on n as they do in 
the case of the Expanding-Memory Filters of Chapter 9. We accordingly 
think of the Fading-Memory approach as one which bases its estimates on 
the data over a fixed observation time. 

In the case of Chapter 7 the observation time was Lr seconds (a well-
defined quantity, both numerically as well as conceptually), and the esti-
mate was formed over L + 1 observations, each entering with equal weight. 
However the Fading-Memory estimates are based on a semi-infinite data-
vector , together with an exponentially decaying weight-function. Strictly 
speaking then, the observation interval is infinite, but it is clear that, 
because of the exponential weighting, beyond a certain point a datum's 
effect on the estimate is, to all intents and purposes, negligible. The obser-
vation interval for the present filters can thus be regarded as being of finite 
length. 

In order to be able to compare quantitatively the Fading and Fixed-
Memory filters, it would be desirable if we could relate a chosen value of 0 
to a certain value of L, i.e. if we could say, for- example, that a Fading-
Memory Filter with some value of t9 is effectively equivalent to a Fixed-
Memory Filter with some corresponding value of L. This can in fact be 
done quite easily by equating variance reduction factors. 

We proceed as follows. For a specific value of 0 we compute the numerical 
value of a Fading-Memory Filter's covariance matrix. We then equate a term 
of this to the corresponding term for the Fixed-Memory Filter, and solve for 
L. This gives us what we call the effective smoothing time of that Fading-
Memory Filter. We demonstrate the idea by a simple example. 

From p. 523, we see that for the Fading-Memory 1-step predictor of 
first-degree: 

  

(1 - 0)2(3 + 0)  

(1 + 0)3 

2(1 - e  
(1+9)3 

 

 

(1 — 0)(5 + 40 + 0 2 ) 

(1 + 0) 3  

(1 — 0)2  (3 + 0)  

(1 + 0)3  

 

n + 1,n = 
	2 av 

 (13.7.1) 

    

On the other hand, on p. 245 we have, for the Fixed-Memory 1-step 



(L + 2) (L + 1)L 	(1 + 0)3  

from which 

L = 34 

12 	2 (1 - 0)3  	 - 0.29 x 10-3 	 (13.7.6) 

(13.7.7) 
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predictor of first-degree: 

2 
+1n 

= v 

2 (2L + 3) 6 

(13.7.2) (L + 1)L 

6 

(L + 1)L 

12 
(L + 1)L (L + 2)(L + 1)L/ 

Equating the 0,0 elements of the above two matrices gives us 

2(2L + 3) 	(1 - 0)(5 + 40 + 0 2 ) 
(L + 1)L 	(1 +9)3  

Now assume that 0 = 0.9 say. Then the above becomes 

2(2L + 3)  = 0.137 
(L + D L 

(13.7.4) 

from which we obtain 

L = 30 	 (13.7.5) 

Hence on this basis the Fading-Memory Filter has an effective smoo thing-
time of about 30r seconds. On the other hand, equating the 1,1 elements, 
using the same value of 0, gives us 

which is in close, but not precise, agreement with (13.7.5). Finally, 
equating the off-diagonal elements gives us 

L = 32 	 (13.7.8) 

and so we see that the two covariance matrices match each other (term by 
term) fairly well, even if not exactly. 	 •• 



3.2 L 
1 — 0 

(13.7.10) 

534 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

If 0 is close to unity, and if we restrict ourselves to 1-step prediction, we 
know that the formulae of Table 13.3 provide us with fairly good estimates 
of the Fading-Memory VRF's. These can be equated to the corresponding 
formulae for the VRF's of the Fixed-Memory Filter when L is large, obtained 
from Table 7.2 on p. 258. The result is the array of constants given in 
Table 13.4 on p. 535. 

To see what those constants mean we consider a few simple examples. 
Let m = 1. Then the Fading-Memory VRF of the position estimate is 
obtained from Table 13.3 as 1.25(1-0) and for the Fixed-Memory Filter 
the corresponding entry in Table 7.2 is 4/L. We equate these, i.e. we set 

4 = 1.25 (1 — 0) 	 (13.7.9) 

from which we obtain 

Then the constant 3.2 is displayed in the appropriate position in Table 
13.4. On the other hand, if we equate velocity VRF's of the same two 
filters, we obtain the relationship 

12 	0.25 (1 — Of 

r2L3 	r2 (13.7.11) 

from which 

3.63 
1 — 0 	

(13.7.12) 

The constant 3.63 is accordingly displayed in Table 13.4 in its appropriate 
position. 

Suppose that 0 = 0.9. Then (13.7.10) gives us 

L = 32 
	

(13.7.13) 

whereas (13.7.12) gives us 

L = 36 
	

(13.7.14) 
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These compare well with each other and with (13.7.5), (13.7.7) and 
(13.7.8). 

In this manner then, we obtain a quantitative method of comparison 
between a given Fading-Memory and a Fixed-Memory Filter. We note, of 
course, that the relationship between 0 and L varies slightly, depending on 
which of the elements of the covariance matrices that we choose to equate. 
This divergence exists because the two procedures are, after all, not identical, 
but at the same time it is small because they are not completely dissimilar. 
However the relationship that we are establishing is only an approximate one, 
and we can therefore afford to overlook these small discrepancies. (See 
Ex. 13.20.) 

13.8 INITIALIZATION 

In order to be able to cycle the algorithms of Table 13.1 it is necessary 
that we initialize the vector Z. The initializing values should, of necessity, 
be as close as possible to their correct values in order to avoid exciting 
objectionable transients, particularly when 0 exceeds about 0.9 or m exceeds 2. 

The word "correct" that we have used above bears further scrutiny. If 
the data were error-free then we know that the correct value with which to 
initialize is very close to the value obtainable by performing a polynomial 
fit to the first m + 1 observations (see e.g. Section 4.5). However, when the 
data contain errors then the correct estimate ceases to be the above one. 
Indeed, if we were to perform such a polynomial fit to data containing 
errors and we were to use the resultant state-vector for the initialization of 
a Fading-Memory Filter, we would almost invariably find that objectionable 
transients are excited. It is now clearly no longer the "correct" approach. 

Consider instead the following argument. Suppose that a Fading-Memory 
Filter has been operating satisfactorily for some time and that there are no 
transients present. Then the property which distinguishes its state-vector 
Z*

n - 1 
from any other vector of the same order, is that this vector possesses  

first, a particular set of systematic errors and second, a set of random errors 
which are drawn from an ensemble whose covariance matrix is S* of 

n, n - 1 

(13.6.20). In order to initialize the filter when cycling is first commenced, 
what we would thus really like to use is just such a vector. 

While it is hard to produce a vector whose errors are precisely as required, 
we do have a relatively simple way of producing one whose random errors 
match the required covariance matrix quite closely and whose systematic 
errors also match fairly well. This is accomplished by the use of the Expand-
ing-Memory Polynomial Filter of the same degree as the Fading-Memory 
Filter which we wish to initialize. The procedure is as follows. 
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Suppose, for definiteness, that we wish to initialize the Fading-Memory 
Filter of first degree. We start out by using the Expanding-Memory algorithm 
(see Table 9.1, p. 360) 

(zt) =  (et) 	+ h1  [yr, - (o) 
n + 1,n 	n, n 	1 	 n, n 

(13.8.1) 

(Z to) 	= (4) — (zt) (zr) 	+ ho p n  (13.8.2) 
n + 1,n 	 n, n 	1 

where 

6 
h 	- 

n + 1,n 	 n, n - 

2(2n + 1) .  (13.8.3) 
h°  1. 	(n + 2)(n + 1) (n+2)(n+ 1)  

This algorithm is completely self-starting (see Section 9.6) and so, to 
initialize it when n = 0, we can use for example 

(e;) 	= 0 = 
-0, - 1 	• '0,- 1 

(13.8.4) 

It then starts up without any difficulties and, on successive values of n, 

produces the least-squares estimates based on the expanding data-base 
y° ,  y1, , y . At each cycling of the above filter its error covariance 
matrix is given by (9.7.3) (assuming that (9.7.2) holds). 

We now designate the covariance matrices of the Fading, Fixed and 
Expanding-Memory Filters by 4.(0), S': i (L) and S *..(n) respectively. Then 
from the preceding section we know that when 0 = O. say, there is a value 
of L, say L., such that St and efc, are approximately equal, i.e. 

4.(00) = 4i(L 0) 	 (13.8.5) 

Moreover when L = n, we recall from Chapter 9 (see p. 369) that 

S*
fi 

(L) = S* (n) 	 (13.8.6) e 

Hence at the time when n = L 01 we must then have 

SL(Q) 	Sex(no) 	 (13.8.7) 

which means that at this time the random errors in the Expanding Filter's 
state-vector have a covariance matrix which is approximately as required in 
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order to initialize the Fading Filter. Moreover the systematic errors are 
also approximately as required, since both filters are based on polynomials 
of the same degree. Thus if we were to switch from the Expanding to the 
Fading Filter when n = no  , then initialization should take place satisfactorily. 

We consider a simple example. From Table 13.4, we see that for m = 1, 
by equating the VRF's of the position estimates, 

3.2 	 - 
 1 - 0 	
n 

0 

0 

(13.8.8) 

(c/f (13.7.10)). Thus for O. = 0.9 say, we get n0  = 32, which means that we 
can switch to the Fading Filter after the 32nd cycle of the Expanding 
Filter. 

The switch is readily implemented when required, if we continue to 
operate (13.8.1) and (13.8.2), and merely change (13.8.3) to 

h 1  = (1 - 0)2 
	

h0  = 1 — 0 	 (13.8.9) 

The filter in operation will thereafter be the Fading-Memory Filter - satis-
factorily initialized. Table 13.4 thus serves the useful function of providing 
the switching-times required for the implementation of the above initializa-
tion procedure. 

In Figures 13.2 and 13.4 we show two examples of starting transients 
encountered when a Fading-Memory Filter was initialized using polynomial 
interpolation on the first m + 1 observations. They are clearly quite object-
ionable. After each case, we also show the corresponding runs when 
initialization was carried out by the method described in this section. 
Starting transients are now seen to be essentially absent.t 

The reader is referred to Ex. 13.21 where we consider values of the 
switching instant n o  for typical values of 0 and m . 

13.9 SYSTEMATIC ERRORS 

In Chapter 7 a fair amount of effort was expended in analyzing both the 
variance reduction and the systematic errors of the Fixed-Memory Polynomial 
Filters, and much of the methodology developed there is directly applicable 
to this chapter. With regard to the systematic errors, perhaps the most 

tin Figures 13.2 through 13.5, the signal was in all cases zero and the input consisted solely of 
random numbers whose covariance matrices were of the form Roo = crv2I. 
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2500 ft/sect 
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0 Time 10 secs 

Fig. 13.2 Starting error in D 2  xt +i,n  Fading-Memory 1-step predictor initialized by interpolation. 

Degree 2, 0 = 0.942, T = 0.05. White noise, a-= 5 ft. (c/f Figure 13.3) 

important result that we developed was that for the filters of Chapter 7, 
they can, under many practical circumstances, be balanced off against the 
random errors by appropriate choice of the parameters L and m. In the 
case of the Fading-Memory Filters the same result applies, the balance being 
accomplished by appropriate choice of B and m. The remaining aspects of 
the systematic errors for the present filters will be touched on only very 
briefly, but the reader can readily verify that almost every one of the com-
ments made on systematic errors in Chapter 7 also applies here. 

Assume now that the true process, which we call 77(t), is a polynomial of 
degree d,t and that we are able to observe it without errors. Call these 

tIf ir(t) is not a polynomial we assume that it has a convergent power-series, and so it can be ap-
proximated (by a truncation of that series) to within arbitrarily small errors by a polynomial of degree d. 
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0 
	

Time 	 W secs 

Fig. 13.3 Starting error in D 24.1. 1, ,, Fading-Memory 1-step predictor initialized by Expanding-

Memory (n o  = 75). Degree 2, 90.942, T = 0.05. White noise, 0- = 5 ft. (c/f Figure 13.2) 

observations 3; i.e. 

ti 

Y 	= ir[(n - Or] r = 0, 1, 2, . 	 (13.9.1) 

Then, for n fixed, jin  _ r  is a polynomial in r of degree d and so we can write 

d 

= 1(30 p.i (r) 
	

(13.9.2) 
j=0 

where the 3;'s are constant (for fixed n), and p i (r) is given in (13.2.2). The 

r-origin is located at t = nr. In direct analogy with (7.10.9) and (7.10.11) it 
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Time 	 10 secs 

Fig. 13.4 Starting error in D 2  xt.i. Ln  Fading-Memory 1-step predictor initialized by interpolation. 

Degree 3, 19 = 0.945, T = 0.05. White noise, a = 5 ft. (cif Figure 13.5) 

then follows that 

OWn = 2 	kPi (k) 6)k  Ci  k_-0 
0 < i < d 	 (13.9.3) 

the constant c 2  being defined in (13.2.4). 
On the other hand, if 7r (t) were observed without errors and the resultant 

observations fed to a Fading-Memory Polynomial Filter, we would have as 
the estimating polynomial (c/f (13.2.10)) 

m 

Oa* (r)] n 	(yf)n p f (r) 
	

(13.9.4) 

0 

1=0 
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0 

0 
	

Time 	 10 secs 

Fig. 13.5 Starting error in D 2 x'in' +1 ,n  Fading-Memory 1-step predictor initialized by Expanding-

Memory (n o = 100). Degree 3, 6? = 0.945, T = 0.05. White noise, a = 5 ft. (c/f Figure 13.4) 

where, in analogy with (13.2.15), 

_ 1 	(k)  
- k P 	v  

(311)n 	

V 

 Yr. 

0 < j < m 	 (13.9.5) 

We define the systematic error as 

Eb* n nr 	[p *  (1)] 
	

(13.9.6) 

and s6 we have that 
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d 	 m 

[b* (r1, = IciO n p (n) — 	(n) 
j=0 	 1=0 

But by (13.9.3) and (13.9.5) we see that 

	

= (Y). 	0 j < m 

(13.9.7) 

(13.9.8) 

and of course 

(v
1). 

= 0 
	

j > m 	 (13.9.9) 

Hence if d < m, (13.9.7) shows us that b*(r) is precisely zero, i.e. there will be 
no systematic error, and if d > m then the systematic error is given by the 
expression 

d 

[b* (rg t, = 	I \ 
Pi (r) 

	
(13.9.10) 

The above result is analogous to (7.10.17) of Chapter 7, and shows that the 
systematic error, if it exists, is a linear combination of the orthogonal poly-
nomials. We comment on it briefly. 

In (13.2.1) we set up the error criterion for the selection of [p* 	, and 

an exponentially decaying stress was placed on the data in this respect. Thus 

the error-functional en forces Ep* 	to fit closely when r is small and 

positive (i.e. or large), but places no conditions whatever on the goodness of 
fit when r is negative (i.e. in the prediction region) or when r is large and 
positive. It thus follows that the systematic errorst are forced to be small 
in the first of these regions and become rapidly larger as we proceed into 
either of the other two. We accordingly should not expect too good a result 
if we were to attempt either large-interval prediction or else a large-interval 
retrodiction, and the Fading-Memory Filters are accordingly not recom-
mended for such applications. However for updated estimates or 1-step 
prediction they do work surprisingly well. 

t Assuming, of course, that these errors exist. This will be the case whenever 7(0 is not a polyno-
mial of degree in or less. 
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We now examine, in greater detail, how the systematic errors depend on 6 
and we show, specifically, that they become unbounded at r = 0 as 1.. 
Of course this result is heuristically obvious from (13.2.1), since the filter is 
now based on a polynomial which is fitted to the data by equally weighted 
least-squares over the semi-infinite interval 0 r < .0. Clearly there must 
be infinite divergence between that polynomial and the data at r = 0, for 
if not then there certainly will be at r = in which case we simply reverse 
the interval and the argument is proved. However we now also prove this 
assertion by more formal means, since certain valuable intermediate results 
are thereby obtained. 

Specifically, assume again that 3c, is an error-free observation on n. (t), 
assumed to be a polynomial of degree d. By Taylor's expansion theorem 

d 	
k ir(t – rr) = 	(-1)  rkrk dk  ,T (t) 

k=0 k! 	dt k  

and so 

d 

Y n 	
= 	(a _) r icr ic 

r 	■ Mt 
k=0 	 • 

where we define 

(13.9.11) 

(13.9.12) 

(-1) 1(  dk 
(a) -=--_ — — 7r (t) 	 (13.9.13) 

k! 	dtk 

Using the Stirling numbers of the second kind (c/f (2.4.13) on p. 24), the 
equation (13.9.12) can be written 

= 	(ak% T k 	[Siki r(i)  - r 
k=0 	1=0 

and so, by interchanging the order of summation, 

1 I r" )  (a) n  T k  [S1 
Y.- r 	 k 	 ki 

(13.9.14) 

i=0 	k=1 
	

(13.9.15) 

CA! (741 r ( i )  L 
i=o 

t = 
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where 

d 

i (T9 n 	(ak) rkES1 ki 
	 (13.9.16) 

k=1 

Now, in Ex. 13.22 it is shown that r( i )  can be expressed as a linear 
combination of the discrete Laguerre polynomials, i.e. that 

(  0 )1  (_ DioPi(r) 
 1 - 	1.0 	01  

(13.9.17) 

Define 

gij = 
	 (13.9.18) 

Then (13.9.17) can be written 

r")  e 	 (r) 
1 — Oi 

(13.9.19) 

and so (13.9.15) gives us 

n - r [AA ( 	(r)  
n  1 — 	j=0 i=0 

(13.9.20) 

Finally, by interchanging the order of summation once more, we get 

0 pi  r) [ 	 (in _ r 	
d 	 i  n 	— 	i  i=0  1= 

A i    g 

1 

(13.9.21) 

Comparison of this result with (13.9.2) shows that we have obtained an 

expression for (y) of (13.9.3), i.e. that we can write 

d 

- e gji 

	 (13.9.22) 
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Then by (13.9.10) the systematic error is 

d fd 

[1:04  n  = 	
[Aiq 	 

n( 
igij} 

i=m+1 i=i 

(r) (13.9.23) 

Now suppose we set r = 0. Then by (13.2.2), 

lim p (0) = 1 
e -)1  

Moreover, by (13.9.18) 

lim g = i! (-1) 
0 

and so we see that (13.9.23) gives us 

(13.9.24) 

(13.9.25) 

lim * co]. 
0 -4 1 

	

d d 	 (-1)(i) 
1[A 1 (1 n 	 

	

i=m+1 1=1 	 Hill (1 — 
9-1 

(13.9.26) 

which is clearly infinite. Thus as 0 1 the systematic errors become 
unbounded in the neighborhood of r = 0. 

In conclusion then, we now know that 0 close to unity is best from a 
variance reduction standpoint, and worst from a systematic error and trans-
ient error standpoint. We have also seen that making m small is best from a 
variance reduction and transient error standpoint and, as is evident either 
intuitively or else from (13.9.10), making m small is worst from systematic 
error considerations. In Chapter 7 we discussed a method by which the 
parameters L and m can be chosen (see Section 7.13). The reader can now 
readily repeat that analysis for the filters of the present chapter and develop 
an analogous scheme for the selection of 0 and m which balances systematic 
against random errors, omitting the transient errors. When a value of 0 and 
m has been arrived at, he can then numerically test the impulse response of 
the filter (i.e. the response to the input sequence 

yn = 8n,0 
	 (13.9.27) 

where 	 n  1 8
n 0 	 n 

is the Kronecker delta and where the vector Z* 	is set to a null 
,,  
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vector initially). The form and duration of the impulse response provide 
good insight into how the filter will behave when its natural modes are 
excited. In the event that this impulse response is unsatisfactory, i.e. if it 
dies out too slowly, then he can adopt one of two approaches: 

a. Reduce 0. This improves the transient response but worsens the 
smoothing properties. However it reduces the systematic errors. 

b. Reduce r. This causes the transients to expire more rapidly at the 
expense of more computation per unit time, but worsens the smooth-
ing properties for the derivatives from first on up (see (13.6.29)). 
However it improves the systematic errors which can then be again 
traded off against the worsened smoothing properties by varying 0. 

In following the method of Section 7.13 a central result is the counter- 
part to (7.13.5). It is easily shown (see Ex. 13.23) that for the present 
filters, the equivalent result is (to within sign) 

(a. +1) rrn +1  (m + 1)! 

[b* 	V 	  

(1 — 01+1 	
Pm-Fi(r) (13.9.28) 

with an analogous result for (7.13.6). 
We now turn our attention to the possibility of generalizing these filters 

so that they can be used with models other than polynomials and with 
unequally spaced data. 

EXERCISES 

13.1 	Show that (13.3.2) generalizes into (13.3.3). 
13.2 Obtain (13.3.4) from (13.2.15) and (13.3.2). 
13.3 Obtain (13.3.6). 
13.4 Contrast the two proofs for (13.3.8) given in Appendix II and in 

[13.6] . 
13.5 a) Expand (13.3.8) for the case j = 2 and obtain the recursion 

03211  = 361  032% - 1 3612 02)n- 2 e3  03 2)n  - 3 

+ K2  02 (Yn  — 2yn  _ 	
- 2)  

Repeat for j = 3 and obtain the corresponding recursion for 

031: 
13.6 Obtain (13.3.12), (13.3.13) and (13.3.14) from (13.3.11). 



(1 - 0)2  A -1  
det 

1 — 02 A-1  

 1 

-1 
0 
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13.7 a) Implement (13.3.14) on a computer. For y n  use both a step-
function (i.e. y = 0 (n < 0) and y. = 1 (iz 0)) as well as a 
Kronecker delta, initializing the recursents at zero. Study the 
behavior of the algorithm for various values of 0 (0.1, 0.5, 0.9, 
0.99, 0.999), and note how the stability weakens as 0 1. 

b) Repeat a) above for (13.3.8) for the cases = 0,1,2 and compare 
the stability properties for various values of 0. Verify that for 
given 0, the stability worsens as the degree increases. 

13.8 a) 	Verify (13.5.1). 
b) Show that (13.5.4) follows from (13.5.3). 

13.9 a) Obtain (13.5.9). 
b) Obtain (13.5.11) and show that a factor q can be canceled from 

both numerator and denominator. 
13.10 Starting from (13.3.11) set up the two algorithms for the 1-step 

predictions of position and velocity respectively. Contrast them with 
the coupled system in (13.5.26) and (13.5.27), and compare the 
relative amounts of computation and memory space required for 
their execution. 

13.11 Starting with the degree-1 algorithm of Table 13.1 show that the 
homogeneous part is 

(240 n + 1 n = 01) n, n - 1 
— (1 — of 0.0

°)n, n - 1 

= 02  (z* 	+ ( 	+ ion  — 	n - 1 	1/n + 1,n 

Express this, using the q-operator, in operational form and verify 
that its characteristic equation is 

Show that this gives A = 0 with multiplicity 2. 
13.12 Perform the indicated summation in (13.6.14) for the three cases 

a) A = 0, µ = 0, b) A = 0, µ = 1, c) A = 1, µ = 1 and verify that the 
results agree with (13.6.15) in each case. 

13.13 Obtain (13.6.34) from (13.6.20) by setting r = 0. 
13.14 Starting from (13.6.9) verify that W(r) has full row-rank. Hence 

verify that S of (13.6.10) is positive definite. Now show that F(r) of 
(13.6.17) is nonsingular for all r and so finally infer that A in (13.6.20) 
must be positive definite. 
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13.15 a) Define the matrix M whose i, j th  element is 

• 11 r=0 

  

Verify, using (3.3.10) that 

ro 	(- 1)' ei mp.  -  
L -41 	n 	0 

and hence that for 0 ti  1, 

[M] 	n (1 - 
i! 	\i/ 

b) Using (4.4.14) verify that F of (13.6.17) is related to M above 
by 

F (0) = JSTM 

where J is the identity matrix with alternate rows negated. 
Show that for 0 ti  1, this reduces to 

= 1 ( )(1 - (9)' 

c) Show that for 0 ti 1, the matrix A of (13.6.15) reduces to 

+ 	e)  
[A]l1 = 	i / 2 1+ 1 +1 

d) Infer finally that the elements of the ?n th  column of Table 
13.3 can be obtained from the diagonal elements of the matrix 
G13G T  where 

[G] ,1 = ) 	0 < i , j m i 

and where 

[B], = 
i)  1  

12i + j + 1 
0 < i,j < m 
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\I 
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e) Verify that for in = 2, G and B above are 

1 1 	1 	1 

G = 0 1 2 

\O 	0 	1 

and 

1 1 
4 8 

2 3 
8 16 

3 6 
16 32/ 

Now show that the diagonal of GBG T  is 

the numbers in column 2 of Table 13.3. 
13.16 Show, using the approach of Ex. 13.15 that for 

matrix for the 1-step predictor of degree 2 is 

3 3 7 3 
16' TE, which are 

1, the covariance 

[ 	— (1 O)i  " 

 [K],1 
 

T 
 

where the matrix K is given by 

	

2.0625 
	

1.6875 
	

0.5 

	

K = 1.6875 
	

1.75 
	

0.5625 

	

0.5 
	

0.5625 
	

0.1875 

1 3.1 7 a) Let the input to a Fading-Memory Polynomial Filter be a 
Kronecker delta. Show that if we form the sum of the squares 
of the output of a given channel (e.g. position, velocity, etc.), 
that the sum tends, in the limit, to the VRF for that channel. 

b) For degree zero, the algorithm is x. = Ox. _ 1  + (1 — 0) y n  . 

Letting y n  be the Kronecker delta 8 ro , verify that when x. = 0, 
we obtain 

= on - 1 (1 n > 1 
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and hence that 

co 

X
2 

— 1  — 
n =0 	1 -I- 0 

Reconcile this with Table 13.2. 
13.18 a) Implement the degree-1 algorithm on a computer and compute 

the VRF's (using the method of Ex. 13.17) for various values of 
0. Reconcile the results with the entries in Table 13.2. 

b) Prove that if we multiply the outputs of the position and 
velocity channels together and add • the- Tpsuk (assuming a 
Kronecker delta input as in Ex. 13.7), that -  the -slim tends to 
the off-diagonal element of the covariance matrix. 

c) Use this method to compute the entire covariance matrix and 
reconcile the result with (13.6.26). 

13.19 Cycle (13.6.44) on a computer for the 2 x 2 case, and reconcile the 
results with (13.6.26). Compare this method of computing a 
covariance matrix to the method of Ex. 13.18. 

13.20 Show that for 0 F. 0.99 the Fading-Memory Polynomial Filter of 
degree 2 has a smoothing time of approximately 500:  seconds. 
(Hint: Use Table 13.4.) 

13.21 a) We wish to employ the initialization scheme outlined in Section 
13.8. Verify that for degree 2 and 0 = 0.93, the switch from 
the Expanding to the Fading Filter should take place when 
n 68. 

b) For degree 3 and 0 = 0.81, verify that n = 32. 
c) For degree 1 and 0 = 0.98, verify that n 170. 

13.22 a) Define the matrix C whose i, j to  term is 

[c],, (-WO 

Verify that C is its own inverse, i.e. that C 2  = 1. 
b) Using this result verify that if 
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i 
' i=o 

c) Infer from the above that (13.2.2) gives 

(i) 	0 \I 	J  (i) Pj(r)  r 	= i!  	(-1) 
— 01 1=. 0 	\i1 01  

thus proving (13.9.17). 
13.23 a) Assume that the power-series expansion for 17 (t) converges so 

that if truncated, the first neglected term dominates the 
truncation error. Verify that in this case (13.9.10) gives 

[b* 	ai  in p + 1 (0 	 (I) 

b) Show that under the above circumstances (13.9.22) gives 

+ 1 

(3n2 + 	[Xm + I 
a  \I- • 0) 	

gnt+1,m+1 \   

Now make use of (13.9.16) and (13.9.18) to reduce (I) above 
to (13.9.28), i.e. 

[b* 	(-1) m  + 1  Om 1)n rm  " (1n + 1) ! 

(1 — corn + 1 	PM + 1 (r) 

13.24 We consider the systematic errors of a zeroth-degree Fading-Memory 
Polynomial Filter when the input is a first-degree polynomial. 
a) Verify that the zeroth-degree algorithm can be written as 

ex: _ + (1 — y a  

Letting the input be y n  = n , show that the steady-state solution 
is 

a i  = 	(-1)' 	b i  

1 — 6 
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b) Verify that since the output of the filter is a zeroth-degree 
polynomial in r, that (I) above gives us, as the estimate of y. _ 

x* 	n 	0  
n-r 	 1 - 0 

The correct estimate should be 
- r 

x* = n - r. Verify then that 
the bias error is 

[b*-  0 
n 	1 — 0 

c) . Show that (13.9.2) gives 

= (n 
0 

1 - 	 1 - 
	 po  (r) + 	1   p (r) 

Hence infer from (13.9.10) that 

[b* (1- 	
1 

— 	p (r) 
n 	1- 0 1  

and reconcile this with (II) above. 
d) Show that (13.9.28) gives the same result as (II) and (III) 

above. 
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14 
GENERALIZED 

FADING-MEMORY 

FILTERSt  

14.1 INTRODUCTION 

In Chapter 13 we obtained the algorithms which recursively derive the 
best fitting polynomial in the least-squares sense, using an exponentially de-
caying weight-factor. We now generalize that procedure, thereby obtaining 
a scheme which makes it possible to incorporate all of the following features. 

a. The model selected can be an arbitrary differential equation rather 
than just a polynomial. 

b. Vectors of observations can be accepted, rather than just scalar obser-
vations. 

c. The data can be obtained at unequally spaced instants along the 
time-axis. 

d. The quality of the data, as exemplified by their covariance matrices, 
can be taken into account. High quality observations will be able to 
influence the estimate more strongly than low quality ones. 

As with the filters of Chapter 13, the present ones will be seen to have a 
fading memory. The algorithms of this chapter will contain within them a 
scalar parameter whose value the user can select in the range from zero to 

t The author is deeply indebted to P.J. Buxbaum of Bell Telephone Laboratories who provided the 
stimulus for this chapter. 
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unity. The effect of altering that parameter will be to vary the rate at which 
the filter's memory fades out. 

At one extreme, if the parameter is set to unity (this will be possible in 
this chapter even though it was not so in Chapter 13), the filters which 
result will be identical to the Bayes or Kalman algorithms of Chapters 10 
and 12. The memory is in this case steadily expanding, i.e. there is no 
fading at all, and so the influence which an observation has on the estimate 
is not affected in any way by its age or staleness. 

When the parameter is set to less than unity then the influence which 
each observation has on the current estimate will be seen to fall off ex-
ponentially as the staleness of that observation increases. This implies that 
under these conditions the filter has a fading memory. 

Finally if the parameter is set to zero then the estimate will be based 
solely on the most recent data None of the preceding vectors have 
any influence whatever on the estimate, and so at this extreme the fading 
of the memory will be instantaneous. 

The ability to modify the shape of the filter's memory in this way will be 
seen to offer us some very interesting possibilities, particularly in regard to 
the control of systematic errors by trading them off against the random. 
errors. In this respect we will consider an algorithm whereby systematic 
errors might be detected on-line, and if their presence is established, then 
both the fade-rate and the data-rate of the filter can be varied so as to keep 
those errors down to a desired level. 

14.2 EXPONENTIAL STRESS 

The minimum-variance unbiased linear estimator satisfies a number of 
criteria, among them being what we have called the weighted least-squares 
criterion. This was discussed in detail in Section 6.9, and we now review 
it very briefly here. 

Assume that the total vector of observations presented to a filter from 
time t 1  up to time to  is  

Y _ 1  
(14.2.1) 

Y 
(n) 
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where each of the subvectors in Y ()  is related to the model's state-vector by 
a linear observation relation of the form 

Y k  = M k X k  Nk 	 (14.2.2) 

Let R (n)  be the covariance matrix of the errors in Y (n) • Assume moreover 
that the model state-vector X (t) satisfies a linear differential equation, i.e. 
that 

d X(t) = A(t)X(t) 
	

(14.2.3) 
dt 

This in turn implies the existence of the transition relation 

X(t n  + C) = (1)(tn  + C, tn)X(t n) 	 (14.2.4) 

Suppose now that en a  is any estimate of X n . Then (see p. 180) the 
simulated observation vector based on X ,, would be 

M n n,n 

  

Mn - 1 4)(n — 1,n)X *  n,n 

 

• (14.2.5) 
Ys = — 

     

       

  

M 1 410(1,n) X *, 

   

and so the total residual vector based on e is the difference between y(n) n,n  
and Y s , namely 

Y M X*  n 	n n,n 

  

n - 1 — M n - 1 st (n — l ' n)X *  n,n 
(14.2.6) 

E 

   

  

Y i 	M i  0(1, n)X *  n,n 

 

Then the weighted least-squares criterion requires that Xn n  be selected so 
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as to minimize the scalar quantity 

e (4) 	[E OeneM T  R -(-n1) E (4) 	 (14.2.7) 

As we showed in Section 6.9, this leads directly to the minimum-variance 
rule (see (6.9.6)) which formed the cornerstone of Chapters 8, 10, 11 and 
12. 

We now assume, as we have done frequently before, that the errors in Y oo 
 are stage-wise uncorrelated, i.e. that R oo  has the block-diagonal form 

R oo  

R n 1 

r - 1 
R n - 1 

I 

I 

R 
1 

(14.2.8) 

where R k  is the covariance matrix of N k  in (14.2.2). This being the case, 
it is readily verified (see Ex. 14.1) that (14.2.7) reduces to 

n 

e(X *  ) = 1[Y —M (I)(k n)X * 	R -1 [Y —M (1)(k n) X *  n,n 	 k 	k 	 n,n 	k 	k 	k 	 n,n] 
k=1 

(14.2.9) 

from which we see that Y k enters into e 	 n  (X*  ) through an associated quadra- 
tic form on R: 1  . As we know from Sections 6.8 and 6.9, the matrices 
R: 1  in (14.2.9) accomplish two very useful results. In the first place they 
act as normalizers, permitting us to mix the dimensions of the quantities 
which go into the formation of each observation vector. Secondly they 
serve to stress the more precise observations more heavily. The net result 
is that an estimate X: n  is obtained which is unaffected by the choice of 
units in which the observations are expressed, and whose error covariance 
matrix n §* has, what we have termed, the minimum-variance property (see 
Section 6.7). 

We now propose to examine the effects of modifying (14.2.9) slightly. 
Thus we replace that equation by the error-function 
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e (X n) = 

n 

k=1 
[Y k — M k 	 n cl)(k, n) X* n (k , n) X*  P t' 	tk 

k  T
R 	[Yk  — Mk 	n n 

(14.2.10) 

which is a sum of the same quadratic forms as before, except that now each 
is multiplied by a scalar of the form f3tn - where 

0 < 	1 	 (14.2.11) 

We can see qualitatively what effect this modification will have. Thus 
suppose that t o  is fixed. Then as k goes from n to 1, the scalar 13 to tic in 

 (14.2.10) falls off exponentially as t o  tk  increases. This in turn means 
that each of the observation vectors Y k  is being made to enter into the 
selection of X:, n  with an importance depending on its staleness (i.e. the 
elapsed time t. — t k  since Yk  was obtained). On the other hand if we think 
of to  as moving forward and tk  as being fixed, then again .Y k  is seen to 
enter into each of the successive estimates en,n,  X:  + 1, n + 

i 
1' • . .- with ex-

ponentially diminishing importance. The result of introducing /3 t t ic  n  into 
(14.2.10) is thus seen to give the filters we are about to derive an exponen-
tially fading memory. It is important to note that we can, if we so desire, 
let 13 be unity. This will result in the present filters becoming identical to 
the Bayes and Kalman Filters previously developed. Under slight restrictions 
those also included the filters of Chapter 9. We note further that (14.2.10) 
is a generalization of the error criterion on which the filters of Chapter 13 
were based, namely (13.2.1), and so the present discussion can be seen to 
be a generalization of all of the schemes derived in Chapters. 9 through 13. 

An alternate approach to (14.2.10) is also possible. Thus we might choose 
to consider the error function 

e (Xt) 
	I [yk  - M k  0(k, rn,,]TRk 1  [Yk  — Mk  ot(k, Orn,,,] O n  - k  

k=1 

(14.2.12) 

where 

0 < 0 < 1 	 (14.2.13) 

In this case we see that the exponential stress-function On k depends solely 
on the integer n — k , i.e. on the counting-number staleness of Y k  (whereas 
in (14.2.10) the stress-function ptn -  tk depended on the actual elapsed-time 
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since the observation vector Yk  was taken). While the notion of using the 
counting-number staleness may at first sight seem to be rather arbitrary, we 
will see that it does in fact lead to a useful result. Of course if the time 
between observations is fixed, then the two approaches as exemplified by 
(14.2.10) and (14.2.12) become identical. We shall pursue our analysis 
based on (14.2.10) and will return to (14.2.12) at a later stage. 

14.3 MINIMIZATION PROCEDURE 

We now obtain an expression for the vector rn, which minimizes e(XL) 
of (14.2.10). This can best be done by reorganizing that equation into a 
form which we have already studied and from which we will be able to 
write down the required results by inspection. 

First we define the matrix (c/f (6.3.9)) 

M 

(14.3.1) 

M 1 1(1,n ) 

and so (14.2.5) can be written 

Ys  = Tn  en, 	 (14.3.2) 

Then the residual vector of (14.2.6) becomes 

E (X*n) = Y (n)  — T n rnn 	 (14.3.3) 

a form with which we are already very familiar (see e.g. (6.5.4)). 
Consider next the matrix R of (14.2.8). If we multiply its k th  diagonal 

block by the scalar p 	- tk), we obtain the matrix 

R n  
R 	0 -(t n -tn _ i ) 

n - 

M n - 1 4:13(n - 1,n 

T n 

(14.3.4) Q()(/3) 7-- 

• 

— -1- _ -- 
R p- (t n - t i ) 
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Note the functional dependence of this matrix on p, a fact which we display 
by showing p as an argument on the left. Thus for example by setting 
/3 = 1, it is immediately obvious that 

Q (n)(1) = R(n) 	 (14.3.5) 

Next we form the weighted least-squares error criterion 

e (4) = [E (rn,n)] [Q(n) (13)] -  E (X n,n) 	 (14.3.6) 

which is Of the same general form as (14.2.7). Making use of (14.3.3) above 
this now becomes 

e (X*„,,,) = 	— T n  frif [Q (n)(q (no  — Ta X:) 
	

(14.3.7) 

and it is then easily shown (see Ex. 14.2) that (14.3.7) is identical to 
(14.2.10). Thus minimizing the former will give the same result as minimizing 
the latter. 

Now it is clear that (14.3.7) has the same form as (6.9.5), and so it follows 
immediately from Ex. 6.17 that (14.3.7) will be least if we use 

X*,p 
=

{T  n
T[Q (n)(p)] -1  7 n} Tn7.[Q(n)(,]-1Y

(n) n 

This is a linear transformation on Y (n)1  i.e. 	 * * (14 3 8) is of the. form 

X 	W Y n,n 	n (n) 

where 

-1 
wn 	n  T[c) (n) (AT' n1 1  T [Q (n) (g 

(14.3.8) 

(14.3.9) 

(14.3.10) 

This then is the algorithm for computing the, vector r n  which minimizes n, 
(14.2.10). 

We note first that if /3 = 1, then by virtue of (14.3.5) the above algorithm 
for 	n X* is simply the minimum-variance rule. Thus for = 1, by (6.6.29) 
and (6.6.30), rnn  and Wn  of the above two equations satisfy 

— iC4  n,n 	n,n (14.3.11) 
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and 

W n 	IV 
	

(14.3.12) 

Moreover if we define 

P n,n (g) s {T {C4 (n)(I3 
1

T n 	 (14.3.13) 

then when /3 is unity, P n  (13) is seen from (6.6.32) to be the covariance 
matrix of XL, i.e. 

(14.3.14) 

However for p < 1, Pn .(p) above is no longer the covariance matrix of 

n X* , and to obtain that matrix we must proceed instead as follows.  
From (14.3.9) we see that 

•s* . w R T 
n,n 	n (p) Wn 

(14.3.15) 

and so by (14.3.10) 

S*  n (g) = {T : [(4 (n)  (Pr T n r T : [Q (n)  (I3
)] -1  

• R() [CI (n) (pr T n  {T : [Q (n)  (/3)] -  1 
T n .

}- 

(14.3.16) 

Considering first the triple product [Q (n)  ( 
-1 

R (n) [Q (n) 	
-1 appearing in 

the center of the above equation, it can be shown quite readily (see . Ex. 

14.3) that 

P(n)(13T 1  R  (n)P (n) (13)T = EQ  n (162I 

	
(14.3.17) 

This means that (14.3.16) can be written as 
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en,n  (/3) 	{T: 
[Q(n) 

 (p)T 1  T ri } {T: [Q(n) (p 2  )1 - 1
Tn } 

(14.3.18) 

{TnT [Q (n)  (0 )] -1 T. 

and if we now make use of (14.3.13), then the above is equivalent to 

s:, (p) = P n,n (p) [P n . 	T 1 13nn  (p) 	 (14.3.19) 

This then is an expression for the covariance matrix of X:, . -Clearly when 
/3 .1, it follows from (14.3.14) that 

s* (1) 	Pn,n (1) = n,n 	 n,n (14.3.20) 

Thus setting /3 = 1, makes 	(13) of (14.3.19) the minimum variance error 
covariance matrix. 

As with (14.3.8), we see that (14.3.19) above is not a convenient form in 
which to carry out numerical computations. We now show that a recursive 
procedure can be set up which gives us computational methods for 
and S:, which are far more preferable. 

14.4 RECURSIVE FORMULATION 

From equations (14.3.9), (14.3.10) and (14.3.13), of the preceding 
section, we see that the vector XL which minimizes the chosen error 
function is given by 

	

(T T  QV)  T 	 (14.4.1) 

W n = P
n,n n 

T T C
(n ) 

	

r 	 (14.4.2) 

Xr*i,n = Wn Y (0) 	 (14.4.3) 

(Note that, for convenience, we are now no longer displaying explicitly 
that. Pn,n and Q (n) depend on /3, as we did before.) In this section we show 
how the above set of equations can be recast into a recursive form. 

When /3 = 1 we know that we are considering the minimum-variance 
estimator, and in Chapter 10 (see. Section 10.2) we showed how the Bayes 
Filter can be obtained as a recursive restatement of the minimum-variance 



1 0(n - 1,n) 

Mn - 20 (n - 2, n) 

• 
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rule. The discussion to follow parallels that of Section 10.2 very closely, 
and the only differences which arise are because of the presence of the 
exponentially fading stress-function 13 1n-  tk  which we have introduced. 

Consider first, that by (14.3.1) 

M n 

M I  0 (1, n) 

M n 

M n-14)(n - 1, n 1)0(n - 1,n) 

M n- 2 4)(n - 2, n - 1) (I)(n - 1, n) 

• 
(14.4.4) 

M 1 (1(1, n - 1)(1)(n - 1,n) 

and so we see that 

T 
	 M n 	

(14.4.5) 
n 	Tn  _ 1 0(n — 1, n) 

Tn 

Next, by (14.3.4), 
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and so we can write Q (n)  in the form 

R 

Q(n) = 
I Q (n 1 ) 13  

(14.4.7) 
- tn _ i ) 

We now apply (14.4.5) and (14.4.7) to (14.4.1). Thus 

	

p-1 	T Cl i  

	

n,n 	a 	(n) n 

= (M n 	 n T  14:1 (n — 1, nf - 1 TT ) R 	 Mn n 

I Q -1 	Ott' 	Tn-1 (I)(n — 1,n) (n 1) 

o tn  - to
-1 4 	- 1 VI = M R M n 	
- 	 T  Q- n n 	 -"") T  n-1 	1 	T (n-1) n - 1 0(n — 1,n)  

(14.4.8) 

Next we define 

Pn,n - 1 ==- 4:1)(n, n — 1)P n - 	- 1 0(n, n — 1) T  

and so it follows that 

(14.4.9) 

= (1)(n — 1, n) P T -1  n, n - 1 	 n - 1, n - 1 4)(n — 1, n) 
(14.4.10) 

= 4)(n — 1, n) T  (T T  C1-1T n - 1 )0(n — 1,n) 

This now means that (14.4.8) can be written 

TRMM 	otn tn - 1 p- 1 
n,n 	n 	n 	n 	 n, n - 1 

and so we have that 

1 
P 	

= (otn- to-ip._ 
1 	+ M nT R n-1M n) n,n 	 n, n - 1 

(14.4.11) 

(14.4.12) 

This last result together with. (14.4.9) constitutes a recursive algorithm for 
obtaining Pn, n  given P 	and R n . n - 1, n - 1 
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Our next task is to consider the product TnT cil)  on the right of (14.4.2). 
By (14.4.5) and (14.4.7), 

T 
n  T  Q()

- 1 = 	
n 	 n 

T (13, (n  _ 1,70 T 
T- 1 	

R -1 I 
n 	I 

--  

(s tn  - t n -  (3-1 
-1 (n - 1) 1 

= nT13;1 j
I 
p

t
n -to - 1()(n — 1,7or TT _Q -1_ ) n - 	(n 1) 

(14.4.13) 

Then if we partition 11 (n)  into the form 

y 	n 

(n) 

= 	
-- 

Y (n - 1) 

it follows from (14.4.13) that 

(14.4.14) 

= 	TR-ly 	pe t  n to-1 0(n 1,n) TT T.   n 	(n) (n) 	n 	n 	n 	 n - 	1 - 1) Y  (n - 1) 

(14.4.15) 

Consider the final term of this equation. 
By (14.4.2) and (14.4.3) we have that 

X4: - 1, n -1 	 T r = Pn - 1, 	1  T n - 1 Q(n-1) Y(n-1) 

and so, by multiplying both sides by P:1-1, n -1 we obtain 

TT n-1 y 	p-1 	
X* n-1 	(n - 1) - 	n - 1, - 1 n - 1, n - 1 

(14.4.16) 

(14.4.17) 

This now means that 

(Ics(n — 1,n) TT - Crl 	y n 	(n - 1) (n - 1) 

= (I)(n — 1,n)T P 	X *  n - 1, n - 1 n - 1, n - 1 

= 4(n — 1,n)TP n-1- 1, n 1  1(n — 1, n)(I)(n, n 	DX*  n - 1, n - 1 

= [(I)(n, n — Pa  _ 1, n  _ 1 4)(n, n — D1 -1 0(n, n — DX*  n - 1, n - 1 

(14.4.18) 
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Thus if we write 

4)(n, n 	1)X *  n - 1, - 1 (14.4.19) 

and if we make use of (14.4.9), then it follows that the final line of (14.4.18) 
can be written as P -n  1n - 1 n X* n - 1 Hence (14.4.15) becomes , 	,  

T aT  Q;1) Y (n) = M 'It -1 Y + Ptn to-1p-1 	X* 
n 	n 	n 	 n, n - 1 n, n - 1 (14.4.20) 

We now consider (14.4.3). By (14.4.20) we see that it can be written as 

X* = 	 n Pa,n (M TR; 1 y n /PI to 1 P-1  X*  nal 	 n, - 1 n, n - 1) (14.4.21) 

and it is then a simple matter (see Ex. 14.4) to show that the above is 
equivalent to 

X *  n,n 

where 

Hn 

= X * 	+ Hn (Y n n, n - 1 

Pn,n M nTR; 1  

M X * 	) 
n 	n, n - 1 (14.4.22) 

(14.4.23) 

This pair of equations together with (14.4.19) constitutes a recursion 
algorithm for obtaining ra,a , given X: _ 1 , n  _ 1  and Ya . 

Finally we must derive a recursive method for obtaining SL. But by 
comparing (14.4.22) to (12.3.2) we see immediately from (12.3.7) that 

S* ,n = (I — Ha MdS,, ,n _ 1 (I — H n M n )T  + Hn R n 
 HnT 

n (14.4.24) 

where of course 

s*, n - 1 a-  ( n , n — DS: _ a  _ 1 4)(n, n — 1)T 	 (14.4.25) 
n 

We are now in a position to assemble the complete algorithm, and as its 
name indicates, its form is very suggestive of the Bayes Filter on p. 389. 
Thus by the arguments given above we can now write the following: 
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Fading-Memory Bayes Filter 

(D(n, n — DX * 	 (14.4.26) 
Xlcn, n - 1 	= 	n - 1, n - 1 

P, _ 1  = 4' (n, n — 1)Pn -1, n - 1 4)(n, n — D r  (14.4.27) 

P 
(t n  - to-lp

n
l n  

TR
- 1M + M (14.4.28) 

n,n 1 	nn 	n 

H n = P n,n M nTR n-1  (14.4.29) 

rn,n = X :, n - , + lin(Yn Mn Xn, n - 1) 
(14.4.30) 

S:,n _ 1  = '(n, n — DS: n  _ 1 (1)(n, n 	D T  (14.4.31) 

gleam  = 	— Hn M n)S: n  _ — Hn M n ) T  + H n R n HnT  (14.4.32) 

The inputs to this algorithm are y n  and R n  and its outputs - are en . and 

n 	 n n 1  S * 	Storage must be provided, between cycles, for X *  S* n  and Pnn for • n 

use on the next execution: 
Just is-the-inversion lemma permitted us to convert the-Bayes Filter into 

the Kalman Filter on p. 465, so it now permits us to convert the above 
algorithm into one closely resembling the Kalman Filter. To accomplish 
this we first write (14.4.28) in the form 

P n,n =K
P n, n 1 

pin - tn-iY 

-1 

(14.4.33) 

and we then obtain quite readily (see Ex. 14.5) the following extension of 
the Kalman Filter: 

Fading-Memory Kalman Filter 

X 	(I) (n, n — 	_ n, n - 1 	 n - 1 

P n, n -1 = (I)(n, n — n - 1, n - 1 (I)(n, n — 

H n  = P n, n 1 
M

n 
T (  p tn - 	 Mn Pn, n  _ i M nT  

- 1 

(14.4.34) 

(14.4.35) 

(14.4.36) 
(continued) 
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n n 	n n n 

+ H (Y — M X 	) 

	

n n 	n n, n - 1 

(I — H M n) P . n 

	

n 	n,  - 1 

Sn, n - 1 = 40(n, n — 1)S* 	41:0(n n — 1) n - 1, n - 1 
T 

s* ,n = (i _ Hn  M n n  S*, - 1 (I — H M ) T  + H R 
n  

(14.4.37) 

(14.4.38) 

(14.4.39) 

(14.4.40) 

n,n 

Pn,n 

- 

- to -1 

As with the Fading Bayes Filter on p. 569, the inputs to the above algorithm 
are Y and R n , its outputs are r n  and enc n , and intermediate storage must 

n, 

be provided for X n*,., S:. and P Thrz  for use on the next cycle. In the next 
section we examine some of the more important properties of the Fading 
Bayes and Kalman Filters. 

14.5 PROPERTIES OF THE GENERALIZED FADING-MEMORY 
FILTERS 

The recursive algorithms which were derived in the preceding section 
provide us with two very powerful ways in which to obtain the estimate 
vector which minimizes (14.2.10). They are computationally extremely 
efficient and from a memory standpoint they require only the retention of 
the most recent estimate, its covariance matrix, and the matrix P. By 
comparison with their nonrecursive counterparts obtained in Section 14.3, 
they are thus clearly seen to be the more desirable ways in which to imple-
ment the filters of this chapter. 

Structurally they bear very strong resemblances to their respective 
expanding-memory counterparts, the Bayes and Kalman algorithms of 
Chapters 10 and 12, and as we already know when 3 = 1 they become 
identical to those filters in all respects. 

In the course of studying the Expanding Bayes and Kalman Filterst we 
examined the following topics. 

a. The number of matrix inversions required. 
b. Initialization techniques. 
c. Problems arising out of the introduction of highly precise data. 
d. Problems caused by the introduction of highly correlated data. 

tBy "Expanding" Bayes or "Expanding" Kalman Filter we refer to the versions derived in Chapters 
10 and 12 respectively. The term "Fading" on the other hand refers to the versions derived in this 
chapter when ,8 < 1 . 
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e. Loss of precision in the covariance matrix. 
We saw that, by virtue of differences in their basic structures, the two 
filters possess differing and sometimes markedly contrasting attributes in 
each case. Now it follows immediately that because they are structrually 
indistinguishable, the Fading Bayes will have the same properties as the 
Expanding Bayes in each of the above categories, and similarly for the 
Fading and Expanding Kalman algorithms. Thus the same arguments which 
might be applied in choosing between an Expanding Bayes and an Expanding 
Kalman Filter, would also be applied in choosing between a Fading Bayes 
and Fading Kalman Filter. We do not intend to restate here the results of 

-pur analysis on the topics itemized above, and we content ourselves simply 
with referring the reader back to Sections 10.6 and 12.4. Almost every one _ _;  
of the comments made there on the attributes of the Expanding Bayes and 
Kalman algorithms apply virtually unchanged to their fading-memory 
counterparts that we are now examining. 

In itself the preceding paragraph has already said a considerable amount 
about the filters of this chapter. However there are additional properties 
which we have yet to uncover that arise because of the added flexibility 
provided by the parameter 13. We now turn our attention to these. 

As a first step we note that because of the incorporation of the exponential 
stress-function p tn tic , the matrix Pn,n is not the estimate covariance matrix, 
unless /3 = 1. When /3 < 1 we compute the covariance matrix by the extra 
pair of equations involving S:. _ i and S:,,, which appears at the end of each 
of the algorithms on pp. 569 and 570. One question which immediately 
presents itself is, how does one initialize those algorithms? As an answer we 
suggest that at the time of initialization /3 be set to unity, in which case P*  
and S* are identical. Then the same approach as was used to initialize the 
Expanding Bayes and Kalman Filters can be used to initialize these. At 
some convenient time after initialization, f3 can be reduced to its chosen 
value and the filters will then be operating as required. 

We have already heuristically examined some of the effects which the 
introduction of p can be expected to have on our filters, and as we pointed 
out in discussing the choice of (14.2.10) as our error criterion, when 13 is 
less than unity, then the resultant filters can be expected to have a fading 
memory. We now examine this aspect further. 

Thus suppose first that /3 = 1. Then the Fading Filters are identical to 
their Expanding counterparts and so the influence which each observation 
vector has on the estimate is determined once and for all by its quality, as 
exemplified by its covariance matrix. This influence is completely unrelated 
to the age or staleness of the observation, and so at this extreme value of f3 
there is no fading whatever. 
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At the other extreme suppose we set /3 = 0. While this value was not 
contemplated when we stated that /3  lies in the range 0 < p 1, we use it 
for discussion purposes rather than using some number infinitesimally close 
to zero. Note that in the Kalman case, as we see from (14:4.38), it is not 
possible to let /3 = 0 precisely. However in the Bayes case we see that we 
can, and under these conditions (14.4.28) becomes 

Pn,n = nTR 1 M 
	 (14.5.1) 

from which it follows readily that (14.4.30) becomes 

X*  n,n 
= (m 

n 
 TR

n 1 Mn/ MnTR n lYn 
(14.5.2) 

Thus, assuming that (M.TR:iM. y exists, we see that at p= 0 the Fading 

Bayes becomes precisely the minimum-variance Fixed-Memory Filter based 
on only the most recent observation vector. The memory shape is in this 
case seen to be a Kronecker delta, incorporating only the most recent obser-
vation and excluding all of its predecessors, which is equivalent to a fading 
memory with instantaneous fading. Thus we see that, at the extremes 'at 
any rate, our heuristic arguments on what to expect as p is varied are now 
confirmed, namely that /3 serves to control the fading-rate of the filter's 
memory, from no fading at all when (3 = 1, to instantaneous fading when 
/3 = 0 . 

The Kalman formulation is theoretically equivalent to the Bayes by 
virtue of the inversion lemma, and so it follows that the above arguments 
also apply in the Kalman case when /3 is very close to zero, even though 

= 0 itself is an unacceptable value. We note that this inability to set 
/3 = 0 in the Kalman case is another manifestation of the fact, which we 
pointed out on p. 472, that the Kalman Filter cannot form an estimate 
based on only a single observation vector. It must also have an a priori 
estimate which it then combines with the given observation vector to form 
an estimate. The Bayes Filter on the other hand can form an estimate 

solely on Y n if the matrix (M nn  TR -1 114 n  )-1  exists, (see (14.5.1) and (14.5.2)). 

This will be the case if M n  has full column-rank. 
We have seen that at the two extremes, 13= 1 and p= 0, the fading of the 

filter's memory is either entirely absent or else instantaneous, and so it 
follows, by the continuity of the algorithms with respect to the parameter p, 
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that a continuous transition must exist between those two extremes. 
Heuristically it is easy to see what that transition implies, and in Figure 
14.1 we have sketched out a set of exponentially decaying curves for various 
values of the parameter 0. Evidently when /3 = 1 we have the flat non-
decaying curve, signifying equal stress on all of the data with respect to 
age, and at 0 = 0 we obtain, in the limit, a Kronecker delta since 

t l lm (3 o  
-+0 

(14.5.3) 

The intermediate cases show a decaying stress on the data, which increases 
more or less rapidly with age as p is made close to zero or closer to unity. 

A = 1 

= 0 

  

Fig. 14.1 Stress-functions for various values of /3. 

14.6 SYSTEMATIC ERROR CONTROL 

In Section 10.5 we pointed out that the covariance matrix S*Thn  of the 
Bayes (or Kalman) Filter may or may not go to a null matrix as n increases. 
In the event that the observation scheme is properly configured and if the 
observations are of good enough quality and are made often enough, then as 
time passes Sn n  will go to a null matrix. 

Assume that we have such a situation, but that the model on which the 
filter is based differs from the true process equations. (This might be either 
because of ignorance of the true process equations or else out of a desire to 
simplify the model in order to reduce the amount of computation.) Now as 

n S* shrinks we see from (12.2.8) that Hn also shrinks, and eventually the n, 
time will come when the estimate, obtained from 

X t2, n - 1 H n (Y n M* n,n = X nX n, n - 1 ) (14.6.1) 
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is virtually unaffected by the vector Y. — M. X*.„ _ 1 . The estimate X4.`. is 
then essentially X:, _ I  and the filter simply follows the particular trajectory 
on which it has settled, without being amenable to modification by the 
observations. Under these conditions the estimated and true trajectories will 
begin to diverge by a deterministic amount and so the errors in XL are now 
no longer zero-mean random variables, but develop a bias. 

In addition to the above mechanism, systematic errors can also arise even 
when there is a supposedly perfect match between. the true process and the 
model. All of our considerations up to now have presupposed that the true 
process is a homogeneous, i.e. an unforced, linear differential equation of 
the form 

11(t) = A(t)I1(t) 
dt • 

(14.6.2) 

We assume that A(t) is known and so the filter model is also (14.6.2). How-
ever suppose that at some instant a disturbance takes place and that the 
true process is subjected to an impulsive forcing function for a very brief 
period at some time. Thereafter it returns to (14.6.2) but the effect of this 
forcing function will have been to cause a change in trajectory to a new 
one still governed by (14.6.2). The estimate given by the filter will there-
after contain systematic errors, since the estimate is now based on data 
obtained partly from the old trajectory (i.e. before the impulse) and partly 
from the new one.t It is the purpose of this and later sections to consider 
how such systematic errors can be controlled. 

The key to systematic error control lies in the recognition of the fact 
that our filters are essentially curve-fitters. If the true curve and the ap-
proximating one are chosen from the same ensemble, i.e. solutions to the 
same differential equation, then the fit can be made arbitrarily good, in 
spite of the observation errors, by extending the fitting interval over a suf-
ficiently long time. However if the given curve and the one we use for 
approximating it are not intrinsically identical, either due to a mismatch in 
their (homogeneous) differential equations or because of an impulsive 
forcing function not accounted for, then a good fit can only be made over a 
sufficiently short period. Increasing the length over which the fit is made 
will lead to errors which could exceed the errors caused by corruption in the 
observations. In the parlance of our filter theory, we must keep the filter's 

t Strictly speaking, of course, this second mechanism also constitutes a mismatch between the true 
process and the model. However it differs from the preceding one in which even the homogeneous 
portions of the differential equations were assumed to differ. Note that systematic errors could arise 
simultaneously from both sources. 
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memory-length from becoming too large if we wish to control the syste-
matic errors. As a consequence we must also be prepared' to accept random 
errors in the estimate which have a covariance matrix that now no longer 
goes to a null matrix as time increases. 

The Bayes and Kalman Filters of Chapters 10 and 12 have, as we know, a 
steadily expanding memory. Thus unless there is a very precise match 
between the true process and the model, we must 'expect systematic errors 
to develop if we decide to estimate by their use. Of course there are many 
situations where a very precise match is indeed possible. However if a 
mismatch exists, or if an occasional forcing impulse can be expected in the 
true process, then their use is not recommended over too long a period. (In 
exactly the same way the use of the Expanding-Memory Polynomial Filter 
is not recommended for too long a period, unless the true process is precisely- -

a polynomial of the same degree (or less) as the one on which the filter is 
based.) 

We have already verified that the filters of the present chapter possess a 
fading memory for /3 < 1. This means that the memory-length does not ex-
pand steadily but that the observations are forgotten or discounted at a rate 
exponentially proportional to their age. As a result the curve-fitting process 
takes place over an essentially shortened and nonexpanding time interval 
and so, making /3 < 1, will serve to keep the systematic errors within pre-
scribed bounds. 

At the extreme when /3 = 0, we have seen that if M rl  TR n  1M n  is nonsingular 
then the Bayes estimate is based purely on the most recent observation 
vector, and so clearly it will be entirely free of systematic errors. This then 
suggests that by making /3 sufficiently small we can keep the effective 
memory-length sufficiently short, thereby keeping the systematic errors 
down to any desired level. Of course the price we pay is that with a shortened 
effective memory-length the smoothness of the estimate is reduced, i.e. the 
random output errors will be larger. But a balance can be struck in which 
the systematic and random errors are made roughly comparable. This is 
certainly preferable to an estimate which becomes steadily smoother with 
time but also more and more biased. 

In the case of impulsive forcing functions in the true process, we can 
keep /3 close to unity for most of the time. If at some time we are able to 
detect that an impulse has acted (in a later section we will consider this 
problem more closely), then we can temporarily reduce /3, thereby essentially 
freeing our filter from data pertaining to the now obsolete trajectory. Then 
we bring back up to unity and so permit the memory to fill up with data 
on the new trajectory. The covariance matrix of the estimate will be 
temporarily enlarged while /3 is small, but after /3 is set back to a value near 
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unity that covariance matrix will begin to shrink again, and we obtain once 
more a smooth estimate which is also relatively free of systematic errors. 

We now devote some effort to an analytical study of the effects that 3 
has on the covariance matrix. What we propose to do is to analyze the 
behavior of the covariance matrix of the Generalized Fading-Memory Filter 
assuming (1) a constant-coefficient linear differential equation as the model, 
(2) an invariant linear observation scheme, (3) a constant observation-error 
covariance matrix R, and (4) equal spacing between the observations. The 
last three assumptions are not very restrictive and the first, namely that the 
model is a constant-coefficient linear differential equation, while being 
somewhat restrictive has the advantage of keeping the algebra manageable. 
Moreover, in spite of its seemingly restrictive nature, the assumption of such 
a model nevertheless gives us a considerable amount of insight into the 
mechanisms underlying the Bayes and Kalman algorithms both with and 
without fading. 

We shall consider only the Bayes Filter, since the Kalman Filter without 
driving-noise is algebraically equivalent to it. 

14.7 STABILITY ANALYSIS 

Up to now we have not inade any attempt to discuss the stability properties 
of the Bayes or Kalman algorithms, and being recursive in structure, such 
properties, if they exist, are certainly subject to proof. In Section 9.5 
(see p. 365) we did point out the need for such a discussion, and what we 
now propose to do is to consider the somewhat restricted case of the 
constant-coefficient linear model and constant-coefficient linear observation 
scheme, and a nonchanging input-error covariance matrix. We will show, 
specifically, that in the Expanding Bayes and Kalman Filters a relationship 
existst between M and whose presence is both necessary and sufficient 
for S4,:. to tend to a null matrix regardless 
4 0 . That being the case, if there is a 
process and the model ., the estimate will 
the true state-vector with probability one, 
conditions 4 0 . Thus n S* tending to a null 
of stability. 

Our approach will be to study the recursion for the matrix 13n , of the 
Fading Bayes Filter. We shall show first that P n  (1) goes to a null matrix 
as n t and since by (14.3.14) we have 

t Identical to the conditions on M and 43 given in Theorem 8.2 on p. 325. 
Subject to the above-mentioned relationship between M and (13 being satisfied. 

of the choice of initial conditions 
perfect match between the true 
ultimately be precisely equal to 
regardless of the choice of initial 
matrix as n .0 constitutes proof 
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Pn,n (1) = n,n 
	 (14.7.1) 

will thus also have proved that for the Expanding Bayes and Kalman Filters 

O 

lim n,n 
	 (14.7.2) 

When p is less than one we will see that the above limits are not null 
matrices. Thus in the Fading Bayes and Kalman cases the descent of both 
SL, and the weight matrix H n  of (14.4.29) or (14.4.36) to null matrices is 
forestalled. This indicates that if a mismatch exists between the true 
process and the filter's model, then the concomitant systematic errors can 
be kept within bounds, at the expense of larger random errors, by an ap-
propriate choice of /3. 

Assuming a linear constant-coefficient differential equation as the model, 
we know from Chapter 4 that the transition matrix has the form 

40(r) = exp(rA) 
	

(14.7.3) 

where r is the intersample time, assumed constant. We now write (14.4.27) 
as 

Pn, n - 1 = (DPn - 1, n - 1 
	 (14.7.4) 

where we are suppressing the argument of (I) for brevity. The inverse of 
(14.7.4) is 

' p-1 	= 	-1p-1 
n, n - 1 	T 	n - 1, n 1 (V' (See Note) 	(14.7.5) 

and making use of this, (14.4.28) can be written as 

pn ,n  1 
	to* 	1 

T 	1, n 1 

	

1p- 	0-1 mTR-lm 
-  

(14.7.6) 

in which the exponent of 0, namely r, has been taken without loss of 
generality to be unity. Note that neither M nor R is subscripted with an n, 
a consequence of the assumptions which we made earlier that the observa-
tion matrix and error covariance matrix were both constant. 

Equation (14.7.6) is a linear recursion for Pn n  in terms of its predecessor, 
with the constant matrix M TR -1 M serving as a forcing function. For further 

Note: By the symbol OT- 1 we naturally mean the transpose of 0 -1 . 
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brevity we define. the two matrices Z and G by 

and 

Z P' n 	n,n 

G = MTR'M 

and so (14.7.6) becomes 

z.(0) = por Jzn _ i (p)o- i + G 	 (14.7.9) 

in which form our study will be conducted. 
First we note that G is a nonnegative definite matrix. Moreover if Z o 

 (namely clo ) is positive definite, then so is /3(1) 1.-1 Z0  (I)-1  and hence so is Z i , 
the sum of a positive definite and a nonnegative definite matrix being 
positive definite. We thus have the following. 

Lemma 14.1 

Let Z., 1, G and /3 be related as in (14.7.9) where Z 0  is positive definite. 
Then for any n, Z. is positive definite. 

We note next that all of our matrices including (I) are real. However (I) may 
or may not be symmetric and so it can have complex eigenvalues and eigen-
vectors. If the eigenvalues of (I) happen to be complex then they will always 
occur in conjugate pairs. 

Consider now a constant-coefficient, linear model characterized by the 
transition relation 

X = Oxn-1 
	 (14.7.10) 

This can be viewed as a linear homogeneous vector difference equation, and 
its solutions constitute the form which the vector Xn assumes. Thus given (I) 
there is a class of X.'s generated by (14.7.10). The elements of these X.'s 
are related to the eigenvalues of (I) in the following manner, which we state 
without prooft 

Lemma 14.2 

Let A be an eigenvalue of (I) with multiplicity m, and let the space formed 
by the eigenvectors associated with A have dimension p. Then in general 

tProof can be supplied quite readily by the reader, making use of the material in Examples 8.19 
through 8.21. 
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there will be terms in the elements of X. of the form P„ Xn , where P, is a 
polynomial of degree in — p whose coefficients depend on the initial con-
ditions of X. 

Example: The matrix 

= 	 (14.7.11) 
(3 0) 

0 2 

has eigenvalues 3 and 2, m being unity in both cases. 
eigenvalues are the two eigenveQtors 

V 1  7=- 
0 

( I) 	V2  a (0  
1) 

Associated with these 

(14.7.12) 

respectively,t and so in each case p = 1. Hence in both cases, m 
so the multiplicative polynomial p is a constant, i.e. a typical 
X has the form 

—p = 0 and 
element in 

(x).  a3a + br (14.7.13) 

where a and b are constants that depend on the initial conditions. On the 
other hand the matrix 

2 	
1 	01 

(14.7.14) 

\ 0 0 1 2/ 

has the single eigenvalue 1/2 of multiplicity m = 3, and has two eigen-
vectors, namely 

V 1  = 

1\ 

0 

0/ 

0\ 

(o1,  (See Note) 	(14.7.15) 

t In general the length of an eigenvector is arbitrary. For definiteness we shall always use the 
eigenvector with unit length. 

Note: Because the eigenvalues which gave rise to these two eigenvectors are equal, it follows that 
any linear combination of these two vectors are also eigenvectors. 
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which means that p = 2. Hence in this case m — p = 1 and so we can expect 
to find an element in X. of the form 

= (a + nb)G--)n 
	

(14.7.16) 

It is clear then that the location of (D's eigenvalues, their multiplicities 
and the number of associated linearly independent eigenvectors are all that 
we need to know in order to determine the behavior of the elements of X. 
as n We thus have the following corollaries to Lemma 14.2. 

Corollary 

If (1) has all of its eigenvalues strictly within the unit circle, then for each 
element of X., 

11111 (x 	= 0 
n 00 

We call such a system an unconditionally stable system. 

(14.7.17) 

Corollary 

If (1) has any of its eigenvalues outside the unit circle thent for at least 
one element of X n 

lim (x11 = 
00 

We call such a system unconditionally unstable. 	 •l1  
Neither of the above two cases is of really great interest from a practical 

standpoint, since as we shall see, the covariance matrix of the former goes 
to a null matrix without even making observations, and the covariance 
matrix of the latter can only be made a null matrix if R is also going to a 
null matrix, i.e. if the observation errors have variances which approach 
zero as n 

The only case of real interest then is the situation where some of 'I's 
eigenvalues lie on the unit circle and none lie outside of it. Moreover, as 
time passes, the terms in X. associated with any eigenvalues which lie 
inside the unit circle die out exponentially, and so they do not require 
observing in order to improve our knowledge of them. We need merely 

t Barring very exceptional initial conditions. 

(14.7.18) 
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declare, with perfect certainty, that if we wait long enough, the state of 
those terms is precisely zero. Hence we shall devote our energy to the case 
where all of Vs eigenvalues lie on the unit circle. This includes the polynom-
ial models which have all of C's eigenvalues at unity (see Ex. 8.29) as well as 
the "Fourier series" models, and in practice these are the only really useful 
sets of constant-coefficient linear models. 

Example: The matrix 

 

(14.7.19) 
= 

  

is a well-known polynomial transition matrix (quadratic). Clearly (1) has 
one eigenvalue, A = 1, of multiplicity m = 3. It has only the single eigen-
vector 

11 

V = 0 
	 (14.7.20) 

\0 

and so the rank of the space formed by 1's eigenvectors is p = 1. Thus 
Lemma 14.2 shows that there will be an element in X n  of the form 

z/n = Pn 
	 (14.7.21) 

where p n  is a polynomial in n of degree m — p = 2, i.e. there will be elements 
in Xn which become unbounded like n 2  as n 00. 

We now begin our proof of the following proposition, which is the first 
of the two main results of this section. 

Let Z n be given by the recursion (14.7.9) where (I) has all of its eigen-
values on the unit circle. Then 

lim [zn ad -1  = 0 
n 00 

(14.7.22) 

if and only if none of the eigenvectors of (I) is annihilated by M. (See Note) 

Note: Comparison with Theorem 8.2 on p 325 shows that the constraint on M given is 
Identical in both cases. 
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Thus once 0 is chosen, we can find its eigenvectors, V 1 , V 2 , etc. In 
general these may not span the entire space and in most cases M is singular. 

Hence our theorem tells us that if we desire [Z. (1]
-1 
 --, 0 as n 	then we 

must be sure that for any of the eigenvectors of 0, 

MV k 	0 	 (14.7.23) 

In the event that V 1  and V 2  are eigenvectors associated with the same 
eigenvalue, then this also means that M shall not annihilate any linear 
combination of these vectors, since such a linear combination is again an 
eigenvector of 0. (If V 1  and V2  stem from different eigenvalues, then M is 
permitted to annihilate a linear combination of them.) 

We note from (14.7.7) that 

[Z. (p)j -1  = P.,. (p) 	 (14.7.24) 

and for p = 1, P.. and S* . are equal. Thus the above theorem, which 
actually concerns Zr,  (1), shows how the matrix S* . of the Expanding Bayes 
and Kalman Filters behaves, as n If we keep 13 in 0 < (3 < 1, then 
the second of our main results will tell us precisely how S*.,. (p) behaves for 
the Fading Bayes and Kalman Filters as n 

Prior to proving the first theorem we present two examples showing its 
use. 

Example 1: Let 

0(r) = 
(1 r 

\ T r 	1+ r 
(14.7.25) 

This is a transition matrix (see p. 98) which has one eigenvalue, = 1, of 
multiplicity m = 2 It has the single eigenvector 

()

V = 	1 	 (14.7.26) 

and so, according to the theorem, if we wish that s*
,r7 

0 for p= 1, we 
must avoid for example, using 

M = (-1, 1) 	 (14.7.27) 

since then MV = 0. 
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Now the state-vector for (1:0 of (14.7.25) is 

X n = 
xn + in  

n 
 tin 

(14.7.28) 

We see then that if M is as in (14.7.27), then the observation relation would 
be 

y.  = MX n  + vn  
(14.7.29) 

= in + Vn 

showing that our observation scheme is such that only i n  and not xn  is being 
observed. Intuitively we know that our knowledge of a first-degree poly-
nomial will never become perfect unless our observations contain information 
on the zeroth derivative. 

On the other hand, by our theorem we could, for example, use 
.3. 

M = U, 1) 	 (14.7.30) 

for in this case MIT 0, and so we are assured that n s 	0. Our observa- 
tions now contain data on the zeroth derivative. 

Example 2: Let 

cos T 	sin r 0 0\ 

— sin r 	COS T 	0 	0 	 (14.7.31) 
0 	0 	1 0 

0 	0 	0 11 

Assuming that r is not an integral multiple of IT radians, this matrix has 
three distinct eigenvalues ejT , e -ir and 1 which give rise to four eigenvectors, 
two real and two complex. The eigenvectors associated with the eigenvalues 
e'r and en' are, respectively, 

1 
- - • - • 

11\ 

\0J 

V = 12 

Nri 

(14.7.32) 



n 
C 

d 

( a sin t + b cos t\ 

a cos t - b sin t 
(14.7.34) 
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and the eigenvectors associated with the eigenvalue 1 are 

/0\ 	/0\ 

	

0 	 0 

	

V3 = 
1 	

V4  = 

01 

(14.7.33) 

as well as any linear combinations of these vectors. We thus see that M's 
first two columns must be such that both MV 1  0 and MV 2  0. More-
over the third and fourth columns must have rank two in order that 
M (aV 3  + a'V4 ) 0, for any constants a and a'. 

The state-vector for (1) of (14.7.31) is 

where a, b, c and d are constants. The first two elements of X. are of the 
form x (t) and i(t), and constitute the state-vector of a simple harmonic 
oscillator. Observing either x (t) or i (t) will be sufficient to give us an 
ultimately perfect knowledge of the state of that oscillator. In order to 
determine c and d we must observe them in two linearly independent ways. 
In Examples 14.6 and 14.7 we consider the cases where r is a multiple of IT 

or 2ir radians. 4+ 
We now turn our attention to the proof of the first main result, and as a 

start we prove a lemma concerning the eigenvectors of O. Note that these 
are also the eigenvectors of CI' and that the eigenvalues of (1) are the recipro-
cals of the eigenvalues of V' (see Ex. 14.8). 

Lemma 14.3 

Let Z n (13) be defined by (14.7.9) where (1) has all of its eigenvalues on 
the unit circle, and let V be any one of (134's eigenvectors. Then 

Inn V TZ n (1) V = 00 	 (See Note) 	(14.7.35) 
n-4 0,0 

if and only if MV 0. 

Note: By V we mean the complex conjugate of V. 
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Proof 

By (14.7.9) 

V TZ n (1) V = V T (I)  3: 1  Z n l ( 1) 0-1 11  V TM TR -1 MV 

= VT  Z n  _ 1 (1) V + V TM T R -I MIT 

and so it follows that 

V TZ.(1)V = V T; (1) V + nVN TR - IMV 

Hence 

(14.7.36) 

(14.7.37) 

lien V TZ n (1) V 
n -+ oo 

= 00 (14.7.38) 

if and only if 

V TMTR -1 MV # 0 
	

(14.7.39) 

But this last condition will true if and only if 

MV 
	

(14.7.40) 

since by assumption R -1  is positive definite, and so the lemma is proved. N 
We now apply this lemma to the proof of the following result concerning 

the eigenvectors of Zr  (1). Note that since Z. (1) is a real symmetric matrix, 
it has a set of eigenvectors which span the space completely. Calling them 

(U 0) , (U 1L, ... we assume that they have been orthonormalized so that 

In (UI/n 
	

6 . 
	 (14.7.41) 

Lemma 14.4 

Let Z n (() be defined by (14.7.9) where 0 has all of its eigenvalues on the 
unit circle. Then for each of its eigenvectors (U) n , 

11111 (OnT Z
n 
 (1) (On  

n-400  

= 00 (14.7.42) 

if and only if MV # 0, where V is any eigenvector of 0. 
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Proof 

Divide the vectors (0n  into two mutually exclusive classes C 1  and C2 . 
Into C 1  we put all those for which (14.7.42) is satisfied, and into C 2  we put 
all the remainder. Then C 1  and C2  can be used as bases for two mutually 
orthogonal spaces which we call S 1  and S2  respectively. 

Consider a vector N which is a linear combination of the U's, e.g. 

Then 

N 	ao(U 

N TZn (1) N = 

+ a (U 1 \  

0 (U 

n  

+ F 1 (U 1).1 Z .(1)[a o (U n  + a l (U 1) ni 

(14.7.43) 

(14.7.44) 

[E0 (U0): + 	[a 0 00 U0L + «1 01 /14 

where (A01 and (A 1) are the eigenvalues of Z n  (1) which gave rise to the n 
eigenvectors (Uo)n  and (U 1).  respectively. But now by virtue of (14.7.41) 

the last result in (14.7.44) becomes I ao  200:1  + I ai l 201% which then 

enables us to write 

FI TZn  (1)N = l a o  1 2 (U 0):Zn (1)(U o)n 	2 (U):Zn  (1)(U)a  

(14.7.45) 

From this it follows that any vector N which is in S l  also satisfies a relation 
of the form of (14.7.42) and if in S2  then it does not. 

Assume now that MV # 0. Then we prove that (14.7.42) must hold. 
Let N be a vector in S2 . By (14.7.9) 

N TZ„(1)N = NT(1) 7.-1 Z. _ 1 (1)(1) -IN + NTGN 	 (14.7.46) 

and so the first term on the right is equal to the one on the left to within 
the constant term NTGN. But this then means that if N is in S2  then so is 
4)-1N, showing that (I.' maps the space S2  onto itself. Then (1:•' must have 
an eigenvector in S2  (which is also an eigenvector of (I)) .t Call that eigen-
vector V o  say. But from Lemma 14.3, if MV 0  A 0, which we have assumed 
to be the case, then 

tSee Ex. 14.10. 
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11111 V 0  T  Zn  (1) V 0  = co 
	 (14.7.47) 

11 —> oo 

and so Vo  must be in S1 . This is clearly a contradiction, and so S2  must be 
a null-space, proving the sufficiency portion of the statement of the lemma. 

We now prove the necessity. Thus assume that MV = 0, for V an eigen-
vector of O. Let V be expressed in terms of the U's, e.g. 

V = a 0 010) + 
	 (14.7.48) 

Then by Lemma 14.3, (14.7.35) does not hold. Now, by (14.7.45) we have 

VI TZ.(1)V = [I a o  1 2 U 0TZ (1)110  + 	1 2  U Z (1) U . 1] 
	

(14.7.49) 

and since the right-hand side of the sum of two positive terms, if the left 
does not tend to oo  as n 00, then neither can either term on the right. 
This completes the proof of the lemma. 	 .• 

Corollary 

Each of the eigenvalues of Z n (1) satisfies 

inn (A)n  = oo 	 (14.7.50) 

if and only if MV 0. 
Proof follows immediately from (14.7.42). 	 •• 
We are now able to prove the following. 

Theorem 14.1 

For the Expanding Bayes and Kalman Filters, assuming 
i) a constant-coefficient linear model with a transition matrix that 

has all of its eigenvalues on the unit circle, 
ii) a constant-coefficient linear observation scheme, 
iii) a constant input-error covariance matrix, 
iv) constant inter-sample time, 

lun to 	0 	 (14.7.51) 
n oo 

if and only if MV 0 where V is any eigenvector of (1). 



588 INTRODUCTION TO SEQUENTIAL SMOOTHING AND PREDICTION 

Proof 

By (14.3.14) we know that t n  for these filters is equal to P .,.(p) of 
their fading counterparts when p = 1. 

Let Q. be the orthogonal matrix made up of P (1)'s orthonormalized 
eigenvectors. Then we have 

P.,(1) = Q„T An  Qn 	 (14.7.52) 

where A is the diagonal matrix made up of P's eigenvalues. These are the 
inverses of the eigenvalues of Z.(1), and so by (14.7.50) 

lira An = 
	 (14.7.53) 

n -9 00 

if and only if MV 0. This completes the proof. 
We have thus shown that under the assumed conditions, the Bayes and 

Kalman Filters of Chapters 10 and 12 are stable. The reader can repeat 
the above analysis for the case where all of Vs eigenvalues lie inside the 
unit circle and he will see quite readily that S*,, n  goes to a null-matrix as 
n 0 without any constraints on M whatever. Similarly he can verify 
that if any of 1's eigenvalues are outside the unit circle, then for the 
associated eigenvectors (14.7.35) is no longer true, the right-hand side of 
that equation being replaced by a finite number instead. This then means 
that (14.7.42) no longer holds, and so P., (1) no longer tends to a null 
matrix. However, if in (14.7.6) the matrix R is replaced by a matrix R" of 
the form 

= 1 R 
n 	n (14.7.54) 

then the term VTMTR'MV in (14.7.36) goes to .0 as n 0.. In this case 
(14.7.35) still holds and so does (14.7.50). We thus require that the 
observation errors shall go to zero as n -) in order that the covariance 
matrix n S* go to a null-matrix. (See Examples 14.12 through 14.15.) n, 

We now turn our attention to the case where 0 < p < 1, i.e. the fading-
memory filters, and we show that SL, (/3) tends to a well-defined positive 
definite limit (i.e. not a null matrix) whose value is independent of the 
initial choice used to initialize the procedure. We start by proving the 
following result. 



lim (0 1/2 4)-1 ) n  = 0 = lim (p1/2 0 -)n 
(14.7.59) 

71 -> 00 
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Lemma 14.5 

Let 

Z. = f3(1); 1 Z._ 1 (10 -1  + G 	 (14.7.55) 

where 0 < 13 < 1 and where (1) has all of its eigenvalues on the unit circle. 
Then lim Z. exists and is equal to the matrix Z.(13) satisfying 

n-,00 

ZA3) = a 4 7.-1 Z.((3) 	+ G 	 (14.7.56) 

Proof 

The homogeneous part of (14.7.55) is 

Z H 	p -1z1I 0-1 	1/2 ip -1 zH 0-101/2 
T n - 1 	 T 	n - 1 

which means that 

z H = (p1/2 	z H(R1/2 0-1) 
0 r" 

(14.7.57) 

(14.7.58) 

Now the eigenvalues of 4) are all on the unit circle, hence so are the eigen-
values of 4) -1  and 4) T-1  (see Ex. 14.8a)). Thus the eigenvalues of p 1/ 2 4D-1 

and 
/31/2 T1 all have modulus /3 1 / 2  (see Ex. 14.8b)). In that case, for 

0 < 13 < 1, 

(see e.g. [14.1] ). By (14.7.57) this now means that 

lim Z .11  = 0 
	

(14.7.60) 
n--)oo 

and so the natural modes of (14.7.55) all die out. Its solution then depends 
only on the forcing function and is independent of initial conditions. But 
the forcing function is the constant matrix G, and so Z n  tends to a constant 
matrix. The latter can only be Z.( 13), if it exists, satisfying (14.7.56). 

To show that such a zo) does in fact exist for any G, we proceed as 
follows. First we write (14.7.56) as 
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130 T-1Z, - Z,0 = —G (1) 
	

(14.7.61) 

which is of the form 

AZ. + Z.B = C 
	

(14.7.62) 

A necessary and sufficient condition that this equation have a solution for 
any C (see [14.2] ) is that 

A A  + AB 	0 	 (14.7.63) 

where AA  and AB  are respectively any of the eigenvalues of A and B. But 
in this case, by virtue of our assumption that all of O's eigenvalues lie on 
the unit circle, it follows that all the eigenvalues of A have modulus p (which 
is less than unity) and all those of B have modulus unity. Thus (14.7.63) 
is satisfied and so z o(p) exists. This proves the lemma. 

We have thus established that regardless of the choice of M, the recursion 
(14.7.9) tends to a unique, well-defined, limiting matrix for any p in 
0 < 13 < 1. We now place a constraint on M, as the next lemma shows. 

Lemma 14.6 

Let Z,,([3), and G be defined as before. Then Z.(13) is nonsingular for 
0 < p < 1 if and only if MV 0 where V is any eigenvector of (1:0 

Proof 

Assume first that MV 0 and suppose that Z,(f3) is singular. Let S o  be 
its null-space and let N be a vector in So  . Then by (14.7.56) 

-NTz,(0)N = pNT T•- 1 z co q3) 0-1N + N T GN 
	

(14.7.64) 

where, by assumption, the left-hand side is zero. Now z co(p) and G are both 
nonnegative defmite, and so both 

prciTo T- lz,(p)o - lN 	0 	 (14.7.65) 

and 

N TGN > 0 	 (14.7.66) 

Then since the left of (14.7.64) is zero, it follows that 
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EiT,DT-iza)(p),riN = 0 	 (14.7.67) 

NTGN = 0 	 (14.7.68) 

By (14.7.67) we thus see that if N is in So  then (13. -1N is also in So . Hence 
(134 -1  maps So  onto itself. But then there is at least one eigenvector of 1 in 
So . Let that vector be V o . Then using the above arguments, (14.7.68) 
shows that we must have 

VoN TR -11V1Vo = 0 	 (14.7.69) 

But this contradicts our assumption, namely MV 0  # 0. Hence Z co (13) must 
be nonsingular. 

On the other hand, suppose that MV = 0 for one of 4's eigenvectors. 
Then (14.7.9) gives us 

TZ.V = fivT,DT-i zn_icr i v  pvT z.  iv 

 Hence, since 0 < (3 < 1, this means that 

lim VTZty = 	/31VTZ 0 V 
n-,00 	n 00 

=0 

which means that Z0(f3) is singular. This proves the lemma. 

(14.7.70) 

(14.7.71) 

Corollary 

For 0 < p < 1, the matrices 13  n .(13) and enn(p) tend to well-defined 
positive definite limiting matrices, independent of their initial values, if and 
only if MV 0. • 

Proof for Prim  (13) follows directly from the above two lemmas, by virtue 
of (14.7.7). Proof for SL((3) then follows from (14.3.19). 

Our task is thus completed and we have shown that in the expanding 
Bayes and Kalman algorithms, the matrix t i  shrinks to a null-matrix if 
and only if MV # 0 for all of 1:10's eigenvectors. However if the memory 
is fading ((3 < 1) then the shrinkage of both SL(13) and I I n ( (B) in (14.4.29) is 
halted at some level. 

In Figures 14.2 and 14.3, we show the time-histories of the two diagonal 
elements of Pn,n(13)  for various values of /3, for the case where 

(1 	r 
CO. = 

0 
(14.7:72) 
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Fig. 14.2 Poo family of curves. 

i.e. a first-degree polynomial, and where 

M = (1, 0) 

The case 

M 	(0, 1) 

(14.7.73) 

(14.7.74) 

was run at the same time as these plots were made, and the element 
(p0,0)  became unbounded for 0 < p 1, whereas 0 1, 0n,  remained 
bounded for 0 < 1, and tended to zero for p = 1. 

It is easily inferred that if (1) is the transition matrix of a polynomial 
state-vector and if M is such that we are observing only the zeroth derivative 
of that polynomial, then if p = 1 and R oo  = or 2  I , the filters of this chapter 
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are essentially the same as the Expanding-Memory Polynomial Filters of 
Chapter 9. On the other hand when A < 1, then as n the filters of this 
chapter become the same as the Fading-Memory Polynomial Filters of 
Chapter 13. Thus the filters of the present chapter are very general and 
cover, in effect, all of the work of Chapters 9 through 13. In Ex.14.11 we 
use the present filters to prove (13.5.30). 

In conclusion then, we note that precisely the same conditions which, 
in Chapter 8, were shown to be necessary in order that the Fixed-Memory 
Filters be operable, are also required to ensure the good behavior of the 
Expanding-Memory Filters. This is not really surprising, since we would 
hardly expect an estimate to be obtainable on a given data-base by one 
method and not by another. We note that the condition between M and (I) 
of this section is identical to the condition for Theorem 8.2, and the latter 
was shown to be fully equivalent to Theorem 8.1. It thus follows that the 
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conditions for Theorem 8.1 can be used in place of the condition on M and 
(I) used in this section. Thus, to ensure the good behavior of an Expanding-
Memory Filter we must be sure that the matrix G of (8.9.5) has full 
column-rank. 

We have also shown, by the analysis of this section, that if the errors are 
stage-wise uncorrelated then the covariance matrix of a Fixed-Memory 
Filter can be made arbitrarily close to a null matrix by taking the data-base 
large enough, if Theorem 8.1 or 8.2 is satisfied. 

The time-varying or nonlinear cases are beyond the scope of this book, 
but it is hoped that the elementary analysis given on the constant-coefficient 
cases will provide some intuitive basis for an approach to the more general 
problem. We also refer the reader back to the comments made at the end 
of Section 10.5 relating to this question. 

14.8 DETECTION OF SYSTEMATIC ERRORS 

The analysis of the preceding section has verified that when /3 < 1, then 
the covariance matrix n S* ((3) and the weight matrix Hn(0) of the generalized 
Fading-Memory Filters do not tend to null matrices, but flatten out at some 
level. The proof was for the constant-coefficient case, but we assert that this 
behavior is essentially also manifested by time-varying systems whose 
s* ,n 0 when p = 1. In this section we make some practical suggestions 
concerning the detection and control of bias errors. 

In the normal course of events, assuming that bias errors are not present, 
the term Y n  — Mn n n - 1 

appearing in (14.4.30) is a vector of zero-mean  
random variables. This follows from the fact that 

Y — M X* 	= N — M  n 	n n, n 1 	n 	n n, n - 1 (14.8.1) 

Then, since both Nn  and N*  _ I  are zero-mean (assuming zero-mean obser-
vations and an unbiased estimate), it follows that 

E )11n  — M nrn, n  _ = 0 	 (14.8.2) 

It is also clear that if the observation errors are stage-wise uncorrelated, then 

E .N *n,Tn  _ 	= 0 	 (14.8.3) 

and so the covariance matrix of Y n  — Mn  X: n  _ 1  is easily seen to be equal to 

T 	R n M n n S*, n - 1 M nT 	 (14.8.4) 
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Since R n  is given and since S: n  _ i is being computed in the filter algorithms, 
we see that T n can be computed quite simply, if required.t 

Assume now that the input errors are multivariate Gaussian. Then, since 
the output errors are linear transformations on the input errors,. it follows 
(see Section 5.6) that they too are Gaussian and hence so also is the vector 
Yn  — Mn  * , n - r X Now, in Section 5.6 we discussed a method, based on the n  
Chi-squared distribution function, whereby we can decide whether a given 
vector of numbers constitutes a likely or an unlikely draw from an ensemble 
of Gaussian random vectors whose covariance matrix and mean-vector are 
given. We can apply that method here. 

On each cycle of the Fading Bayes or Kalman Filter, a numerical 
realization of Y n  — M n X*n, n - 1 is obtained and its covariance matrix T 
easily be computed. Suppose that we now form the scalar 

	

k 2 	(Yn  — M n 	n - 1 ) T  T 1 (Y n  — nn, n - r 	) 	(14.8.5) 

Then as was demonstrated in Ex. 5.16, if the vector Y n  — Mnen, _ 1  is 
zero-mean Gaussian, the scalar k 2  has a Chi-squared distribution. From 
the appropriate CM-squared tablest we can, on each cycle, look-up the 
cumulative distribution function of the given k 2 , namely P (k 2 ). In the 
normal course of events, P (k 2 ) will be a relatively small number, dependent 
on the matrix R n . Only on very rare occasions could it become large. Based 
on experience with the details of the situation, it should thus be possible 
to place a threshold on P (k 2 ), or, what amounts to the same thing on k 2 

 itself, (the look-up operation can thus be dispensed with in practice) and 
when k2  exceeds that threshold, a rare event can be deemed to have occurred. 

Now assume that bias errors begin to develop. Then it is clear that the 
value of k 2  as computed by (14.8.5) will become inflated, and if the thres-
hold is chosen appropriately then the latter will be exceeded repeatedly when 
the bias attains some value. The threshold being exceeded on isolated 
instants can perhaps reasonably be attributed to the occurrence of a rare 
event, but it is clear that if it is exceeded repeatedly, then a bias error can 
be assumed to have developed. Once this decision has been made, f3 can be 
temporarily reduced until the threshold crossings cease, signalling that the 
bias has been eliminated. Then the memory can again be lengthened by 
bringing /3 closer to unity. 

tNote that (14.8.4) is normally computed in the course of cycling the Expanding Kalman Filter 
(see (12.2.17)). However in the Fading Kalman Filter it is not normally being computed. 

ti.e. the one with the number of "degrees of freedom" equal to the order of the vector 

	

Yn - M„ 	- . 
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In one scheme1  the following approach was adopted. First of all it was 
decided that fading should be on the basis of count-number rather than age, 
i.e. (14.2.12) was minimized rather than (14.2.10). This results in p tn -tn -1  
in (14.4.28), (14.4.36) and (14.4.38) being replaced by 0 (see Ex. 14.16) . 

where 0 < 0 1. The value of 0 was computed on-line using the algorithm . 

O n = C exp 1—C 2 (Yn — M * 	) TT -1 (Y *  Mn n, n 	 (14.8.6) 1 	 a X  n,n-1 	n 	n — M  

where the constants c 1  and c 2  were adjusted experimentally. Note that O n  

depends essentially on the quantity k 2  of (14.8.5), and so this choice for 
0 results in a fade-rate which depends, in some sense, on the bias. In 
addition to Valying 0 by this on-line procedure, the time between observa-
tions could also be varied. Thus .when the presence of bias errors was 
detected and 0 was reduced, the sampling rate was simultaneously in-
creased. This resulted in the memory of the filter being filled very 
rapidly with new data, which in turn resulted in the rapid disappearance of 
the bias errors. 

14.9 ITERATIVE DIFFERENTIAL-CORRECTION 

For completeness we point out that the techniques of this chapter can 
be applied to situations where either the model or the observation scheme, 
or both, are nonlinear. The details of the procedure are based on the applica-
tion of differential-correction, and with obvious modifications to include 
the fading parameter, the algorithms which result for the Kalman case 
are given below. They are naturally very similar to those given on p. 481. 
Thus with single iteration differential-correction, the algorithm now becomes 
the following: 

Fading Kalman Filter With Differential-Correction 

  

X* , n - 1 	 n 1, n 1 obtained from X * 	by integration of the n  
state-equations 

(14.9.1) 

(14.9.2) 

(14.9.3) 

-1 

T} 
(14.9.4) 

(continued) 

Xn X*  n, n 1 

Pn, n 1 = (1)(t n , t n 1" g)Pn-1,n-1 	t 	/ TO T  n 1/ 

H  = P  n, n 1[All  (TC n )]T  {P t n n 1 R n 	n) Pn, n - 

 

 

 

f Devised and tested by P. J. Buxbaum of Bell Telephone Laboratories. 
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 ,n 	Xn, n - 1 ± Hn [Yn G (Yn)  n 

r 

	

P rim 	
1 	LI — Hn  M Xnd P n - 1 tn t o-1 

(14.9.5) 

(14.9.6) 

Sn, n - 1 = 	(t n , t n  _ 1 ; Pen  _ n  _ 1 0(tn , tn  _ 1 ; 50 T 	(14.9.7) 

= 	— 	 n  _ 	— rin m 	+ Hn R n HnT 
	

(14.9.8) 

An equivalent algorithm exists in the Bayes Case. 

EXERCISES 

14.1 	Show that (14.2.9) follows from (14.2.7). 
14.2 Verify that (14.3.7) is identical to (14.2.10). 
14.3 Verify (14.3.17). 
14.4 Show that (14.4.22) follows from (14.4.21). Hint: use (14.4.12). 
14.5 Apply the inversion lemmat to obtain the Fading-Memory Kalman 

Filter on p. 569 from the Fading-Memory Bayes algorithm on p. 569. 
14.6 a) Assume that in (14.7.31), r = 77 seconds. Show that the first 

two columns of M must have rank two and so must the second 
two columns, in order that M does not annihilate any linear 
combination of eigenvectors from the same eigenvalue. Infer 
that M need only have rank equal to at least 2. 

b) Let r = 277. radians. Show that M must now have rank at least 4. 
14.7 a) For the situation in Ex. 14.6 part a), show that (14.7.9) assumes 

the form 

z 11  j  z 12 

Z‘ 	Z 
12 	Z 22 

13 
-1 1 	)(zil 	z 12  

	

I ;72 	z 22  
n - 1 

M TR -1 M 

Let R be the identity matrix and let M be in the form (M 1  M2 ). 
Show that in the limit the above gives 

'See (12.2.10) and (12.2.13). 
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(

Z 11 I Z12) 

Z12 T . Z 2 22 dd  

1 1 
M  1 1 

I+ 
M1TM 

1 	
2 

	

1 An  TAn  I 	1  u Tu 

	

"1 2 "1 1 I 	"1 2 "1 2 
÷ 	 1 p 

  

Infer that as (3 1, for Z. to remain positive definite we require 
only that M 1  and M 2  have rank 2, and that M need not have 
rank 4. 

b) Show that for Ex. 14.6 part b), 

Z. 	1   MTM 
1 - p 

and hence verify that for Z. to be positive definite, M must 
have rank 4. 

14.8 a) Starting from the eigenvalue equation 4)V = AV., (4) nonsingular) 
show that 4 -1  and 4); 1  have the same eigenvalues and that they 
are the reciprocals of 4)'s eigenvalues. Infer that if all of 4)'s 
eigenvalues are on the unit circle then so are the eigenvalues of 
0-1  and 4); 1 . 

b) Show that if (Ifs eigenvalues lie on the unit circle then the 
eigenvalues of f3 1/2 4)-1  and /3 1/ 2  4); 1  all have modulus /3 1/ 2. 

c) Show that if V is an eigenvector of 4) then it is also an eigen-
vector of 4)-1 . 

14.9 a) Show that the recursion (14.7.9), for the case where Z, 4) and G 
are 2 x 2 and where 4) = I, gives 

Z.Q3) -  1 
1 -/3 

Now infer that if R = I and M = (1, 1) then 

Z.(/3) = 	
1  (1 	1 

1 

and so Za.„(p) is singular. 

-P 1 1 
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b) Assume instead that 

(1 0 

0 —1 

Show that 

Z( f3) 
1  (1 0 + 	0 1\ 

co 	— 
1  — 13  0 	11 1.+ 	0 

and verify that Zw (p) is positive definite for 0 < f3 < 1. 
c) Repeat a) and b) above, starting from (14.7.9) using 9 = 1 be-

fore letting n 	. Investigate lim Z.(1). 
n 00 

14.10 Let S2  be the space defined in Lemma 14.4 on p. 586. Then if N is 
in S2 , so is (1) -1N. Thus (1) -1  maps S2  onto itself. Prove that there is 
at least one eigenvector of V"' in S2  . 

14.111  a) Let 	n Z* be the scaled derivative state-vector of (13.3.0 and 
(k) the associated transition matrix. Let M = (1, 0, 0, , 0) 

and assume that all observations have equal variance, are uncor-
related, and that they are equally spaced in time— V erify that 
(14.2.12) gives (as n O.) 

co 

e 	= 	frn - k  - M (1)  1?) en, nj 0 k 
	

(I) 
k=0 

b) Minimize (I) above over n Z* to give 

co 
z* ,n 	EQ(e)1 - i 	EMS(—orek yn _ k 	 (II) 

k=0 

where 

Q(0) 	11 (-14 2'  MC-k) Ok  
k=0 

jThis example mikes use of the general form of the Fading-Memory Filter to prove the result 
(13.5.30). Note: Z r*,, n  in this example is a vector, completely unrelated to the matrix Zn  appearing 
throughout Section 14.7. 
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and verify that this is the same as would be obtained from 
(14.4.1), (14.4.2) and (14.4.3) under these circumstances. 

c) Infer from (14.4.30) and the above, that (II) can be reformu-
lated as 

Z*  = Z* 	+ He n,n 	n, n - 1 (IV) • 

in which 

En 	Y n 	(zt1) n, n - 1
— 

and 

H  = [Q(o)]-1mr 	 (V) 

Verify that (N) is the same as (13.5.12) and hence infer that 
(V) is the same as the H-vector of Section 13.5. 

d) Prove that (13.5.30) follows from (V) above. 
Hint: Follow the technique of Ex. 12.3 but make use instead of 

the discrete Laguerre polynomials. Show that for P of 
(13.5.28), 

(I)(—k) = P (k)P (0) -1  

and apply this to (III) of part b) above. 
14.12 Assume that (1) has all of its eigenvalues inside the unit circle. 

a) Let f3 = 1 and show that Lemma 14.3 and hence Theorem 14.1 0 
hold with no constraints whatever on M. Thus S* 	0 even if n,n 
M = 0, i.e. without even observing the process. 

b) Let A be the eigenvalue with the largest modulus and V the 
associated eigenvector. Let I Al' < p < 1. Show that (14.7.9) 
gives 

VTz n (13)v = 1 (/3)V n - i (p)v 1-vrGv IAl2  

and hence that lun V T Z n (p)v = o regardless of the choice of 
n co 

M. Infer that n S 	0 for any M. n, 
c) Investigate the case where /3 	< 1 

14.13 a) Assume that (I) has at least one of its eigenvalues outside the 
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unit circle. Show that if A is that eigenvalue and V is the 
associated eigenvector, then (14.7.9) gives 

VTZ nV - 	ei vr z n-1 17  ± 	G n 17 1 , r  

where p/ix1 2  < 1 for 0 < /3 1. Note that we are subscripting 
G with n. Now show that lim V T  Z n(1) V < on if Gn is a constant 

n oo 
matrix. 

b) Infer that the only way in which V T  Zn(1) V can go to 0o as 
n .3 is if VT G n V 	as n 	Investigate what this implies 
for R if M is a constant matrix. 

c) Infer that if R n  is constant then Sn n  cannot go to a null matrix 
as n 

14.14 a) Consider the (scalar) differential equation i(t) = —x(t). Verify 
that its transition "matrix" has its (one and only) eigenvalue 
inside the unit circle, namely at 

b) Show that (14.7.6) gives 

n-1 = p 	n  

	

r eV 7, -1 	
m2

n,n 	 1; n - 1 + 0.2 
V 

and show that if e-2  < 13 5_ 1 then pnn(P) -, 0 asn oo; whether 
observations are taken or not. Infer that s* 	0 with or with- n,n 
out observations. (This is a demonstration of the fact that 
when all of (1's eigenvalues lie inside the unit circle, S n* n  0 
as n .whether or not we observe the process.) 

14.15 a) Consider the (scalar) differential equation z (t) = x(t). Verify 
that its transition "matrix" has one eigenvalue lying outside the 
unit circle. 

b) Show that (14.7.6) gives 

Pn 	e  Pn -1, n - + 
a
— 

-1 	T -2r --1 	 M 2 

	

,n 	
v2 

	 (I) 

and hence that (for m = 1) 

lim p 	= a (1 - 	-2T) 

n -) oo 
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Infer that the variance of the Expanding Bayes or Kalman 
estimate (i.e. 13 = 1) does not go to zero as n 	. 

c) Assume that the variance of the observations goes to zero with 
n. Specifically let (cr 	= nE so that (I) now becomes 

p-i = pr e-2rp- + 
n,n 	 n - 1, n - 	 a 

Show that in this case, for f3 = 1, 

lim s* = 0 
n,n 

n -> 00 

Thus when an eigenvalue of (1) lies outside the unit circle, the 
covariance matrix of the estimate cannot go to a null matrix if 
the covariance matrix of the observations is constant. 

14.16 Repeat the analysis of Sections 14.3 and 14.4 but starting from 
(14.2.12) rather than (14.2.10). Show that in the algorithms on 
pp. 569 and 570, the quantity 13tn - t n- 1 

 is replaced by 0, with no 
other changes. 

14.17 Rerun the filters programmed for Chapters 10, 11 and 12 but intro-
duce fading, using the methods developed in this chapter. Compare 
time-histories of the covariance matrices with and without fading. 
Introduce biases by making the model slightly different from the 
true process and study the magnitude of the bias errors as the 
fading parameter is varied. 
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15 
THE 

KALMAN 

FILTER 

WITH 

DRIVING-NOISE 

15.1 INTRODUCTION 

The Fading-Memory algorithms derived in the preceding chapter provide 
us with recursive schemes which are structurally very similar to the Expand-
ing Bayes and Kalman Filters obtained earlier. As we saw in Chapter 14, 
the Fading-Memory schemes contain within them a scalar parameter which 
permits the user to vary the memory fade-rate of those filters. This 
enables systematic errors, caused by possible model discrepancies, to be 
balanced against the random errors, and a set of very practical filters is 
thereby obtained for use under a wide range of circumstances. 

However, by virtue of the structural similarities between the Expanding 
and. Fading algorithms, most of the numerical drawbacks of the former are 
also inherent in the latter. We showed in Section 12.4 for example, that 
the covariance matrix of the Expanding Kalman estimate can become 

603 
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singular due to numerical roundoff when a vector of highly precise obser-
vations is processed. Once singular it will remain singular thereafter. This 
drawback, and others enumerated in that section, apply also to the Fading 
Kalman Filter. 

We now consider an alternate method of controlling the systematic errors 
at the expense of increased random errors. While the scheme to be developed 
will not have the conceptual simplicity of an exponentially fading memory, 
it does have the very attractive feature that in addition to providing a 
measure of control over possible bias errors it also constantly reinforces the 
positive definiteness of the estimate covariance matrix. Should this matrix 
ever become singular it can immediately be made positive definite by :the_ 
algorithm on the next cycle of the recursion. 

15.2 RANDOM FORCING-FUNCTIONS 

In Section 12.2 - we displayed a_ n algorithm called the Kalman Filter 
without driving-noise, which serves to estimate the state-vector of a model 
consisting of a homogeneous linear differential equation. We now extend 
our choice of models to include linear differential equations of the form 

—d X(t) = A(t)X(t) + D(t)U(t) 
	

(15.2.1) 
dt 

where D(t) is a time varying matrixt and where U (t) is a forcing-function, 
restricted to being a vector of random variables whose properties will be 
detailed below. The inclusion of U(t), known as driving-noise, will be 
shown to have certain very beneficial effects on the properties of the 
resultant filter. 

We examine first the form which the solution to (15.2.1) assumes. Con-
sider initially its homogeneous portion 

d 
X(t) = •Mt) X(t) 
	

(15.2.2) 
dt 

where we have temporarily set LIU) = 0. As we already know, associated 
with (15.2.2) is a transition matrix (1)(t, t. ... 1 ) such that 

X(t) = 0(t, to -1 )X(tn-1 ) 
	

(15.2.3) 

t D (t) need not be a square matrix and so U (t) need not necessarily be a vector of the same 
order as X(t). 
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The matrix 0 satisfies the differential equation 

t _ 1 ) = Mt) (1) (t,t n-1 ) 
at 	n  

with initial conditions 

(1)(tn-1 lt n - 1 )  = I  

This was discussed in detail in Section 4.7 of Chapter 4. 
ti 

Consider now the vector-function X(t) defined by 

(15.2.4) 

(15.2.5) 

ftk(t) --.. 0(t, tn _ i ))7(tn _ i ) + 	0(t,X)D(X)U(X)dX 	(15.2.6) 
n _ i  

where 1 is the same matrix as before, D(t) is the matrix appearing in 
(15.2.1), U (t) is a vector of arbitrary forcing-functions and A is a dummy 

ti 

variable of integration. We show that X(t) so defined, satisfies the forced 
differential equation (15.2.1) for initial conditions X(t n  _ 1 ) . 

By direct differentiation, (15.2.6) gives us 

t 

d 	a 	 a --x(t) = 	t 	1 	n ) \ (t • 1 	
at 

	

) + — 	oct,x)D(x) U (A) dA 
dt 	at 	n- 

tn-1 

(15.2.7) 

and it is shown in texts on advanced calculus that for any function G (t, A), 

 a(t,x)dx 	 a G(t,t) + 	G(t,x)dx 	 (15.2.8) 
at 

f 

In -1 	 to - i 

provided that aG(t,x)/at is continuous. Applying both this and (15.2.4) to 
(15.2.7) now gives us 

t 

d — X(t) = A(t) it(t, t 
n-  1

) X(t 
n- 

) + 	(I)(t,X)D(X)U(A)dX + D(t)U(t) 
dt 

tn - 

(15.2.9) 
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But by (15.2.6) the term post-multiplying A(t) in the above equation is just 
X (t). Hence finally 

—d  (t) = A(t)X(t) + D(t)U(t) 	 (15.2.10) 
dt 

showing that (15.2.6) is, in fact, the solution of the linear forced system 
(15.2.1) under consideration. 

We now define 

f

t

t  

V(t, t n _ 1 ) =-E 	 41:0 (t,A)DWU(A)CA 

n-1 

Then (15.2.6) can be written (after deleting the tildes), 

X(t n = (Mt n , to-1 )X(t n-1)-F  V(t - 	) a? t  n-,1 

(15.2.11) 

(15.2.12) 

This difference equation is thus the discretized counterpart of (15.2.1) and 
will be regarded, equivalently, as defining the process-model when a forcing-
function is present. 

At this stage we specify the properties of the driving-vector U(t). We 
have seen earlier that when the observational errors are uncorrelated from 
time t o to tm  (n # m), then the linear minimum-variance estimator, as derived 
in Chapter 6, could in a very natural way be reformulated to give the 
recursive form of the Expanding-Memory Kalman Filter. The fact that those 
errors were stage-wise uncorrelated gave rise to a block-diagonal total co-
variance matrix, and it was this property which permitted us to arrive at 
the recursive form of the algorithms. 

Thus, letting Nn  and N. be the errors in the observation vectors Y n  and 
Y , assumed to be two inputs to a Bayes or Kalman filter, we required that 
they satisfy 

E{Nn ) = 0 	 (15.2.13) 

E{N a N.T) = Rn an, . 	 (15.2.14) 

where 3 n rn  is the Kronecker delta defined by 

0 	n 	m 	 (15.2.15) 
1 
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We now choose the driving-vector U(t) to be a vector of random variables 
which satisfy the continuous counterpart of the discrete conditions on N n  

above. Thus we define U (t) to be a random vector such that 

E 1U (t)} = 0 	 (15.2.16) 

E{U(t)U(r) r ) = K (t) (t - t') 	 (15.2.17) 

where K (t) is a given nonnegative definite matrix function of t, and where 
6 (t - t') is the Dirac delta function, characterized by 

6(t — t') = 0 
	

t' 	t 	 (15.2.18) 

1.13 

j
8 (t — t') dt = 1. a   a < t' < b (15.2.19) 

The above definition characterizes U(t) as being a possibly nonstationary, 
white random process, i.e. completely uncorrelated with itself when ob-
served at two discrete time instants, no matter how close. Of cause such a 
process exists only in the ideal sense, but then so does the vector N. of 
(15.2.13) and (15.2.14) if we let t r. approach arbitraril3 close to t n . 

Note that 6 (t - t') is undefined for t' = t, and it is generally conceived 
of as a limiting process, as for example the limit of 

f (t - t') 	—k exp[.k2 (t - t12] 
	

(15.2.20) 

as k becomes larger without bound. For this function, it can be verified 
that in the limit as k -> .0, both (15.2.18) and (15.2.19) are satisfied. In 
particular, as k (t - t') so defined is unbounded at t = t', and so it 
is not possible to talk about the covariance matrix of U (t), as defined by 
(15.2.17), when t' = t. Thus despite the fact that, by assumption, K (t) 
contains bounded elements, the matrix E {El WU (X) T  ) will not be defined. 
However, as we shall see, this idealized concept of a white-noise forcing-
function, defined precisely as above, does in fact lead to well-defined 
results in the end. 

We close this section by deriving the covariance matrix of V(t, t. _ 1 ) of 
(15.2.11). Thus letting Q (t, t o  _ 1 ) be that matrix, we have by definition, 



I '  
t f  

t, X) D (A) K (A) D(y) T  (to (t, y) T  8 (A. — 	dyclA 

tn _ i  tn _ i  
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Q(t, to _1) 	E31/(t, 

= E 

tn _ i )V(t, to -1)T 

t 

f 	(1)(t, X)DWU(A)clA 
tn-1 

{ 

t 

U (y) T  D (y) T  1 	 (1)(t,y) T  dy 

tn-1 

= 	f t 

to-1 

(1)(t,A) D(A) E 1U(A)U(y)1D(y) T  (1)(t,y) T  dyclA 

(15.2.21) 

Now it is a consequence of (15.2.18) and (15.2.19) that if g(t) is any con-
tinuous function of t and if t' is in the interval (a, b), then 

g(t)8(t — t')dt = g(r) 
	

(15.2.22) 

If t' is not in the interval (a, b) then this integral is zero. Clearly in the final 
line of (15.2.21), since A is somewhere in the interval of integration of y, it 
follows that 

f

t

t 

(2(t, t o  _ 1 ) = 	431 (01.)D(A) 	DM.  COO T  dit. 

n-1 

(15.2.23) 

which is a well-defined matrix function of t given the matrices K, D and I. 
Then since K (t) is nonnegative definite by assumption for all t, it follows 
quite readily that. Q (t, to  _ 1 ) is also a nonnegative definite matrix. In 
particular, if K(t) is positive definite and D(t) has full row-rank, then 
Q (t, tn _ i ) is positive definite. We also note that by (15.2.11) and (15.2.16), 
V (t, to  _ 1 ) is a vector of zero-mean random variables. 

It is important to recognize that the state-vector X (t n) of (15.2.12) is 
now no longer a deterministic function of time, by virtue of the presence 
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of the random vector V ( tn , to  _ 1 ). Thus the solutions to (15.2.12) are of the 
nature of a random-walk in which the present state is a linear combination of 
its previous value and a random vector. Clearly if V is not too large, X (t n ) 
will be strongly related to its immediate predecessors, but its dependence on 
those vectors becomes increasingly weaker as they recede into the past. 
The assumption of (15.2.12) as our model thus means that we can expect the 
memory of our filters to fade out, and that the contribution of observations 
to the current estimate can be expected to diminish as the staleness of those 
observations increases. 

15.3 ESTIMATING IN THE PRESENCE OF DRIVING-NOISE 

All of the estimation schemes which we have developed in the earlier 
chapters were based on the assumption that the quantities which we were 
estimating were deterministic. The situation is now changed, since with 
driving-noise present the quantities in question become random variables. 
As a result our techniques must also be modified appropriately. 

From a historical standpoint, our methods thus far have been essentially 
applications and extensions of the work of Gauss and other Nineteenth 
century mathematicians. A notable contribution in the present century 
was made by Swerling who, in 1958, introduced the recursive approach 
(see [11.3] ) on which Chapters 10, 11 and 12 were based. 

The rapid expansion which took place in the present century in com-
munications and electronics, motivated largely by the development programs 
of World War II, led to a new class of problems in which research workers 
were faced with a need to design electrical filters which could estimate 
signals in the presence of noise. Neither the classical methods of estimation 
theory nor existing filter-design techniques based on the Fourier integral 
were adequate, and so an entirely new approach was developed, independently 
by Kolmogorov in 1941 [15.1] and Wiener in 1942 [15.2] ,t in which both 
signal and noise were treated as random variables. The criterion on which 
their work was based is known as the least mean-squared error criterion 
which requires that the ensemble expectation of the squared difference 
between the true value and the estimate be minimized. This was a departure 
from either the classical method of least-squares or the weighted least-squares 
and minimum-variance techniques already in existence, as discussed in 
Chapter 6. 

In 1960 and 1961 an extension was made to the Kolmogorov-Wiener 
theory by Kalman and Bucy ([15.7] and [15.8] ) who addressed themselves 

tSee also [15.3] through [15.6]. 
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to the estimation of random variables which satisfy a linear differential 
equation driven by white-noise. This is precisely the problem which we 
are now considering, and in what follows we present a very brief summary 
of [15.7] and merely state its results. We shall then show that when 
driving-noise is absent, the results of [15.7] can be precisely reconciled 
with the algorithms presented in Chapter 12 which were based on minimum-
variance. Thus in spite of the use of a somewhat different criterion, namely 
that of the least mean-squared error, the results of [15.7]are completely 
consistent with those which we have obtained in the preceding chapters 
based on least-squares and minimum-variance. However the presence of 
driving-noise invalidates our earlier techniques, and so the discussion which 
we are about to present constitutes' a definite extension. Only in the 
special case of no driving-noise do the algorithms become identical. 

The estimation problem under consideration is stated in [15.7] as 
follows.t 

a. Let Y(n)  = (y0, y1, 	, yn)T  be a vector of random variables and 
let x be a further random variable, all of which share the joint 
probability density function p 	Y (.). 
Let x* ,n  be an estimate of xn Then the error in the estimate is n 
E X *  — X . n,n 	n 

c. The scalar function L (E) is termed a loss-function if it satisfies 

i) L (0) = 0 

ii) L (c') 	L (E") > 0 	if c' > e" ?_ 0 
	 (15.3.1) 

iii) L (E) = L (-0 

d. Then the optimal estimator, relative to a chosen loss-function, is the 
one (if it exists) that minimizes E IL (E)1, i.e. the expected loss. 

Theorem 1 of [15.7] presents the following very powerful result con-
cerning the optimal estimate: 

Let the conditional density function for x n  given sample values of Y (n) be 
p (xn  I Y(n), and assume that it is 
a) unimo dal 
b) symmetric about its conditional expectation E Ix n  Y (r) f 

Then the optimal estimate of x n  based on the vector of observations Y (n) 
 with respect to a chosen loss-function L (e), is precisely 

tWe restrict our comments, for simplicity, to the case where the quantity being estimated is a 
scalar. The work in [15.7] considers vectors. 

t For example L (E) = E 2  and L (6) 	lel are both loss-functions. 
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x *
II 71 	

E xn I Y (n)  ,  
(15.3.2) 

Thus the conditional expectation of x n  given the observations is the optimal 
estimate. Since this conditional expectation depends only on the form of 
p (xn j Y(n)) and does not depend on the choke for L (E), it follows that 
subject to a) and b) above, every loss-function L (E) is minimized by the con-
ditional expectation of x n . The Gaussian conditional density function is 
again Gaussian and so it satisfies a) and b). We note that, in general 
E n I Y (n) is a nonlinear function of Yin)  which may be very difficult to 
compute. In the event that we are interested only in the quadratic loss-
function,t then conditions a) and b) can be relaxed. It is now only necessary 
that p (xn  Y(n) have a finite second moment in order. that the optimal 
estimate with respect to this particular loss-function be given by E ixn lY (n) . 

The concept of an orthogonal projection as related to random variables is 
now briefly examined. (This idea follows by virtue of a one-for-one analogy 
with the theory of linear vector spaces.) 

Thus, let Ai  and Ai  be two random variables. If A, is not a constant multiple 
of 1  then, in vector terminology, we say that they are linearly independent. 
Any further random variable 

A E- a i 	+ a . 
1 I (15.3.3) 

which is a linear combination of A i  and Al  is now said to lie in the two-
dimensional space defined by A i  and Ai. 

We form a basis for this space as follows (c/f Gram-Schmidt orthogonal-
ization): Let 

e 

01 X j 
e 1 

EA 

Then clearly 

qej ej } = 0 

(15.3.4) 

(15.3.5) 

i 	j 	 (15.3:6) 

This last equation constitutes an orthogonality condition, in which the 
familiar inner-product of linear algebra is now paralleled by the expectation 
of the. given product. 

ti.e., L (E) 
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Finally if we were to divide e and e j  above by their respective standard 
deviations then they would have "unit length," and would form an ortho-
normal basis for the space defined by Ai  and Aj , i.e. the resulting e i  and ei  
would satisfy 

E (e i ej ) = 8i j 	 (15.3.7) 

where 8 1.1 is the Kronecker delta. 
Suppose next that I is any random variable, not necessarily a linear 

combination of A i  and Aj . Then the orthogonal projection of 13 on the 
Ai,  Al space is defined as 

-13 a ei  E3f3e4 + el  E3pe4 
	

(15.3.8) 

We define 

'‘d 	16 
	

(15.3.9) 

Then as is readily verified 

Eped = 0 = Epel 	 (15.3.10) 

i.e. 73' is seen to be orthogonal to the A i , Ai  space. In this Manner 1 can be 
partitioned into a sum of r3 and 11, where the former is entirely in the A i , Al  
space and the latter is orthogonal to that space. 

The above ideas can be readily generalized to cover the orthogonal pro-
jection of vectors of random variables onto arbitrarily dimensioned spaces. 
Theorem 2 of [15.7] points out the following: 

Assume that the random variables x n , yo , y 1 , 	, yn  are all zero-mean 
and let a sample value be given for 1 (n) (y0 ,  y1, 	, y ) T . If either 
i) the random variables in xn  and Y w are jointly Gaussian, or else if 

ii) the estimator is restricted to being linear and L (E) a_ 62, 
then the optimal estimate of x n  given Y (n)  is equal to the orthogonal 
projection of x n  on the space defined by Y in) . 
Since the orthogonal projection onto Y (n)  is a linear combination of the 

elements of Y (n) , it thus follows that in the Gaussian case the optimal esti-
mator is a unique linear transformation on the observations. However as we 
have already noted, in general the optimal estimate, i.e. the conditional 
expectation of x n  given Y on) , does not result in a linear estimator. But in the 
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class of linear estimators the orthogonal projection will always minimize the 
expected quadratic loss E WI. (See Ex. 15.1) 

Consider now the linear dynamic system defined by 

X(t) = A(t)X(t) + D(t)U(t) 
	

(15.3.11) 
dt 

together with the observation relation 

Y(t) = M(t)X(t) 	 • 	(15.3.12) 

Note that the above differential equation is basically an unforced linear 
time-varying system as considered throughout this book, but has here the ad-
ditional forcing-vector U (t) acting through the transformation matrix D (t). 
The vector U (t) is the white-noise vector which we discussed earlier in this 
chapter. 

We have shown that the above differential equation can be discretized to 
give the difference equation 

X(tn +1  ) = (Mtn+1'. t ) X(t n ) 	17(tn + l' t n ). 
	 (15.3.13) 

in which (I) is the transition matrix of the unforced system and the vector 
V (t 1 , tn ) arises out of U (t) acting over the time-span t o  t 5_ to +1 . W e 
note that the observation relation (15.3.12) does not contain an error term. 
This results in the algorithm as derived in [15.7] being apparently different 
from what we have called the Kalman Filter in Chapter 12. The main 
estimation problem can now be stated as follows: 

Given the above linear dynamic model with Gaussian statistics, and given 
sample values of Y o , Y 1 , , Yn , find the prediction estimate n + L. of 
X n + 1 which minimizes E (E)}. 
The solution, by virtue of Theorem 2 of [15.7] is just the orthogonal 

projectiont of Xn +1  onto the space 

Y n 

Yn - 1 

 

(15.3.14) Y (n) 

  

t As was pointed out in of the statement Theorem 2 given earlier, the orthogonal projection is also 
the optimal estimate with respect to the quadratic loss-function for any type of noise statistics, pro-
vided only that the conditional expectation E Ix I 11 has a finite second moment. 
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and as is shown in that reference this is given recursively by the algorithm: 

A* 	(I)(n + 1, n) P*n  M (M 13:M.1 1 	 (15.3.15) 

(1)*  (n + 1,n) = (1)(n + 1, 	— 0* M n 	 (15.3.16) 

r 	x* 	A*  y 	 (15.3.17) + 1,n 	n + 1,n n, n - 	n n  

+1 P* 	4:11* (n + 1, n)P* 	(n + 1, n) T 	Qn + 1,n 
(15.3.18) 

(In the above four equations we have essentially retained the nomenclature 
of [15.7] . The matrix Mn  is the observation matrix and (I)(n + 1, it) is the 
transition matrix of the unforced system. The matrix Qn+1,n  is the covariance 
matrix of the vector V (in + 11 tn) and the matrix P* + is the covariance n  

matrix of the errors in the estimate X .*.) 1,n •- 
These then are the equations of the Kalman Filter with driving-noise. 

On the surface they appear to differ very strongly from those displayed on 
p. 465, but as we now show a very close similarity does exist. 

15.4 THE KALMAN FILTER WITH AND WITHOUT DRIVING-NOISE 

In the preceding section we displayed the recursive algorithm which esti-
mates the state-vector of a linear differential equation driven by white-noise, 
based on the least mean-squared error criterion. We now show that by an 
appropriate rearrangement and redefinition of the quantities involved, that 
algorithm can be rewritten in a form very similar to the Kalman Filter with-
out driving-noise, obtained in Chapter 12. 

Thus consider the model 

Xn+1 = c1:0(n + 1,n)X n 	V n + 1,n 

and the observation relation 

Yn = M A X , N n 

Note the presence of a driving-noise term in the former, as well as an 
error-vector in the latter. This error-vector is not present in (15.3.12). 
Define the augmented state-vector 

(15.4.3) 



and the augmented driving-vector 

/In + 1,n 

N n + 1 
Vn + 1,n — (15.4.4) 
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Also define the augmented transition matrix 

0130(n + 1,n) 1 0 
(An + 1, n) 	-------F-- 

0 1 0 , 

and the augmented observation matrix 

(Mn 

(15.4.5) 

(15.4.6) 

Then it is readily verified (see Ex. 15.2) that (15.4.1) can be written as 

= EV(n + 1, n) 	+ n + 1 	 n 	Vn + 1,n 

and that (15.4.2) can be written as 

Y- M' n 	n n 

(15.4.7) 

(15.4.8) 

which are seen to be in precisely the same form as (15.3.13) and (15.3.12) 
respectively. 

Assuming next that the vectors V n +1,n  and Nn  of (15.4.1) and (15.4.2) 
are uncorrelated, it is immediately obvious that V' in (15.4.4) has the 
covariance matrix 

Qn + 1,n 
I 

 
+ 1,n = 

R n + 1 

(15.4.9) 

where Q. +1 . is the covariance matrix of Vn +1, (see (15.2.23)) and of course 
R n + 1 is the covariance matrix of N n + 1' 

It is now a relatively simple matter, using the definitions given above, to 
replace the unprimed quantities appearing in (15.3.15) through (15.3.18) 
with their primed counterparts appearing in (15.4.3) through (15.4.6). This 
is carried out in a sequence of three exercises (see Ex. 15.3 through 15.5) 
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and provides us with the following algorithm: 

T  (1? a  M S *  H  n 	n 1Mn 	 n n, n - 1 M  nr ) 

S* 	(I - H M )S *  n,n 	 n n n, n - 1 

ram  = X*a, a  _ 	H a  07  a  M a  X*11,  a  _ 1) 

- 1 

(15.4.10) 

(15.4.11) 

(15.4.12) 

(15.4.13) 

(15.4.14) 

Kalman Filter with Driving-Noise 

e. , . _ 1  = (1)(n, n - DX *  n 1, n - 1 

.S* 	= (I)(n, n DS* 	(n, n — D 	Qn, n - 1 n, n - 1 	 n - 1, n - 1 

15.5 PRACTICAL ASPECTS 

The Kalman Filter with driving-noise is strikingly similar to the Kalman 
Filter without driving-noise, as we see by comparing the algorithm given 
above to the one on page 465. The only difference lies in the presence of 
the matrix Q in (15.4.11). 

This similarity is of course not coincidental, despite the radically different 
ways in which the two algorithms were obtained. On the contrary, we would 
have been concerned if they had not been so similar, because by multiplying 
the vector lin +1.n  in (15.4.1) by a scalar, say a, we see that the cases with 
and without driving-noise can be made to be as close to one another as we 
please simply by taking a sufficiently small. In the limit if a is set to zero 
then the two cases are identical. Now it is a simple matter to see that if 
Vn + 1,n 

is (15.4.1) is multiplied by «, then Q. + 1,n in (15.4.11) becomes 
multiplied by a' and so, as a 0, (15.4.11) becomes identical to (12.2.16), 
which is precisely what we should expect. 

When driving-noise is present, then the approach used to obtain the 
algorithm of Chapter 12 can no longer be applied. It is thus clear that the 
material in this chapter constitutes a definite extension of the earlier work 
on which Chapter 12 was based, and it is reassuring to see that by two such 
radically different paths, algorithms are obtained which are consistent with 
one another and which merge into each other preciiely as required. 

The presence of driving-noise gives rise, as we mentioned earlier, to a pro-
cess with a fading memory. Thus if V were absent in (15.4.1), then the 
state X. would be completeLy defined once X n  _ I  was given. The memory 
of the process is, in this case, perfect. However when V is present, then X. is 
not determined solely by X n  _ 1  but depends on each particular realization of 
the random-vector V. The vector X. is now a random vector whose value, 
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while related to X. _ 1 , is no longer completely known unless V is given, and 
in practice we do not know V itself but only its statistics. Hence if V is 
"small" then the dependence of X. on X. _ 1  is strong (i.e. the memory is 
strong) whereas if V is "large" then the dependence of X. on X. _ 1  is weak 
(which implies a rapidly fading memory). 

The above heuristic argument is borne out very well by the presence of Q 
in (15.4.11). When the driving-noise is "small" then Q is a matrix with 
small elements and so S*.„ _ 1  is very close to the value given in (12.2.16). 
In this case the estimation errors propagate mainly because of the prediction 
along the trajectory. However when V is "large" then Q in (15.4.11) makes 
a sizeable contribution to S*., _ 1, showing that the basic uncertainties in the 
estimate have now been strongly increased. 

We have seen in Chapter 14 that if we arbitrarily enlarge S:, _ before 
combining X:, _ 1  with Y. by the rule derived in Chapter 10 (see (10.4.13)), 
then the resultant estimate will be made dependent on Y. to a greater 
extent and on X*., _ I  to a lesser extent. This change of stress which ac-
companies the enlargement of s*., _ I  is, after all, what led to the fading 
aspect of the memory which the filters of Chapter 14 possess. It is thus also 
clear then, that the enlargement of _ 1  by Q in (15.4.11) will result in a 
reduced dependence of )C *.,. on X% _ 1  in (15.4.14), and an increased 
dependence on Y. in that equation. 

In this way the filter which includes driving-noise in its model is seen to 
have a fading memory . Removing Q from the algorithm eliminates all 
fading entirely, and enlarging Q hastens the rate at which fading occurs. 

It is not as easy to discuss the rate at which fading occurs in the present 
filters as it was in Chapter 14. We recall that in that case the stress-factor 
which led to the fade was a decaying exponential, and so the fade-rate of 
the filter could be specified very accurately. It is perhaps in this ability to 
control the fade-rate by the choice of a single scalar, where the greatest 
power of the filters of Chapter 14 lies. However in the present case the 
fading mechanism is much more subtle, and in practice what is usually done 
is to select Q to be a diagonal matrix whose entries are in some sense (if 
possible) related to the uncertainties in the model. Thus, recalling that Q is 
the covariance matrix of the driving vector V in (15.4.1), we see that the 
entries of Q would in this case be the variances of the random perturbations 
in the model. 

The matrix Q is often also introduced for purely practical reasons regard-
less of whether or not the presence of driving-noise can justifiably be 
presumed. There are two reasons for this. 

In the event that the selected model is known to differ from the true 
process, then the introduction of the matrix Q can be used to control 
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bias-error build-up. This follows directly from the fact that its presence 
results in a fading memory. In practice the effect of introducing Q is to 
provide an inhibiting influence on the descent of S *.. to a null-matrix which 
in turn results in the bias errors being reduced at the expense of an increase 
in the random ones. 

The second and perhaps greatest benefit which the introduction of the 
matrix Q brings about, lies in the following. In Chapter 12 we pointed out 
that the covariance matrix S*.. could, under certain circumstances, become 
precisely or nearly singular. This in turn might easily cause it to cease 
being positive definite. 

However, as we see from (15.4.11), the matrix Q can be made to rein-
force the positive-definiteness of is* n, n - particularly if we take it to be a 
diagonal matrix. t  In this case, if at any time Sn . becomes singular, then 
on the following cycle of the filter Sn . n _ I  will again become positive 
definite, thereby breaking the mechanism which we saw in Chapter 12 keeps 
S*.. singular should it ever become singular. It is because of these reasons 
that the matrix Q, with appropriately selected values, is usually introduced. 
Note also that Q can be varied dynamically if the user so desires. For 
example an on-line algorithm could easily be devised which varies Q's 
entries when bias errors are detected by the method outlined in Section 14.8. 

In conclusion we point out that the techniques of this chapter can also 
be applied to nonlinear iterative differential-correction. This would be done 
by the inclusion of a matrix Q in (12.5.20). 

Our treatment of the Kalman Filter with driving-noise has, of necessity, 
been extremely brief and superficial. Strictly speaking it is beyond the 
scope of this book and we merely touched on it for completeness. There 
is a rapidly growing literature related to this filter and it will have to be 
left to the reader to pursue the matter further by himself. (See references 
both at the end of this chapter and at the end of Chapter 12.) It is hoped 
however that the stated objectives of this book have been met and that the 
reader has been introduced, in an orderly way, to the field of sequential 
smoothing and prediction. 

EXERCISES 

15.1 Assume that we have two correlated zero-mean Gaussian random 
variables x and Y. 
a) Starting from the joint Gaussian density function for x and 

y, i.e. 

tWith positive entries of course. 
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p(x, 	1 
27r R 1/2 	2 exp 3— -1- VTR -1 1/ 

I 	1  

where 

( x  V =) 
y 

( a. 2 

R 
E {xy} 

E {xy} 

a 2 

verify that 

p(xly) = 	 
cr

IR1 1/2 	2 
exp 	VTR_ 1V— 

 

Now show that E Ix I yl is 

E 	" x-  = y 	 
2 a 

(I) 

Thus by the theorem on p. 610, (I) above is the optimal esti-
mate of x given the observation y. 

b) By the theorem on p. 612, the optimal estimate of x given y is 
also equal to the orthogonal projection of x on y. Using 
(15.3.8) show that 

Elx-y}  
= Y 

2 U
Y  

which is the same as the algorithm obtained in (I) above. 
15.2 Verify that (15.4.7) and (15.4.8) are equivalent to (15.4.1) and 

(15.4.2). 
15.3 a) Show that (15.3.15) and (15.3.16) in (15.3.18) gives us 

n+1 	 n 	n 
= (I)(n + 1, n) [P*  — P*  M 

n . 
T  (M • P *  M 

-1 
 Mn n (I) (n + 1, n) T  

+ Q. + 1,. (I) 
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b) The matrix 13: is the covariance matrix of the errors in the pre- 
diction 	 n - f x* 	Since the latter was based solely on observations n  
up to to  _ 1 , its errors are uncorrelated with those in Y n . Letting 

be the covariance matrix of the vector 

n - 1 

Nn 

infer that 

P*#  

(I 0 _ S:1 .,21 7  _.... 1 1.  _ 
0 	I R n 

15.4 Replace all matrices in (I) of Ex. 15.3 by their primed counterparts, 
i.e. 1' of (15.4.5), M' of (15.4.6), P* ' of Ex. 25.3 and Q' of 
(15.4.9). Show that this results in the equation 

( _S44:1_+ 1. , .7..... 1-- —0—  ._ 

I 
 Rn+ 1 )  

I 

(1)(n + 1,n)SL 	+ 1,70 T  + Q n  + 	 0 1,n 

0 	 I R n  + 

in which 

1 
S 	S*  n,n = n, n - 1 — Sn, n - 1 M  nT 	Mn 	n - 1 M  n 	M n gicn, n - 1 

We have thus derived the rules for computing S: +1,n  and g:, n  . Note 
the presence of Q n  ion  in the algorithm for S: + 1,n, 

15.5 a) Using the primed matrices 4:1), Mc and p*' discussed in Ex. 15.4 
show that (15.3.15) reduces to 

(I) 
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( 40 (n + 1, n) S':, -1 MnT (R n + M s* n n,n - 1m nT ) 

b) Combine (15.3.16) and (15.3.17) to give 

Xn + 1,n = 4)(n + 1,n) Xn,n- 1 + 	(Yn  — Mn X:, n - 1)  

Now replace 4) and X by their primed equivalents (for X' see 
(15.4.3)), and for A* use the result of part a) above. Show that 
this gives us 

Xn,n = Xn, n - 	H n  ( 17  n  — M n e„, „ - — Nn.) 

N 	= 0 n + 1 

(I) 

in which H n  is defined in (12.2.17). The vector N: + 1  is the 
prediction of what N. +1  will be, based on data up to t o  . The 
algorithm thus predicts a null vector for the Observation errors, 
which is precisely as it should be. Note that (II) above also 
implies that N: in (I) is a null vector. We have thus reduced 
the algorithm on p. 614 to the fOrm given on p. 616. 
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APPENDIX I 
PROPERTIES 

OF THE 

DISCRETE 

LEGENDRE 

POLYNOMIALS 

The discrete Legendre polynomials satisfy the recursion 

P (x) = (A
1 
	B1

) 
x + 	p 

1 
 (x) 	CJ  — p

j - 2 (x) + iA 	 
dxi 	 dxi 	 • 

	

dxi 	 dxi - 1 
p 

1
(x) 

(Al.!) 

where 

p1(x) 	p (x; j,  L) 

and where 

2(2j — 1)  

j (L — j + 1) 

(A 1.2) 

(A1.3) 
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pi(x) 	(-1)v 	
+ v) x( v)  

1 

V 	V 	L (V)  V=0 
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B 	L (2j — 1) 

	

1 	
- j + 1) 

C = (j 1)(L +  
I j(L -j+ 1)  

(A1.4) 

(A1.5) 

To get the recursion started we use (3.2.21), i.e., 

p a  (x) = 1 
	

p 1 (x) = 1 — 2 2-c 	 (A1.6) 

This recursion is extremely easy to implement on a computer, and can be 
used to tabulate (c/i/dxl)p 1 (x) for any values of i and j, once x and L have 
been assigned numerical values. In this way the matrix P defined in (7.4.4) 
can be computed. 

The fact that these polynomials satisfy the above recursion relation is not 
unique to them alone, but is a direct consequence of their orthogonality 
property. All sets of orthogonal polynomials satisfy such a recursion, with 
A 1, B 1  C 1  and C. defined appropriately. 

We now prove the following relationship, from which (7.4.13) can be 
inferred. 

Let V be the backward-difference operator with respect to x. Then 

	

V1p1(x) I 
x=L 

= (-1)
j( + 	j(i) 

	

 j 	L (i)  
(A1.7) 

Proof 

By definition 

(A1.8) 

and so, by (2.4.17) 

+ v)v(i) (x — i) (v  " 
Vipi (x) = 	(-1) v  

(V V 	 L(V) V=0 

(A 1.9) 



= 	(_1>v(j)( 	v(z) 
v 	v 	L (i)  x=L 

 

11 =0 
(A1.11) 
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Now 

(x - i) (21- 
 L ( V )  x=L 

(L -  i) ( v 	1 
L ( l )(L - D (7' 	Law 

(A1.10) 

    

Hence (A1.9) becomes 

Next, by (2.4.20) 

(j + v) (i)  = ( 1) 1 (-v - 1) (i) 

 and so 

+ v = J + v = (j + v) (j) 	( 	(-v -  1) (J)  
j! 

(A1.12) 

(A1.13) 

Similarly 

= (-W(i - v - 1)" ) 	 (A1.14) 

Thus 

vu) = (- 1 	(
i - v - 	+ 

j! 

(A1.15) 

Hence (A 1.11) can be written 

Vip,(x) 
x=L 

j+1 (— ' 1)(I) 
7; 0  (-1) v()(i — 1 — v) (i  i)  

(i)  
(A1.16) 

The summand is in the form of (2.5.22). Thus we obtain 
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	p; (n — 1) (i  Dip (x)= 
	j! L( 1 ) n =1 

(See Note) 	(A1.17) 

   

and so by (2.4.17) 

j r  y ip ( x) 
x=L 

= 	(i  (j + i)(1)  (i — 1 — j) (i) (_ 1)1( + j(i ) 

L ( 1 ) 

(A1.18) 

This completes the proof. 
We now turn our attention to the proof of (7.12.8). First, we state the 

following: Let 

a
1 
 = 

v=0 
(1" 

+ v b y 	 (A1.19) 

Then 

b. 
1 

( 	
+ v (2v + 1y2j + 1) a  

2j + 11\ v v  
(A1.20) 

This theorem is one of many such inversion pairs due to J. Riordan of Bell 
Telephone Laboratories.t The proof is rather lengthy and we omit it. 

Consider now 

pj (x) E.- 	c_nv(i)( 	x (v) 

v= 0 	 v 	v 	L(v) 
(A1.21) 

But by the use of the A and B transformations defined by (2.6.6) and 
(2.6.7) respectively, 

( 

j + v\(j\ 0 + v\ ( j \ ij + vy2v\ 

j 	v 	Ai -,) \j-ii),) 

Note: The V i  operates on the n. 
f Communicated to the author in an unpublished memorandum. 

(A1.22) 
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and so 

Pi  (x) = 
+ v)p)v (v) x(1 

v=o 	v 	v L (v)  
(A1.23) 

This is of the same form as (A1.19). Thus it follows by (A1.20) that 

2  (-- DJ () 
) 

/ w 	
"(2v + 	2j +1 

2  + 1 	• 	
p (x) 

— v 

We have thus proved that 

(i) = L(1) 	(....1) 7,  2v + 1)(2j + 1) p  .(x)  

(2.) v=o 	
2j  + 1 kj—v v  

(A1.24) 

(A1.25) 

This is the general inverse relation for the discrete Legendre polynomials. 

As an example, letting j = 2, (A1.25) gives us 

= L (2)  x 	 (5)po (x) 3  (5) p i (x) + 5  (5) p2  (x) 
14) 5 2 

(2)  
—5 	-5-  0 

2/ 

1 	

6 
1 = L(21-1 	

2 
po  (x) — — p i (x) + — p 2  (x) 

3  

(A1.26) 

40. 
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PROOF 

OF 

EQUATION 

(13.3.8) 

Given that (c/f (13.2.15)) 

co 

(13 	y - k  j(k) 0k 	 (A2.1) 
k=o 

we must show that (c/f (13.3.8)) 

(1 — q0) 1  + 1 ("el. K 1 (91(1- 	y 	 (A2.2) 

Proof 

Let fn  be a discrete function of n for which 

n 	0 
	

n < 0 	 (A2.3) 
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Then we define the Z-transform' of 1. by 

Z (f) _ 	f n en 
	

(A2.4) 
n=0 

where z is a complex-variable. (This is the discrete counterpart of the 
Laplace transform of a function 1 (t) which satisfies 

f(t) 	0 
	

t < 0 	(A2.5) 

namely, 

l0L [f (6] = 	f(t) e-  st dt 	 (A2.6) 

Just as L[f(t)] is a function of the complex-variable s, so Z (fa) is a function 
of the complex-variable z.) 

We apply (A2.4) to both sides of (A2.1) i.e., we form 

co 

z [04 = Z[/ _ k  CP j (k) B k  
k=0 

(A2.7) 

The right-hand side of the above gives us 

(A2.8) 
co 	 co 

tp 	e k  k 	y n  k  z - (n - k) 

[k=0 	 n=0 

Consider the two terms in parentheses in the final line of the above 
equation. By definition 

03 

4P j (k)ek Z-k 	Z[pi (n) 	 (A2.9) 
k=0 

t See e.g. [13.9]. 
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Moreover, assuming that 

yr, E.- 0 	n < 0 
	

(A2.10) 

we see that 

y n k  z-(n k)  E- Z (y n ) 
	

(A2.11) 
n=o 

We have thus shown that (A2.1) is equivalent to 

Al] = Z[P (n) On] Z (y n) 	 (A2.12) 

(This is the counterpart of the fact that the Laplace transform of a convolu-
tion product equals the product of the Laplace transforms.) 

We now analyze (A2.9) above, in further detail. By (13.2.8) and (13.2.2), 

Z [co;  (n) 

co 

K 1 0' 
n=0 

(-1) 
v(1 —  0(n  ) en z -n 

v=0 0 	v v (A2.13) 

= K 01  

But, as is readily verified 

n=0 V 

(n) 	 evZ-V  on z -n 
rn 

(See Note) 	(A2.14) 

and so (A2.13) gives us 

t Note: We assume that I 0 z 1  < 1, thereby formally assuring convergence. 
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1 

Z 	(n) 	= K 	(-1) 
v 	— Oz -1)" 

71(1 - 0)110 	ee l)  
v=o 	0   

K . 0j  ( 1)11 — z-T 
1 — 6z -1   

	

v=o 	Vi 1 — Oz-1  

K 
1 (1  — 

1 — .0z -1  
(A2.15) 1 - Oz - 

which reduces to 

Z [pi  (n) On] = K 	(1 -  
(1 - 	 1 ) i  " 

(A2.16) 

Finally by . 	the above .result into (A2.12) we obtain 

(1 - 01-1 ) i +1 	= K i eJ(1 - z-1 ) i  Z(y.) 	 (A2.17) 

. ) 
Suppose next that we were to seek the Z-transform of 1 a , qi i n , i.e. ( 

J=0 i 

of fr, operated on by a polynomial in q with constant coefficients.t Then 
we would obtain, by the definition of Z, 

ajlifn) 
:7=0 j=0 

a qifn)z -n 
n=0 j=0 

)

aj  fn  _ j  en 

(A2.18) 
rn 

al 
-z1I 

1=0 	n=0 

f n  _ z -(n " 

and so, by virtue of (A2.3), 

tq is the backward-shifting operator. 
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. 
This shows that the operators Z acid 	a. qi can be commuted if we 

j=0 

that we can also write it as 1 m  a gift). 
j=0  • 

Applying the above result to both sides of (A2.17) now gives us 

Z[(1 — 0q) 1  + 1  (3,) j= z[Kj ei(1 - q) i  y 
	 (A2.20) 

and so, finally, it must also be true that 

(1 — 	 + 
1 ((3

iln  = K j 01  (1 — q) jyn 	 (See Note) 	(A2.21) 

This completes the proof. 

Note: In going from (A2.20) to (A2.21), we are assuming a unique inverse relation between Z (f n) 
and fn . Just as with the Laplace transform in which L [f (t)] and 1(0 are uniquely related by an 
inversion integral, subject to (A2.5), so are Z (fn) and fr, subject to (A2.3). 

change qi into el. In the reverse case, given 	a, I-1 Z (f.), we see then 
J=0 



INDEX 





INDEX 

A priori estimate (see under Estimate) 
A-transformation, 34, 219 
Abramowitz, M., 71, 164 
Acceleration, 293 
Aitken, A. C., 202, 208 
Algorithm: 

Bayes (see under Bayes Filter) 
coupled: expanding-memory polynomial, 

355-362 
fading-memory polynomial, 510 

explicit, 292 
Kalman (see under Kalman) 
linear, 348 
predictor-corrector, 385, 466 
recursive, 348, 354, 360, 386, 389, 424, 464, 

465, 505, 516, 569, 614, 616 
loops in, 424 

Arithmetic: 
extended-precision, 477, 478 
finite-precision, 315, 318, 408, 434, 473 
infinite-precision, 318, 434 

Astronauts, 462 
Atmospheric reentry, 482 
Azimuth, 168, 224, 260, 277, 293, 301 

definition of, 7 

B-transformation, 34 
Backward factorial function (see Function, 

factorial) 
Backward summation by parts, 37, 38 
Backward-difference operator (see Operator, 

difference) 

Backward-difference state-vector' (see State-  
vector) 

Backward-shifting operator (see Operator, 
shifting) 

Balancing systematic and random errors (see 
under Errors, bias) 

Basis, vector, 586, 612 
Batch-wise uncorrelated errors (see under Un-

correlated errors) 
Battin, R. H., 482, 493 
Bayes Filter: 

avoiding repeated matrix inversions in, 435 
basic structure of, 393 
batched observations, main algorithm, 386 
computational aspects of, 407-411 
computational difficulties of, 408-410 
concurrent observations, main algorithm, 389, 

464 
contrasted to Kalman Filter, 470 
control of roundoff errors in, 435 
covariance matrix: before and after data-

incorporation, 399 
behavior of, 582 
conditions for descent to a null matrix, 587 
corrector equation, 401 
degradation of, 401 
improvement of, 402 
predictor equation, 400 
properties of, 398 
shrinkage mechanism of, 467, 477 

criteria satisfied by, 466-470 
fading, 571, 572 

main algorithm, 569 
635 



636 INDEX 

Bayes Filter (cont 'd):  
initialization of, 471 

difficulties in, 392 
iterative differential-correction, 431, 479 
matrix inversions in, 407, 464 
problems in operating, 393 
reformulation of, 462 
stability analysis of, 407, 576-587 
stability theorem, 587 
systematic errors of, 410 

Bell, E. T., 208, 219 
Bellantoni, J. F., 493 
Bellman, R., 219, 602 
Bias errors (see under Errors) 
Binomial coefficients, 26-32, 90 
Binomial recursion formula, 27 
Binomial theorem, 28-30 
Blackman, R. B., 54, 281, 290, 338, 423, 443, 

460, 493 
Brouwer, D., 338 • 
Bruckner, J., 497, 553 
Bucy, R. S., 609, 622 
Buxbaum, P. J., 555, 596 

Calibration of observation instruments (see 
under Residuals) 

Cartesian coordinates, 168, 299 
Cascaded simple averaging, 281 
Characteristic equation (see under Difference 

equations) 
Chebyshev polynomials, 57N. 
Chi-squared density function (see under Func-

tion) 
Chi-squared distribution function (see under 

Function) 
Chi-squared test, 156-158, 389, 482 
Chi-squared threshold test for bias errors (see 

under Errors, bias) 
Claus, A. J., 388N., 423, 435, 460, 482, 508N. 
Clemence, G. M., 338 
Computational load, 281, 382, 388, 407, 515, 

570, 573 
Computers, high-speed, 315, 443 
Confidence, 390, 392 
Congruence transformation, 146, 525 

definition of, 146N. 
Convergence of iterative differential-correction 

(see under Iterative differential-correction) 
Convergence test, 426, 433 
Convolution (see under Difference equations; 

Laplace transform; Vandermonde convo-
lution; Z-transform) 

Coordinates: 
Cartesian, 168, 299 
polar, 168 

Correlation, 133 

Correlation coefficient, definition of, 138N. 
Coupled algorithm (see under Algorithm) 
Covariance, definition of, 129 
Covariance matrix: 

definition of, 134 
descent to a mill matrix, 249, 251, 370, 478, 

525, 573 
conditions necessary for, 327, 404, 576 
example of, 406 

diagonal, 393 
diagonal elements of, 467 
inverse of, 203 
least-squares, 183 
minimum-variance, 186, 191 
permanently singular, 476 
time-varying, 369 
(see also Bayes Filter; Expanding-memory; 

Fading-memory; Fixed-memory; Kalman 
Filter; Matrix) 

Darlington, S., 621 
Davenport, W. B., 164, 621 
Degradation due to prediction (see under Bayes 

Filter) 
Degree of estimating polynomial (see under 

Polynomial) 
Density function (see under Function) 
Desoer, C. A., 338, 423 
Deutsch, R., 338, 423, 460, 622 
Difference equations, 40-48 

characteristic equation of, 45, 518, 519 
constant-coefficient linear, 41 
convolution product, 48 
coupled, 519 
eigenfunctions of, 45 
eigenvalues of, 45 
general solution of, 42, 43 
homogeneous part of, 44, 45 
impulse response of, 46, 47 
method of undetermined coefficients, 48 
natural modes of, 45 
in operational form, 41, 518 
particular solutions of, 43 
stability of, 362-367, 507-509, 530 
variation of parameters, 48 

Difference vectors (see Vectors) 
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Differential equations, linear (cont'd): 
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nonlinear, 5, 105-116, 166, 277, 303, 479 
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memory; Fixed-memory) 
(Note: Systematic is used interchangeably 

with Bias) 
deterministic, 178  

Errors (cont 'd): 
in the estimate, 178 

statistical properties of, 240 
variances of, 250 

highly correlated, 409 
input, 124, 125 
linearization, 108, 426 
in a nominal trajectory, 303 
observation, 124, 125 
in the observations, 240 
propagation of, 145, 146, 148-150, 431, 

434, 435 
round-off, 474 
sources of, 7 
systematic (see Errors, bias) 
to tal-in theAstimite,„2.65- 
transient, 08, 515, 5/5 
truncation, 266, 275 
types considered, 7 
uncorrelated, 242, 246, 251, 380 

(See also under Uncorrelated errors) 
zero-mean, 246 

Estimate: 
a priori, 378, 389, 390, 434, 469, 473, 482, 

572 
Lagrange, 87-92 " 
Markoff, 208 
maximum-likelihood, 263 
updated, 78, 225, 232, 502, 543 
(See also Least-squares; Minimum-variance) 

Estimate vector (see under Vector) 
Estimating polynomial (see under Polynomial) 
Exactness constraint, 165, 171-178, 186, 193, 

294, 463 
definition of, 175 

Expanding-memory, 8 
consistency with fixed-memory, 406 
initialization of fading-memory by, 536-538 
inoperability of, 404, 405 
iterative differential-correction: convergence 

of, 440-443 
discussion of, 428-434 

in nonlinear systems, 425 
polynomial filter, 57, 347 

criterion satisfied by, 346 
diagonal terms of covariance matrix of, 371 
general form of weight-vector of, 361, 465 
initialization of, 367 
main algorithms, 360, 361 
1-step predictors, 350 
special case of Bayes Filter, 465 
stability of, 362-367 
systematic errors in, 372 
uncoupled recursive form of, 354 
variance reduction in, 369 

ultimate objective of, 402 
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Expanding-memory (cont'd): 
(See also Bayes Filter; Kalman Filter) 

Expectation: 
bivariate, definition of, 129 
conditional, 611, 612 
of a linear transformation, 131 
of a matrix, 130 
univariate, definition of, 126 
of a vector, 130 

Expectation operator, linearity of, 129 
Expected quadratic-loss (see under Loss-func-

tion) 
Exponential decay, 497, 515, 532 
Exponential stress, 559, 571, 573 
Extended-precision arithmetic (see under 

Arithmetic) 

Factorial function (see under Function) 
Fading, instantaneous, 572 
Fading-memory, 8, 497 

generalized filter: 
algorithm for varying fading parameter, 596 
Bayes form, 569 
choice of stress-factor, 559 
control of systematic errors in, 556 
covariance matrix, main theorem, 589-591 
criteria satisfied by, 55.8-560 
derivation of, 560-563 
initialization of, 571 
Kalman form, 569, 570, 595 
observation methods, 555 
process models, 555 
properties of, 573 
recursive formulation, 563-568 
stability of, 576-594 
systematic error control in, 573-576 

polynomial filter, 57 
balancing errors in, 508, 525, 546 
behavior as B goes to zero, 509 
comparison with fixed-memory, 509 
coupled form of, 510 
criterion satisfied by, 498 • 
effective smoothing time of, 532, 533 
general form of covariance matrix of, 523 
general form for expansion coefficients of, 

505, 506 
general form of weight-vector of, 514 
general operational form of, 506 
initialization of, 536-538 
main algorithms, 516, 517 
nonrecursive form of, 502 
numerical evaluation of covariance matrix 

of, 531 
recursive form of, 504 
selection of parameters in, 546, 547  

Fading-memory, polynomial filter (cont'd): 
special case of fading Bayes Filter, 593 
stability of, 505, 507-509 
systematic errors of, 508, 509, 536, 538-547 
transient errors in, 508 
variance reduction in, 519 

Finite precision arithmetic (see under Arith- 
metic) 

First-order approximation, 389 
First-order linearization, 479 
Fixed-memory, 8 

with abrupt changes in signal, 339 
absence of loops in, 425 
consistency with expanding-memory, 406 
contrasted to expanding-memory, 402 
differential-correction (see under Iterative 

differential-correction) 
generalized filter, 380 

criterion satisfied by, 294 
data-incorporation, 292 
equations of, 294 
observation methods, 291 
process models, 292 

generalized polynomial filter, 295-298 
inoperability of, 324, 403, 406, 423 
iterative differential-correction (see under 

Iterative differential-correction) 
polynomial filter, 56, 223 	- 

balancing errors in, 275-277 
covariance matrix of, 242-246 
criterion satisfied by, 230 
degree of, 251 
example of, 246, 247, 260 
general form of, 235-240 
long-term predictions, 261 
observation interval, 254 
related to fading-memory, 509, 532-538 
systematic errors of, 264-268 
variance reduction factors of, 256-260 

true efficacy of, 339 
Flow-chart of book, 10 
Forcing function, 577 

impulsive, 574, 575 
white-noise (see Driving-noise) 

Ford, L. R., Jr., 497, 553 
Forward factorial function (see Factorial func- 

tion) 
Forward summation by parts, 37, 38 
Forward-difference operator (see Operator) 
Forward-difference state-vector (see State-vector) 
Forward-shifting operator (see Operator) 
Fourier integral, 609 
Fourier-series model (see under Model) 
Fourier spectrum, 502N. 
Franklin, G. F., 554 
Fulks, W., 219 
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Full rank (see Rank) 
Function: 

bivariate distribution, 124 
chi-squared density; 156-158, 389, 393 
chi-squared distribution, 595 
conditional density, 610 
factorial, 20-26 
forcing, 354 
Gaussian conditional density, 611, 614 
Gaussian density, 153-156, 470, 595, 612, 613 
joint density, 128, 470 
joint distribution, 128 
loss (see Loss-function) 
normal (see under Gaussian) 
probability density, 126 

absence of restrictions on, 461 
probability distribution, 126 
sampled, 12 • 

Gauss, K. F., 202, 208, 219, 293, 314, 442, 
460, 609 

feud with Legendre, 208 
hypergeometric series of, 349 

Gaussian conditional density function, 611, 614 
Gaussian density function (see under Function) 
Gaussian elimination, 314 
Geometry, unfavorable (see Unfavorable geom-

etry) 
Global tracking network, 462 
Gottlieb, M. J., 71 
Gram polynomials, 57N. 
Gram-Schmidt orthogonalization, 611 

Inner-product, 611 
Integration: 

numerical, 19, 20, 102, 103, 307, 428, 431, 
464 

Heun's Method, 122 
square-law, 19 

by parts, 37 
Interpolating polynomial (see Polynomial) 
Interpolation, 30-32, 176, 536, 538 
Inverse variance weighting, 392, 393 
Inversion lemma, 399, 464-466, 468, 569, 572 
Iteration and recursion, 426 
Iterative differential-correction, 292, 300, 378, 

389, 428 . 

Bayes Filter, 428-434 
convergence of, 426, 433, 436-443, 481 
covariance matiiit, 313 
discussion of, 303-311 
error propagation in, 434 
expanding-memory, 428-434 
fading-memory Kalman Filter, 596 
first cycle of, 433, 443 
fixed-memory, 303-311, 434 

detailed steps of, 311-314 
initialization of, 433, 434 
iteration procedure, 432 .  
Kahnan Filter with driving-noise, 618 
Kalman Filter without driving-noise, 481 
single iteration, 596 
starting of, 433 
structure of, 426 
Swerling's algorithm, 443 

Iterative matrix inversion (see under Matrix) 

Halline, E. G., 423, 460 
Hamilton, W. C., 219 
Hamming, R. W., 53 
Hastings, C., 290 
Helms, H. D., 553 
Higher-order terms, 108, 310, 313, 426 
Hildebrand, F. B., 53, 54, 57N., 71, 164, 219 
Homogeneous part, 363, 507, 530 
Hypergeometric series (see Gauss) 

Identities, useful, 32-36 
Improvement due to correction, 402 
Impulse response (see Difference equations) 
Independence: 

linear, 133N., 321 
of rows of W-matrix, 143 
statistical, 133 

Infinite-precision arithmetic (see under Arith-
metic) 

Initial conditions, 428, 431  

Joksch, H. C., 290, 376 

Kalman, R. E., 338, 423, 493, 609, 622 
Kalman Filter with and without driving-noise, 

614 
Kalman Filter with driving-noise: 

derivation of, 609-614 
detailed algorithm, 616 
iterative differential-correction, 618 

Kalman Filter without driving-noise, 389, 463- 
466 

abrupt degeneration in, 476 
advantages of, 478 
contrasted to Bayes, 470 
covariance matrix: behavior of, 582 

conditions for descent to a null matrix, 587 
singularity of, 472, 473 

criteria satisfied by, 466470 
detailed algorithm, 465 
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Kalman Filter without driving-noise (coned): 
disadvantages of, 472-477 
fading, 569, 571, 572 

iterative differential-correction, 596 
initialization of, 471-473 
iterative differential-correction, 479 

detailed algorithm, 481 
loss of precision in, 476 
round-off errors in, 471 
single matrix inversion in, 471 
stability analysis of, 567-587 
stability theorem,. 587 
systematic errors in, 478 

Keeping, E. S., 164 
Kenney, J. F., 164 
Kolmogorov, A. N., 609, 621 
Kronecker delta, 229, 364, 501, 572, 606, 612 

definition of, 45 

Lagrange interpolation, 224, 231 
Lagrange's method of undetermined multipliers, 

187-189, 463 
Laguerre polynomials (see Orthogonal polynom-

ials) 
Laguerre spectrum, 502N. 
Lanczos, C., 54 
Laplace transform: 

of a convolution integral, 630 
definition of, 629 

Larson, R. E., 554 
Least mean-squared error criterion, 609, 610, 

614 
Least-squares, 165, 180-185, 221, 223, 224, 

321, 346 
classical, 183, 225-228, 609 
covariance matrix, 183 
criterion, 225, 230, 294, 343 
discounted, 500, 506 
estimate, 182 
fixed-memory, 235 
iterative differential-correction, 311 
in nonlinear systems, 300 
nonuniqueness of, 198-200, 469 
in obtaining a nominal trajectory, 301 
polynomial approximation, 297 
principle of, 181 
relation to minimum-variance, 191 
weight-matrix, 182 
weighted, 201-203, 434 

(See also Weighted least-squares) 
Lee, R. C. K., 423, 460, 482, 493 
Lee, Y. W., 621 
Legendre, feud with Gauss, 208 
Legendre polynomials (see Orthogonal poly-

nomials) 
Levine, N., 376  

Levinson, N., 621 
Lindgren, B. W., 164, 219 
Linear algorithm (see under Algorithm) 
Linear dynamic model (see under Model) 
Linear estimator, general form of, 165 
Linear independence (see Independence) 
Linear observation scheme (see under Observa-

tion scheme) 
Linear systems, error propagation in (see under 

Errors) 
Linearity of the expectation operator, 129 
Linearization, 300, 425 

errors (see under Errors) 
(See also under Higher-order terms) 

first order, 304, 305 
of linear systems, 305, 306 
of nonlinear systems, 303-305 
(See also Nonlinear systems) 

Link matrix (see under Matrix) 
Locally uncorrelated errors (see under Uncor-

related errors) 
Loops: 

in algorithms, 424-426 
iterative, 426 
recursive, 426 
repetitive, 435 

Loss-function: 
definition of, 610 
quadratic, 468, 611, 613 

Markoff estimate (see under Estimate) 
Mass, 320 
Matrix: 

block-diagonal, 387, 560, 565, 606 
conditioning of, 315 
covariance, 9 

definition of, 134 
of the input errors, 138-142 
of the output errors, 142-152 
properties of, 134-138 
rank of, 150 

diagonal, 237, 242 
inversion of, 298, 314 

eigenvalues, 155, 156, 518, 519, 531, 578 
location of, relative to unit circle, 580 
sum of, 590 

eigenvectors, 155 
rank of, 578, 579 

exponential, 95, 322 
function, 438 
identity, 231, 264, 317, 399 

infinite order, 520 
ill-conditioned, 470, 476 
indefinite, 473 
with infinite number of columns, 519 
infinite-order, 519 
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Matrix (cont 'd): 
infinite series, 322 
inversion: in Bayes Filter, 407 

computation of, 297 
difficulties, 408 
with finite-precision arithmetic (see under 

Arithmetic) 
functional, 228 
impasse, 231 
iterative, 314 
numerical, 228, 314-317 
in real-time, 315 
repeated, 435 

link, 81-87 
nearly-singular, 473 

inversion of, 315 
nonnegative -Clef-mite, 135, 193, 194, 407, 608 
null, 249, 390, 400, 476, 531 
with ones on diagonal, 317 
orthogonal, 155 
permanently singular, 473 
positive definite, 399, 400, 407, 438, 441, 

468, 476, 578, 591, 608 
product, 521 
real, symmetric: eigenvalues of, 585 

eigenvectors of, 585 
singular, 519 
square-root of, 477 
Stirling: first-kind, 22, 23, 39 

first-kind associate, 84, 85, 116, 239 
recursion for, 116 
second-kind, 24, 25, 38, 271, 544 
second-kind associate, 83-86, 116 

subscripts, 9, 22N. 
transition, 295, 430, 479 

alternate expression for, 115 
augmented, 615 
in differential-correction, 309 
differential equations of, 97, 98, 101-104 
eigenvalues of, 326 
eigenvectors of, 325 
exponential form, 96 
integrating the equations of, 308 
polynomial, 74, 76, 77, 79, 80 

triple-product, 522, 562 
weight, 78, 91 

Maximum-likelihood estimate (see Estimate) 
Maximum-likelihood principle, 470 
Measurements, orthogonal (see under Observa- 

tions) 
Measuring instruments (see under Observation 

instrument) 
Memory: 

expanding, 37, 342, 388 
fading, 57, 497, 555, 609 
fixed-length, 37, 223, 234, 291 

Memory space, 281, 359, 382, 388, 411, 514, 
570 

Memory-length, 298 
effective, 575 
retarding the growth of, 575 
(See also Observation interval; Smoothing in-

terval) 
Miller, K. S., 164 
Milne, W. E., 71 
Minimal polynomial, 322 
Minimum-variance, 165, 221, 321, 380,. 387, 

466, 469, 558, 561, 609 
composite estimate, 393, 396, 397, 431, 463 

general form, 395 
covariance matrix, 191 
definition of, 195 
estimate, 186, 190 
filter, 294 
first-order estimate; (1r 
general aspects of, 193-198# . 
in nonlinear systems, 300 
in obtaining a nominal trajectory, 301 
polynomial approximation, 298 
preservation of, under prediction, 196, 197 
relation to least-squares, 191 
uniqueness of, 1987201, 469 
by weighted least-squares, 203 

Minsky, L., 219, 338 
Mixed-dimensions (see Dimensioni) 
Model: 

approximations, 3 
constant-coefficient linear, 166, 321 
definition of, 3-5 
different from true procesi, 573 
Fourier-series, 581 
linear dynamic, 613 
mismatch, 7, 372, 410, 478, 495, 573, 617 
nonlinear, 166, 425 
polynomial, 224, 225, 295, 343, 498, 581 

derivative, 73-79 
difference, 79 

simplified, 410 
time-varying linear, 166 
types of, 4, 5 
(See also Differential equations) 

Morrison, N., 554 
Mowery, V. 0., 482, 493 

Natural modes, 363, 364, 507, 508, 531, 589 
with eigenvalues inside unit circle, 580 
with eigenvalues outside unit circle, 580 
(See also Difference equations) 

Negative variance (see Variance) 
Newton series, 22, 61 
Nominal trajectory, 107, 169, 277, 280, 281, 

306, 425, 426, 432, 433, 479 
errors in (see under. Errors) 
obtaining, 300-303 
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Nonlinear observation scheme (see under Obser-
vation scheme) 

Nonlinear systems, 105-116 
discussion of, 298-300 
error propagation in (see under Errors) 
linearization of, 107-110, 148, 303-305 
prediction in, 147, 150 
(See also under Differential equations) 

Normal density function (see under Function) 
Normal places, in astronomy, 204N. 
Normalization, 470, 558 
Null vector (see under Vector) 
Numerical accuracy: 

maintaining, 436 
(See also Arithmetic, finite precision) 

Observability, 321N., 402, 406 
Observation instrument, 6, 291, 353, 462 
Observation interval, 268, 271, 276, 317, 401 

(See also Memory-length; Smoothing interval) 
Observation scheme: 

adequate, 407 
augmented, 615 
constant-coefficient, 170, 321 
constraints on, 320, 576, 577 

main theorem, 587 
construction of, 320 
definition of, 6 
linear, 293 

most general form of, 173 
nonlinear, 170, 299, 304, 425, 479 

linearization of, 169, 425, 431 
test for adequacy of, 323, 325 
time-varying linear, 170 
types of, 6, 7, 166-171 

Observation space, 398 
Observation vector, simulated (see under Vector) 
Observations: 

batch-wise uncorrelated, 462 
concurrent, 388 
equally spaced, 223, 295, 342, 498 
error-free, 271, 539 
frequency of, 407 
independent: augmenting the number of, 302, 

303 
sufficient number of, 302 

mixed, 198, 318, 470 
orthogonal, 320 
precise, 474 

down-grading of, 409 
uncorrelated, 408, 409 

quality of, 407 
scalar, 223, 224, 342, 498 
senii-infinite sequence of, 498, 519, 532 
simulated (see under Vector) 
staleness of, 339, 500, 556, 609  

Observations (cont'd): 
unequally spaced, 291, 295, 380, 555 
(See also Errors) 

Operator: 
backward-difference, 238, 351, 624 
backward-shifting, 357, 505, 512 
difference, 17-20 
shifting, 12-17 

Optimal control, 482 
Optimal estimate: fundamental theorem on, 610 

by orthogonal projection, 612 
Orbital parameters, 261, 262 
Orthogonal measurements (see under Observa- 

tions) 
Orthogonal polynomials: 

discrete, 56 
discrete Laguerre, 63-67, 498, 500, 522, 540, 

542, 543, 545 
general form of, 65-67 
inverse relation for, 545 
linear combinations of, 501 
normalized, 501 

discrete Legendre, 57-63, 228, 266, 272, 342, 
345 

backward-differences of, 238, 239 
differentiation of, 238, 362 
general form of, 60, 61, 63 
inverse relation for, 627 
linear combinations of, 229 
normalized, 229, 243 
properties of, 623-627 
recursion for, 238, 623, 624 
zeros of, 252, 256 

Laguerre, 55, 56 
Legendre, 55, 56, 274 
in matrix inversion, 231 
Rodriguez' theorem; 61 

Orthogonal projection, 611-613 
Orthogonality condition: 

continuous, 55, 56 
discrete, 56, 57, 63, 228, 345, 500 

Orthogonality interval, 345 
Orthonormal, 501, 502 

Parameters, trade-off of, 247 
(See also under Errors, bias; Trade-off) 

Pascal's triangle, 27, 76 
Perturbation vector (see under Vector) 
Plackett, R. L., 208, 219 
Polar coordinates, 168, 299 
Polynomial: 

estimating, 223, 229, 295, 343, 498 
degree of, 225, 236, 247, 251, 270, 508 

interpolating, 88 
model (see under Model) 
state-vector (see under State-vector) 
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Position, 293 
Position-fix, 462 
Power-series, 22, 229, 271, 273, 274, 280 

infinite, 266 
Precise observations, down-grading of (see under 

Observations) 
Precision, loss of (see under Kalman Filter) 
Prediction, 8, 144, 147, 224, 504, 506 

errors, 353, 354, 356, 411, 511, 512 
covariance matrix of, 594 
(See also Errors) 

large interval, 261, 482, 543 
in nonlinear systems, 147 
1-step, 225, 232, 233, 349, 502 
unbiased linear minimum-variance, 382 

Prediction time, excessive, 482 
Predictor-corrector (see under Algorithm) 
Process: 

definition of, 3 
state-space, 398 
true, 265 

Propagation, error (see under Errors) 
Push-down table, 221, 223, 234, 281, 295, 301 

Quadratic form, 438, 468, 469, 558 
Quadratic loss-function (see under Loss-function) 

- • 

Radar, 224, 260, 342, 443, 462 
Ragazzini, J. R., 554 
Random errors in a nominal trajectory (see 

under Errors) 
Random variables, 124 

zero mean, 127, 242, 294 
Range, 168, 224, 260, 277, 293, 301 

definition of, 7 
Range-rate, 293 
Rank: 

of a covariance matrix, 135, 137, 150 
defect, 475, 476 
effect of finite-precision on, 317-319 
effect of mixed observations on, 318 
effect of observation-interval on, 317, 318 
full, 143, 179, 183, 321, 475, 608 
insufficient, 408, 474 
strong, 319 
of the T-matrix, 179, 180 
weak, 319 
(See also Matrix) 

Recursion, 577 
and iteration, 426 
operational form of, 16, 17 

Recursive algorithm: 
loops in (see under Loops) 
(See also under Algorithm) 

Relaxed state, 14 

Residual vector (see under Vector) 
Residuals, 203-208, 498, 500 

squared, sum of, 227, 346 
use of, in calibration, 203 
weighted, 500 

Retrodiction, 8, 147, 504 
large interval, 543 

Ridgeway, W. C., HI, 423, 460 
Riordan, J., 32, 626 
Robinson, G., 338 
Rodriguez' theorem (see under Orthogonal 

polynomials) 
Root, W. L., 164, 621 
Roundoff errors (see under Errors) 

(See also under Arithmetic, finite-precision) 

Sampled function (see under Function) 
Sans serif italics, usage of, 139, 246 
Satellite: 

artificial, 443 
orbit determination, 482 

Scalar observations (see under Observations) 
Schlee, F. H., 493 
Schmidt, S. F., 482, 493 
Schmidt, Th. W., 497, 500 
Signal, 124, 125, 224 	. 
Simulated observation vector (see under Vector) 
Smoothing to the center, 261, 270, 306N. 
Smoothing interval, 250, 254, 256 

fixing the length of, 339 
(See also Memory length; Observation interval) 

Smoothing time, 250 
effective, of fading-memory polynomial filter, 

532 
effective, table of constants for, 535 

Sorenson, H. W., 482, 493 
Space-navigation, 482 
Squared residuals (see under Residuals) 
Stability, 362, 580 

formal definition of, 364 
(See also under Bayes; Expanding-memory; 

Fading-memory; Kalman) 
Stage-wise uncorrelated errors (see Uncorrelated 

errors) 
Staleness: 

counting-number, 559 
of observations (see under Observations) 

Standard deviation, 246 
Standish, C. J., 493 
Star, meaning of, 8, 225 
State-variables, 4, 326 
State-vector, 4 

augmented, 299, 614 
backward-difference, 80 
of a body in orbit, 277 
derivative, 343 
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State-vector (coned): 
forward-difference, 84 
nominal trajectory, 307 
polynomial, 294 
scaled-derivative, 75, 355, 368, 369 
structure of elements of, 579 
unsealed-derivative, 73, 74, 359, 369 
(See also Vector).  

Stationary statistics (see under Statistics) 
Statistical independence (see under Independence) 
Statistics: 

of the output errors, 144 
second-order, 461 
stationary, 141, 242, 369, 520, 576 

Stegun, I. A., 71, 164 
Stirling: 

matrix (see under Matrix, Stirling) 
numbers (see under Matrix, Stirling) 

Stress, 558 
according to staleness, 559 
(See also under Fading-memory) 

Subscripts: 
dual, 8, 11 
matrix, 9, 22N. 
parenthesized, 139 
time-ordering, 11 

Summation: 
formulae, 36-40 
by parts, 37, 38 

Swerling, P., 443, 460, 609, 622 
Swerling's algorithm (see under Iterative differ-

ential-correction) 
Switching time: 

constants for determination of, 535 
from expanding to fading memory, 538 

Systematic errors (see under Errors, bias) 
Szego, G., 290 

Taylor's theorem, 74, 102, 108, 169, 296, 310, 
439, 544 

Telescope, 342 
Telstar, 443, 482 
Temperature, 320 
Todd, N. H., 493 
Tracking, 342, 353, 462, 473, 510 
Trade-off: 

between systematic and random errors (see 
Errors, bias) 

between systematic and transient errors (see 
Errors, bias) 

between variance-reduction and transients, 
530 

Trajectory: 
erroneous, 410 
nominal (see under Nominal trajectory) 
selection of, 124, 221 

Transient errors (see under Errors, transient) 
(See also under Fading-memory polynomial 

filter) 
Transition: 

matrix (see under Matrix) 
relation, 74-76, 80, 96, 101, 111, 145, 146, 

149, 172, 195, 197, 238, 296, 349, 382, 
430, 464, 512, 557, 604 

Trend-removal, 277-281, 298 
Truncation (see under Arithmetic, finite-pre-

cision) 

Unconditionally stable, 580 
Unconditionally unstable, 580 
Uncorrelated errors, 408, 520 

batch-wise, 387 
in differential-correction, 314 
locally, 141 
stage-wise, 141, 466, 467, 558, 594 
(See also Errors) 

Undetermined coefficients, method of (see 
Difference equations) 

Unfavorable geometry, discussion of, 319, 320 
Unit impulse, 45 

(See also Dirac delta; Kronecker delta) 
Units, choice of, 198-201, 469 
Updated estimate (see Estimate) 

Validity instant, 8, 349, 371 
manipulation of, 78, 146 
movement of, 503, 524 

Vandermonde convolution, 36 
Varga, R. S., 554, 602 
Variance: 

definition of, 127 
infinite, 392 
inverse, 207 
negative, 473, 474 

Variance reduction factors: 
equality of, 534 
expanding-memory polynomial filter: asymp-

totic form, 372 
exact expressions, 371 

fading-memory polynomial filter, 526, 527 
asymptotic form, 529 

fixed-memory polynomial filter, 371 
asymptotic form, 258, 259, 372 
table of constants, 258, 259 

Variation of parameters (see Difference equations) 
Vector: 

basis, 586, 612 
difference, 79-81 
differential, 262, 306, 425, 429, 480 
error-free, 267 
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Vector (cont'd): 
estimate: scaled, 237, 238, 240, 245, 511 

unsealed, 237, 238, 240, 245, 503, 511 
mixed dimension, 291 

(See also under Dimensions) 
null, 313, 475 
perturbation (see under Vector, differential) 
random, 609 
random output-error, 143 
residual, 181, 225, 437, 441, 469, 557, 560 
simulated observation, 180, 278, 301, 308, 

428, 557 
total error, 139, 172 
total observation, 139, 172, 225, 233, 556 
weight, 356, 512 
(See also State-vector) 

Velocity, 293, 320 
V.R.F. (see Variance reduction factors) 

Weight-factor, 497 
Weight-matrix, 390 

independence of the rows of, 143 
(See also Matrix)  

Weight-vector (see under Vector) 
Weighted least-squares, 469, 497, 556, 557, 561, 

609 
nonlinear counterpart of, 314, 437, 438, 440-

442 
(See also Least-squares; Minimum-variance) 

Weighted sum, of error-variances, 468 
Weighting, by inverse variance, 202 
White random process, 607 
White random variables, 5 
White-noise, 251 

forcing function (see Driving-noise) 
Whittaker, E. T., 338 
Wiener, N., 609 
Wiener problem, Kalman's restatement of, 610 
Wilkinson, J. H., 338 

Z-transform: 
of a convolution sum, 629, 630 
definition of, 629 

Zadeh, L. A., 338, 423 
Zero-mean (see under Random variables) 

(See also under Errors) 
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